Abstract

Due to its high molecular specificity, Raman spectroscopy is a well-established analytical tool. Usually the inelastically scattered Raman light is spectrally dispersed by a spectrometer. Here, we present an alternative method, using an optical fiber as dispersive element. As the group velocity within the fiber is wavelength-dependent, different Raman bands arrive at different times at the detector. In combination with time-correlated single-photon counting, Raman spectra can be measured in the time domain. As detector we implemented a Superconducting Nanowire Single-Photon Detector (SNSPD), which possesses a timing accuracy of about 20 ps. Within this contribution we show first results of Raman spectra measured in the time domain using gradient index fibers of varying length.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths

Chandra M. Natarajan, Lijian Zhang, Hendrik Coldenstrodt-Ronge, Gaia Donati, Sander N. Dorenbos, Val Zwiller, Ian A. Walmsley, and Robert H. Hadfield
Opt. Express 21(1) 893-902 (2013)

High-speed and high-efficiency superconducting nanowire single photon detector array

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler
Opt. Express 21(2) 1440-1447 (2013)

Improving the timing jitter of a superconducting nanowire single-photon detection system

Junjie Wu, Lixing You, Sijing Chen, Hao Li, Yuhao He, Chaolin Lv, Zhen Wang, and Xiaoming Xie
Appl. Opt. 56(8) 2195-2200 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Schmitt and J. Popp, “Raman spectroscopy at the beginning of the twenty-first century,” J. Raman Spectrosc. 37, 20–28 (2006).
  2. G. Petrov, V. Yakovlev, V. Shcheslavskiy, “Raman spectroscopy without spectrometer,” CLEO:2011 - Laser Applications to Photonic Applications, CLEO:2011 - Laser Applications to Photonic Applications, Optical Society of America, 2011, PDPB6.
  3. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004), doi:.
    [Crossref] [PubMed]
  4. W. B. Whitten and H. H. Ross, “Fiber Optic Waveguides for Time-of-Flight Optical Spectrometry,” Anal. Chem. 51(3), 417–419 (1979).
    [Crossref]
  5. O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002), doi:.
    [Crossref]
  6. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009), doi:.
    [Crossref]
  7. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012), doi:.
    [Crossref]
  8. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
    [Crossref] [PubMed]
  9. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012), doi:.
    [Crossref] [PubMed]
  10. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  11. C. Schuck, W. H. P. Pernice, O. Minaeva, M. Li, G. Gol’tsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond. 23(3), 2201007 (2013), doi:.
    [Crossref]
  12. M. Hofherr, D. Rall, K. Il’in, A. Semenov, H.-W. Hübers, and M. Siegel, “Dark count suppression in superconducting nanowire single photon detectors,” J. Low Temp. Phys. 167(5), 822–826 (2012).
    [Crossref]
  13. M. Hofherr, D. Rall, K. Il’in, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
    [Crossref]
  14. M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
    [Crossref]
  15. D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
    [PubMed]
  16. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
    [Crossref] [PubMed]
  17. S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52(14), 3241–3245 (2013).
  18. M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. Woo Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011), doi:.
    [Crossref]
  19. J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
    [Crossref] [PubMed]
  20. A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
    [Crossref]
  21. L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
    [Crossref]
  22. I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - current trends and future development,” Laser Photon. Rev. 7(5), 698–731 (2013), doi:.
    [Crossref]
  23. M.-J. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol. 26(9), 1079–1092 (2008), doi:.
    [Crossref]
  24. R. Olshansky and D. B. Keck, “Pulse broadening in graded-index optical fibers,” Appl. Opt. 15(2), 483–491 (1976).
    [Crossref] [PubMed]
  25. W. Becker, The bh TCSPC Handbook, 4th Edition (Becker Hickl GmbH, 2010) .
  26. Z. Meng, S. Cheng, G. I. Petrov, J. A. Jo, and V. V. Yakovlev, “Raman spectroscopy using time-correlated photon-counting detection,” Proc. SPIE 8572, 85721G (2013).
    [Crossref]
  27. N. R. Teja, M. A. Babu, T. Prasad, and T. Ravi, “Different types of dispersion in an optical fiber,” Int. J. Sci. Res. Pub. 2(12), 1–5 (2012).
  28. M. Csete, Á. Sipos, A. Szalai, F. Najafi, G. Szabó, and K. K. Berggren, “Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures,” Scient. Reports 2, (2013).
  29. K. Il’in, M. Lindgren, M. Currie, A. Semenov, G. Gol’tsman, R. Sobolewski, S. Cherednichenko, and E. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000), doi:.
    [Crossref]
  30. C. Wang, G. Thummes, and C. Heiden, “A two-stage pulse tube cooler operating below 4 K,” Cryogenics, Bd. 37(3), 159–164 (1997).
    [Crossref]

2014 (1)

2013 (8)

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref] [PubMed]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52(14), 3241–3245 (2013).

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

C. Schuck, W. H. P. Pernice, O. Minaeva, M. Li, G. Gol’tsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond. 23(3), 2201007 (2013), doi:.
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
[Crossref]

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - current trends and future development,” Laser Photon. Rev. 7(5), 698–731 (2013), doi:.
[Crossref]

Z. Meng, S. Cheng, G. I. Petrov, J. A. Jo, and V. V. Yakovlev, “Raman spectroscopy using time-correlated photon-counting detection,” Proc. SPIE 8572, 85721G (2013).
[Crossref]

2012 (5)

N. R. Teja, M. A. Babu, T. Prasad, and T. Ravi, “Different types of dispersion in an optical fiber,” Int. J. Sci. Res. Pub. 2(12), 1–5 (2012).

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012), doi:.
[Crossref]

M. Hofherr, D. Rall, K. Il’in, A. Semenov, H.-W. Hübers, and M. Siegel, “Dark count suppression in superconducting nanowire single photon detectors,” J. Low Temp. Phys. 167(5), 822–826 (2012).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012), doi:.
[Crossref] [PubMed]

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

2011 (1)

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. Woo Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011), doi:.
[Crossref]

2010 (1)

M. Hofherr, D. Rall, K. Il’in, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

2009 (2)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009), doi:.
[Crossref]

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

2008 (2)

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

M.-J. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol. 26(9), 1079–1092 (2008), doi:.
[Crossref]

2006 (1)

M. Schmitt and J. Popp, “Raman spectroscopy at the beginning of the twenty-first century,” J. Raman Spectrosc. 37, 20–28 (2006).

2004 (1)

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004), doi:.
[Crossref] [PubMed]

2002 (1)

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002), doi:.
[Crossref]

2000 (1)

K. Il’in, M. Lindgren, M. Currie, A. Semenov, G. Gol’tsman, R. Sobolewski, S. Cherednichenko, and E. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000), doi:.
[Crossref]

1997 (1)

C. Wang, G. Thummes, and C. Heiden, “A two-stage pulse tube cooler operating below 4 K,” Cryogenics, Bd. 37(3), 159–164 (1997).
[Crossref]

1979 (1)

W. B. Whitten and H. H. Ross, “Fiber Optic Waveguides for Time-of-Flight Optical Spectrometry,” Anal. Chem. 51(3), 417–419 (1979).
[Crossref]

1976 (1)

Arndt, M.

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

Babu, M. A.

N. R. Teja, M. A. Babu, T. Prasad, and T. Ravi, “Different types of dispersion in an optical fiber,” Int. J. Sci. Res. Pub. 2(12), 1–5 (2012).

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. Woo Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011), doi:.
[Crossref]

Bartolf, H.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

Becker, W.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004), doi:.
[Crossref] [PubMed]

Benndorf, K.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004), doi:.
[Crossref] [PubMed]

Bergmann, A.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004), doi:.
[Crossref] [PubMed]

Biskup, C.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004), doi:.
[Crossref] [PubMed]

Böttger, U.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

Breuls, A. H. E.

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002), doi:.
[Crossref]

Butov, O. V.

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002), doi:.
[Crossref]

Chen, S.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52(14), 3241–3245 (2013).

Cheng, S.

Z. Meng, S. Cheng, G. I. Petrov, J. A. Jo, and V. V. Yakovlev, “Raman spectroscopy using time-correlated photon-counting detection,” Proc. SPIE 8572, 85721G (2013).
[Crossref]

Cherednichenko, S.

K. Il’in, M. Lindgren, M. Currie, A. Semenov, G. Gol’tsman, R. Sobolewski, S. Cherednichenko, and E. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000), doi:.
[Crossref]

Claudon, J.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

Currie, M.

K. Il’in, M. Lindgren, M. Currie, A. Semenov, G. Gol’tsman, R. Sobolewski, S. Cherednichenko, and E. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000), doi:.
[Crossref]

Dauler, E. A.

Dietzek, B.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - current trends and future development,” Laser Photon. Rev. 7(5), 698–731 (2013), doi:.
[Crossref]

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

Divochiy, A.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

Dochow, S.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - current trends and future development,” Laser Photon. Rev. 7(5), 698–731 (2013), doi:.
[Crossref]

Dyer, S. D.

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. Woo Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011), doi:.
[Crossref]

Engel, A.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Gershenzon, E.

K. Il’in, M. Lindgren, M. Currie, A. Semenov, G. Gol’tsman, R. Sobolewski, S. Cherednichenko, and E. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000), doi:.
[Crossref]

Gerthsen, D.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

Gippius, N. A.

M. Hofherr, D. Rall, K. Il’in, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

Gol’tsman, G.

C. Schuck, W. H. P. Pernice, O. Minaeva, M. Li, G. Gol’tsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond. 23(3), 2201007 (2013), doi:.
[Crossref]

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

K. Il’in, M. Lindgren, M. Currie, A. Semenov, G. Gol’tsman, R. Sobolewski, S. Cherednichenko, and E. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000), doi:.
[Crossref]

Golant, K. M.

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002), doi:.
[Crossref]

Goltsman, G. N.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012), doi:.
[Crossref] [PubMed]

Grüner, R.

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

Günther, B.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

Hadfield, R. H.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012), doi:.
[Crossref]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. Woo Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011), doi:.
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009), doi:.
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

He, Y.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52(14), 3241–3245 (2013).

Heiden, C.

C. Wang, G. Thummes, and C. Heiden, “A two-stage pulse tube cooler operating below 4 K,” Cryogenics, Bd. 37(3), 159–164 (1997).
[Crossref]

Henrich, D.

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

Hink, M. A.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004), doi:.
[Crossref] [PubMed]

Hofherr, M.

M. Hofherr, D. Rall, K. Il’in, A. Semenov, H.-W. Hübers, and M. Siegel, “Dark count suppression in superconducting nanowire single photon detectors,” J. Low Temp. Phys. 167(5), 822–826 (2012).
[Crossref]

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

M. Hofherr, D. Rall, K. Il’in, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

Hübers, H.-W.

M. Hofherr, D. Rall, K. Il’in, A. Semenov, H.-W. Hübers, and M. Siegel, “Dark count suppression in superconducting nanowire single photon detectors,” J. Low Temp. Phys. 167(5), 822–826 (2012).
[Crossref]

M. Hofherr, D. Rall, K. Il’in, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

Il’in, K.

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

M. Hofherr, D. Rall, K. Il’in, A. Semenov, H.-W. Hübers, and M. Siegel, “Dark count suppression in superconducting nanowire single photon detectors,” J. Low Temp. Phys. 167(5), 822–826 (2012).
[Crossref]

M. Hofherr, D. Rall, K. Il’in, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

K. Il’in, M. Lindgren, M. Currie, A. Semenov, G. Gol’tsman, R. Sobolewski, S. Cherednichenko, and E. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000), doi:.
[Crossref]

Jiang, M.

Jo, J. A.

Z. Meng, S. Cheng, G. I. Petrov, J. A. Jo, and V. V. Yakovlev, “Raman spectroscopy using time-correlated photon-counting detection,” Proc. SPIE 8572, 85721G (2013).
[Crossref]

Kaurova, N.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

Keck, D. B.

Kerman, A. J.

König, K.

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004), doi:.
[Crossref] [PubMed]

Korneev, A.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

Krafft, C.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - current trends and future development,” Laser Photon. Rev. 7(5), 698–731 (2013), doi:.
[Crossref]

Latka, I.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - current trends and future development,” Laser Photon. Rev. 7(5), 698–731 (2013), doi:.
[Crossref]

Li, M.

C. Schuck, W. H. P. Pernice, O. Minaeva, M. Li, G. Gol’tsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond. 23(3), 2201007 (2013), doi:.
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012), doi:.
[Crossref] [PubMed]

Li, M.-J.

Lindgren, M.

K. Il’in, M. Lindgren, M. Currie, A. Semenov, G. Gol’tsman, R. Sobolewski, S. Cherednichenko, and E. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000), doi:.
[Crossref]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Liu, D.

Liu, X.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
[Crossref]

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

May, T.

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

Meng, Z.

Z. Meng, S. Cheng, G. I. Petrov, J. A. Jo, and V. V. Yakovlev, “Raman spectroscopy using time-correlated photon-counting detection,” Proc. SPIE 8572, 85721G (2013).
[Crossref]

Meyer, H.-G.

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

Miki, S.

Minaeva, O.

C. Schuck, W. H. P. Pernice, O. Minaeva, M. Li, G. Gol’tsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond. 23(3), 2201007 (2013), doi:.
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012), doi:.
[Crossref] [PubMed]

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Molnar, R. J.

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012), doi:.
[Crossref]

Nolan, D. A.

Olshansky, R.

Pernice, W. H. P.

C. Schuck, W. H. P. Pernice, O. Minaeva, M. Li, G. Gol’tsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond. 23(3), 2201007 (2013), doi:.
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012), doi:.
[Crossref] [PubMed]

Petrov, G. I.

Z. Meng, S. Cheng, G. I. Petrov, J. A. Jo, and V. V. Yakovlev, “Raman spectroscopy using time-correlated photon-counting detection,” Proc. SPIE 8572, 85721G (2013).
[Crossref]

Poizat, J. P.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

Popp, J.

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - current trends and future development,” Laser Photon. Rev. 7(5), 698–731 (2013), doi:.
[Crossref]

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

M. Schmitt and J. Popp, “Raman spectroscopy at the beginning of the twenty-first century,” J. Raman Spectrosc. 37, 20–28 (2006).

Prasad, T.

N. R. Teja, M. A. Babu, T. Prasad, and T. Ravi, “Different types of dispersion in an optical fiber,” Int. J. Sci. Res. Pub. 2(12), 1–5 (2012).

Rall, D.

M. Hofherr, D. Rall, K. Il’in, A. Semenov, H.-W. Hübers, and M. Siegel, “Dark count suppression in superconducting nanowire single photon detectors,” J. Low Temp. Phys. 167(5), 822–826 (2012).
[Crossref]

M. Hofherr, D. Rall, K. Il’in, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

Ravi, T.

N. R. Teja, M. A. Babu, T. Prasad, and T. Ravi, “Different types of dispersion in an optical fiber,” Int. J. Sci. Res. Pub. 2(12), 1–5 (2012).

Ren, M.

Rosenberg, D.

Ross, H. H.

W. B. Whitten and H. H. Ross, “Fiber Optic Waveguides for Time-of-Flight Optical Spectrometry,” Anal. Chem. 51(3), 417–419 (1979).
[Crossref]

Schilling, A.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

Schmitt, M.

M. Schmitt and J. Popp, “Raman spectroscopy at the beginning of the twenty-first century,” J. Raman Spectrosc. 37, 20–28 (2006).

Schneider, R.

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

Schubert, M.

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

Schuck, C.

C. Schuck, W. H. P. Pernice, O. Minaeva, M. Li, G. Gol’tsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond. 23(3), 2201007 (2013), doi:.
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012), doi:.
[Crossref] [PubMed]

Seleznev, V.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

Semenov, A.

M. Hofherr, D. Rall, K. Il’in, A. Semenov, H.-W. Hübers, and M. Siegel, “Dark count suppression in superconducting nanowire single photon detectors,” J. Low Temp. Phys. 167(5), 822–826 (2012).
[Crossref]

M. Hofherr, D. Rall, K. Il’in, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

K. Il’in, M. Lindgren, M. Currie, A. Semenov, G. Gol’tsman, R. Sobolewski, S. Cherednichenko, and E. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000), doi:.
[Crossref]

Semenov, A. V.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

Sergienko, A. V.

C. Schuck, W. H. P. Pernice, O. Minaeva, M. Li, G. Gol’tsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond. 23(3), 2201007 (2013), doi:.
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012), doi:.
[Crossref] [PubMed]

Shaw, M.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Siegel, M.

M. Hofherr, D. Rall, K. Il’in, A. Semenov, H.-W. Hübers, and M. Siegel, “Dark count suppression in superconducting nanowire single photon detectors,” J. Low Temp. Phys. 167(5), 822–826 (2012).
[Crossref]

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

M. Hofherr, D. Rall, K. Il’in, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

Sobolewski, R.

K. Il’in, M. Lindgren, M. Currie, A. Semenov, G. Gol’tsman, R. Sobolewski, S. Cherednichenko, and E. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000), doi:.
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Tang, H. X.

C. Schuck, W. H. P. Pernice, O. Minaeva, M. Li, G. Gol’tsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond. 23(3), 2201007 (2013), doi:.
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012), doi:.
[Crossref] [PubMed]

Tanner, M. G.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012), doi:.
[Crossref]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. Woo Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011), doi:.
[Crossref]

Tarkhov, M.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

Teja, N. R.

N. R. Teja, M. A. Babu, T. Prasad, and T. Ravi, “Different types of dispersion in an optical fiber,” Int. J. Sci. Res. Pub. 2(12), 1–5 (2012).

Terai, H.

Thummes, G.

C. Wang, G. Thummes, and C. Heiden, “A two-stage pulse tube cooler operating below 4 K,” Cryogenics, Bd. 37(3), 159–164 (1997).
[Crossref]

Tomashuk, A. L.

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002), doi:.
[Crossref]

Toussaint, J.

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

van Stralen, M. J. N.

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002), doi:.
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Voronov, B.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

Wang, C.

C. Wang, G. Thummes, and C. Heiden, “A two-stage pulse tube cooler operating below 4 K,” Cryogenics, Bd. 37(3), 159–164 (1997).
[Crossref]

Wang, Z.

Whitten, W. B.

W. B. Whitten and H. H. Ross, “Fiber Optic Waveguides for Time-of-Flight Optical Spectrometry,” Anal. Chem. 51(3), 417–419 (1979).
[Crossref]

Woo Nam, S.

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. Woo Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011), doi:.
[Crossref]

Wu, G.

Xie, X.

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52(14), 3241–3245 (2013).

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
[Crossref]

Yakovlev, V. V.

Z. Meng, S. Cheng, G. I. Petrov, J. A. Jo, and V. V. Yakovlev, “Raman spectroscopy using time-correlated photon-counting detection,” Proc. SPIE 8572, 85721G (2013).
[Crossref]

Yamashita, T.

Yang, X.

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52(14), 3241–3245 (2013).

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
[Crossref]

You, L.

Zeng, H.

Zhang, L.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
[Crossref]

Zhang, W.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
[Crossref]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52(14), 3241–3245 (2013).

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52(14), 3241–3245 (2013).

AIP Advances (1)

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances 3(7), 072135 (2013), doi:.
[Crossref]

Anal. Chem. (1)

W. B. Whitten and H. H. Ross, “Fiber Optic Waveguides for Time-of-Flight Optical Spectrometry,” Anal. Chem. 51(3), 417–419 (1979).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

K. Il’in, M. Lindgren, M. Currie, A. Semenov, G. Gol’tsman, R. Sobolewski, S. Cherednichenko, and E. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752 (2000), doi:.
[Crossref]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. Woo Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011), doi:.
[Crossref]

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92(24), 24111 (2008).
[Crossref]

Cryogenics, Bd. (1)

C. Wang, G. Thummes, and C. Heiden, “A two-stage pulse tube cooler operating below 4 K,” Cryogenics, Bd. 37(3), 159–164 (1997).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

C. Schuck, W. H. P. Pernice, O. Minaeva, M. Li, G. Gol’tsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond. 23(3), 2201007 (2013), doi:.
[Crossref]

Int. J. Sci. Res. Pub. (1)

N. R. Teja, M. A. Babu, T. Prasad, and T. Ravi, “Different types of dispersion in an optical fiber,” Int. J. Sci. Res. Pub. 2(12), 1–5 (2012).

J. Appl. Phys. (1)

M. Hofherr, D. Rall, K. Il’in, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Low Temp. Phys. (1)

M. Hofherr, D. Rall, K. Il’in, A. Semenov, H.-W. Hübers, and M. Siegel, “Dark count suppression in superconducting nanowire single photon detectors,” J. Low Temp. Phys. 167(5), 822–826 (2012).
[Crossref]

J. Raman Spectrosc. (1)

M. Schmitt and J. Popp, “Raman spectroscopy at the beginning of the twenty-first century,” J. Raman Spectrosc. 37, 20–28 (2006).

Laser Photon. Rev. (1)

I. Latka, S. Dochow, C. Krafft, B. Dietzek, and J. Popp, “Fiber optic probes for linear and nonlinear Raman applications - current trends and future development,” Laser Photon. Rev. 7(5), 698–731 (2013), doi:.
[Crossref]

Microsc. Res. Tech. (1)

W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004), doi:.
[Crossref] [PubMed]

Nat Commun (1)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012), doi:.
[Crossref] [PubMed]

Nat. Photonics (2)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009), doi:.
[Crossref]

Opt. Commun. (1)

O. V. Butov, K. M. Golant, A. L. Tomashuk, M. J. N. van Stralen, and A. H. E. Breuls, “Refractive index dispersion of doped silica for fiber optics,” Opt. Commun. 213(4-6), 301–308 (2002), doi:.
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

A. Semenov, B. Günther, U. Böttger, H.-W. Hübers, H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, R. Schneider, D. Gerthsen, and N. A. Gippius, “Optical and transport properties of ultrathin NbN films and nanostructures,” Phys. Rev. B 80(5), 054510 (2009), doi:.
[Crossref]

Proc. SPIE (1)

Z. Meng, S. Cheng, G. I. Petrov, J. A. Jo, and V. V. Yakovlev, “Raman spectroscopy using time-correlated photon-counting detection,” Proc. SPIE 8572, 85721G (2013).
[Crossref]

Rev. Sci. Instrum. (1)

J. Toussaint, R. Grüner, M. Schubert, T. May, H.-G. Meyer, B. Dietzek, J. Popp, M. Hofherr, M. Arndt, D. Henrich, K. Il’in, and M. Siegel, “Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range,” Rev. Sci. Instrum. 83(12), 123103 (2012), doi:.
[Crossref] [PubMed]

Supercond. Sci. Technol. (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012), doi:.
[Crossref]

Other (3)

G. Petrov, V. Yakovlev, V. Shcheslavskiy, “Raman spectroscopy without spectrometer,” CLEO:2011 - Laser Applications to Photonic Applications, CLEO:2011 - Laser Applications to Photonic Applications, Optical Society of America, 2011, PDPB6.

W. Becker, The bh TCSPC Handbook, 4th Edition (Becker Hickl GmbH, 2010) .

M. Csete, Á. Sipos, A. Szalai, F. Najafi, G. Szabó, and K. K. Berggren, “Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures,” Scient. Reports 2, (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Wavelength vs. transit time difference through different fiber lengths. Symbols correspond to Raman bands of cyclohexane, see spectrum in Fig. 5(a). (b) Difference in transit time for a wavelength difference for mean wavelength of 629 nm of 1 or 3 nm and fiber lengths of up to 300 m.

Fig. 2
Fig. 2

Working Principle of SNSPD (a) Single-photon detection scheme: First, a photon arrives at the detector (left), is absorbed (middle) and leads to a normal conducting belt over the whole wire width. (b) Scanning electron micrograph of an SNSPD, the sensitive area (meander) is about 5 x 5 µm2

Fig. 3
Fig. 3

Measurement setup consisting of three parts: the excitation path with the pulsed laser and optical fibers, the detection path with the cryogenic system, and the TCSPC readout (see text above).

Fig. 4
Fig. 4

Measured histograms of the timing jitter of the TCSPC electronics (red curve) with a FWHM value of 7 ps. The histogram in black shows the result if amplifiers are implemented with FWHM value of 11 ps.

Fig. 5
Fig. 5

Measurement results: left: spectrometer based spectra, i.e. intensity vs. wavenumber/wavelength, right side fiber dispersed spectra with 45 m of dispersive fiber, i.e. intensity (≡ counts) vs. wavenumber/transit time, Rows from top to bottom (measurement time 300 s) (a) cyclohexane (inset: measurement time 60 s), (b) methanol and (c) polypropylene (Eppendorf safe-lock tube).

Fig. 6
Fig. 6

Calibration curve for correlation of wavenumber and time-axis of fiber dispersed measurements. Raman band positions of cyclohexane and methanol are correctly represented.

Fig. 7
Fig. 7

Comparison of measurements with different fiber lengths with cyclohexane as sample, black = 15 m, red = 30 m, blue = 45 m. Red arrows show the area where the improvement of the resolution by the use of a longer fiber can be seen. The separation of the two Raman bands is better for the 30 m long fiber. Further lengthening to 45 m does not improve the resolution anymore and leads not only to a signal stretch but also to a broadening of the Raman bands.

Fig. 8
Fig. 8

Calculation of Raman peaks with different temporal resolution of the complete system; red: the present resolution of about 47 ps; black: the optimized resolution of 31 ps.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ= L v g
v g ( λ )= c n( λ ) ( 1+ 1 n( λ ) n( λ ) λ )
σ total = σ TCSPC+amplifiers 2 + σ SNSPD 2 + σ laser 2
FWH M total =2 2ln( 2 )   σ total 2.35  σ total

Metrics