Abstract

Spot centroid detection is required by Shack-Hartmann wavefront sensing since the technique was first proposed. For a Shack-Hartmann wavefront sensor, the standard structure is to place a camera behind a lenslet array to record the image of spots. We proposed a new Shack-Hartmann wavefront sensing technique without using spot centroid detection. Based on the principle of binary-aberration-mode filtering, for each subaperture, only one light-detecting unit is used to measure the local wavefront slopes. It is possible to adopt single detectors in Shack-Hartmann wavefront sensor. Thereby, the method is able to gain noise benefits from using singe detectors behind each subaperture when used for sensing rapid varying wavefront in weak light. Moreover, due to non-discrete pixel imaging, this method is a potential solution for high measurement precision with fewer detecting units. Our simulations demonstrate the validity of the theoretical model. In addition, the results also indicate the advantage in measurement accuracy.

© 2015 Optical Society of America

PDF Article
OSA Recommended Articles
Wavefront sensing by means of binary intensity modulation

Shuai Wang, Ping Yang, Mingwu Ao, Lizhi Dong, and Bing Xu
Appl. Opt. 53(35) 8342-8349 (2014)

Hybrid wavefront sensor for the fast detection of wavefront disturbances

Shihao Dong, Tobias Haist, and Wolfgang Osten
Appl. Opt. 51(25) 6268-6274 (2012)

Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor

Xiaoming Yin, Xiang Li, Liping Zhao, and Zhongping Fang
Appl. Opt. 48(32) 6088-6098 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Hartmann, “Objektuvuntersuchungen,” Zt. Instrumentenkd 24(1), 1 (1904).
  2. B. C. Platt and R. V. Shack, “Lenticular Hartmann Screen,” Opt. Sci. Newsl. 5, 15–16 (1971).
  3. B. R. Masters, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” Opt. Express 3(9), 332–338 (1998).
    [Crossref] [PubMed]
  4. J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137(1–3), 17–21 (1997).
    [Crossref]
  5. J. T. Salmon, E. S. Bliss, T. W. Long, E. L. Orham, R. W. Presta, C. D. Swift, and R. L. Ward, “Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor,” Proc. SPIE 1542, 2–17 (1991).
    [Crossref]
  6. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
    [Crossref] [PubMed]
  7. T. Li, L. Huang, and M. Gong, “Wavefront sensing for a nonuniform intensity laser beam by Shack–Hartmann sensor with modified Fourier domain centroiding,” Opt. Eng. 53(4), 044101 (2014).
    [Crossref]
  8. B. C. Platt and R. V. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
    [PubMed]
  9. Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
    [Crossref]
  10. F. Wang, “Wavefront sensing through measurements of binary aberration modes,” Appl. Opt. 48(15), 2865–2870 (2009).
    [Crossref] [PubMed]
  11. F. Wang, “Control of deformable mirror with light-intensity measurements through single-mode fiber,” Appl. Opt. 49(31), G60–G66 (2010).
    [Crossref]
  12. K. G. Beauchamp, Walsh Funcitons and Their Applications (Academic, 1975).
  13. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd Edition (Pearson Education, 2010).
  14. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14(4), 1339–1352 (2006).
    [Crossref] [PubMed]
  15. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  16. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” JOSA 70(8), 998–1006 (1980).
    [Crossref]
  17. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt. 31(32), 6902–6908 (1992).
    [Crossref] [PubMed]

2014 (1)

T. Li, L. Huang, and M. Gong, “Wavefront sensing for a nonuniform intensity laser beam by Shack–Hartmann sensor with modified Fourier domain centroiding,” Opt. Eng. 53(4), 044101 (2014).
[Crossref]

2010 (1)

2009 (1)

2006 (1)

2003 (1)

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
[Crossref]

2001 (1)

B. C. Platt and R. V. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

1998 (1)

1997 (1)

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137(1–3), 17–21 (1997).
[Crossref]

1994 (1)

1992 (1)

1991 (1)

J. T. Salmon, E. S. Bliss, T. W. Long, E. L. Orham, R. W. Presta, C. D. Swift, and R. L. Ward, “Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor,” Proc. SPIE 1542, 2–17 (1991).
[Crossref]

1980 (1)

W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” JOSA 70(8), 998–1006 (1980).
[Crossref]

1971 (1)

B. C. Platt and R. V. Shack, “Lenticular Hartmann Screen,” Opt. Sci. Newsl. 5, 15–16 (1971).

1904 (1)

J. Hartmann, “Objektuvuntersuchungen,” Zt. Instrumentenkd 24(1), 1 (1904).

Bille, J. F.

Birch, P. M.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137(1–3), 17–21 (1997).
[Crossref]

Bliss, E. S.

J. T. Salmon, E. S. Bliss, T. W. Long, E. L. Orham, R. W. Presta, C. D. Swift, and R. L. Ward, “Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor,” Proc. SPIE 1542, 2–17 (1991).
[Crossref]

Booth, M. J.

Gaessler, W.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
[Crossref]

Goelz, S.

Gong, M.

T. Li, L. Huang, and M. Gong, “Wavefront sensing for a nonuniform intensity laser beam by Shack–Hartmann sensor with modified Fourier domain centroiding,” Opt. Eng. 53(4), 044101 (2014).
[Crossref]

Goto, M.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
[Crossref]

Gourlay, J.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137(1–3), 17–21 (1997).
[Crossref]

Grimm, B.

Hartmann, J.

J. Hartmann, “Objektuvuntersuchungen,” Zt. Instrumentenkd 24(1), 1 (1904).

Hayano, Y.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
[Crossref]

Huang, L.

T. Li, L. Huang, and M. Gong, “Wavefront sensing for a nonuniform intensity laser beam by Shack–Hartmann sensor with modified Fourier domain centroiding,” Opt. Eng. 53(4), 044101 (2014).
[Crossref]

Iye, M.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
[Crossref]

Kamata, Y.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
[Crossref]

Kobayashi, N.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
[Crossref]

Lane, R. G.

Li, T.

T. Li, L. Huang, and M. Gong, “Wavefront sensing for a nonuniform intensity laser beam by Shack–Hartmann sensor with modified Fourier domain centroiding,” Opt. Eng. 53(4), 044101 (2014).
[Crossref]

Liang, J.

Long, T. W.

J. T. Salmon, E. S. Bliss, T. W. Long, E. L. Orham, R. W. Presta, C. D. Swift, and R. L. Ward, “Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor,” Proc. SPIE 1542, 2–17 (1991).
[Crossref]

Love, G. D.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137(1–3), 17–21 (1997).
[Crossref]

Masters, B. R.

Minowa, Y.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
[Crossref]

Orham, E. L.

J. T. Salmon, E. S. Bliss, T. W. Long, E. L. Orham, R. W. Presta, C. D. Swift, and R. L. Ward, “Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor,” Proc. SPIE 1542, 2–17 (1991).
[Crossref]

Platt, B. C.

B. C. Platt and R. V. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

B. C. Platt and R. V. Shack, “Lenticular Hartmann Screen,” Opt. Sci. Newsl. 5, 15–16 (1971).

Presta, R. W.

J. T. Salmon, E. S. Bliss, T. W. Long, E. L. Orham, R. W. Presta, C. D. Swift, and R. L. Ward, “Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor,” Proc. SPIE 1542, 2–17 (1991).
[Crossref]

Purvis, A.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137(1–3), 17–21 (1997).
[Crossref]

Salmon, J. T.

J. T. Salmon, E. S. Bliss, T. W. Long, E. L. Orham, R. W. Presta, C. D. Swift, and R. L. Ward, “Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor,” Proc. SPIE 1542, 2–17 (1991).
[Crossref]

Shack, R. V.

B. C. Platt and R. V. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

B. C. Platt and R. V. Shack, “Lenticular Hartmann Screen,” Opt. Sci. Newsl. 5, 15–16 (1971).

Sharples, R. M.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137(1–3), 17–21 (1997).
[Crossref]

Southwell, W. H.

W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” JOSA 70(8), 998–1006 (1980).
[Crossref]

Swift, C. D.

J. T. Salmon, E. S. Bliss, T. W. Long, E. L. Orham, R. W. Presta, C. D. Swift, and R. L. Ward, “Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor,” Proc. SPIE 1542, 2–17 (1991).
[Crossref]

Takami, H.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
[Crossref]

Takato, N.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
[Crossref]

Tallon, M.

Wang, F.

Ward, R. L.

J. T. Salmon, E. S. Bliss, T. W. Long, E. L. Orham, R. W. Presta, C. D. Swift, and R. L. Ward, “Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor,” Proc. SPIE 1542, 2–17 (1991).
[Crossref]

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (1)

B. C. Platt and R. V. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

JOSA (1)

W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” JOSA 70(8), 998–1006 (1980).
[Crossref]

Opt. Commun. (1)

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137(1–3), 17–21 (1997).
[Crossref]

Opt. Eng. (1)

T. Li, L. Huang, and M. Gong, “Wavefront sensing for a nonuniform intensity laser beam by Shack–Hartmann sensor with modified Fourier domain centroiding,” Opt. Eng. 53(4), 044101 (2014).
[Crossref]

Opt. Express (2)

Opt. Sci. Newsl. (1)

B. C. Platt and R. V. Shack, “Lenticular Hartmann Screen,” Opt. Sci. Newsl. 5, 15–16 (1971).

Proc. SPIE (2)

J. T. Salmon, E. S. Bliss, T. W. Long, E. L. Orham, R. W. Presta, C. D. Swift, and R. L. Ward, “Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor,” Proc. SPIE 1542, 2–17 (1991).
[Crossref]

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayashi, and M. Iye, “Upgrade plants for Subaru AO system,” Proc. SPIE 4839, 32–43 (2003).
[Crossref]

Zt. Instrumentenkd (1)

J. Hartmann, “Objektuvuntersuchungen,” Zt. Instrumentenkd 24(1), 1 (1904).

Other (3)

K. G. Beauchamp, Walsh Funcitons and Their Applications (Academic, 1975).

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd Edition (Pearson Education, 2010).

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics