Abstract

The thermal lens effect of the TGG crystal is investigated theoretically and experimentally. The theoretical analysis is demonstrated by the experimental measurements on a home-made frequency-doubled Nd:YVO4 laser with single-frequency operation. In the presence of the thermal lens effect of the TGG crystal, the output power can be optimized by shortening the distance between the cavity mirrors of M3 and M4 (two plane-concave mirrors placed at two sides of the second-harmonic generator). Consequently, a single-frequency laser with output power of 18.7 W at 532 nm is obtained. The power stability and the beam quality M2 are better than ±0.4% for 5 hours and 1.08, respectively. Meanwhile, we observe and discuss a bistability-like phenomenon of the laser in the cases of increasing and decreasing the incident pump power.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband tunable single-frequency Nd:YVO4/LBO green laser with high output power

Wenzhe Wang, Huadong Lu, Jing Su, and Kunchi Peng
Appl. Opt. 52(11) 2279-2285 (2013)

Thermal lensing analysis of TGG and its effect on beam quality

Amir A Jalali, James Rybarsyk, and Evan Rogers
Opt. Express 21(11) 13741-13747 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. I. Martin, W. A. Clarkson, and D. C. Hanna, “3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser,” Opt. Lett. 21(12), 875–877 (1996).
    [Crossref] [PubMed]
  2. http://gb.castech.com/productsdetail/&productId=7ccbe98d-bbbc-4a1f-a81b-58314dfc57d9.html .
  3. M. E. Innocenzil, H. T. Yural, C. L. Fincherl, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [Crossref]
  4. T. Y. Fan and R. L. Byer, “Diode laser pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
    [Crossref]
  5. D. Y. Chen, X. D. Li, Y. Zhang, X. Yu, F. Chen, R. P. Yan, Y. F. Ma, and C. Wang, “Research on diffusion-bonding composite YVO4/Nd:GdVO4 crystal,” Laser Phys. Lett. 8(1), 46–49 (2011).
    [Crossref]
  6. E. Cheng, D. R. Dudley, W. L. Nighan, J. D. Kafka, D. E. Spence, and D. S. Bell, “Lasers with low doped gain medium,” US Patent6185235, Feb.6 (2001).
  7. J. Y. Zhao and K. S. Zhang, “High-power single-frequency Nd:YVO4 laser dual-end-pumped by diode laser,” Acta Sinica Quantum Optica 10(2), 87–92 (2004).
  8. Y. J. Wang, Y. H. Zheng, Z. Shi, and K. C. Peng, “High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms,” Laser Phys. Lett. 9(7), 506–510 (2012).
  9. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wavefront sensor,” Appl. Opt. 40(3), 366–374 (2001).
    [Crossref]
  10. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19(7), 1793–1801 (2002).
    [Crossref]
  11. V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278(1), 8–13 (2007).
    [Crossref]
  12. E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
    [Crossref]
  13. C. W. Zhang, H. D. Lu, Q. W. Yin, and J. Su, “Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm,” Appl. Opt. 53(28), 6371–6374 (2014).
    [Crossref] [PubMed]
  14. L. McDonagh, R. Wallenstein, Ralf Knappe, and A. Nebel, “High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm,” Opt. Lett. 31(22), 3297–3299 (2006).
    [Crossref] [PubMed]
  15. Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283(2), 309–312 (2010).
    [Crossref]
  16. H. D. Lu, J. Su, Y. H. Zheng, and K. C. Peng, “Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers,” Opt. Lett. 39(5), 1117–1120 (2014).
    [Crossref] [PubMed]

2014 (2)

2012 (1)

Y. J. Wang, Y. H. Zheng, Z. Shi, and K. C. Peng, “High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms,” Laser Phys. Lett. 9(7), 506–510 (2012).

2011 (1)

D. Y. Chen, X. D. Li, Y. Zhang, X. Yu, F. Chen, R. P. Yan, Y. F. Ma, and C. Wang, “Research on diffusion-bonding composite YVO4/Nd:GdVO4 crystal,” Laser Phys. Lett. 8(1), 46–49 (2011).
[Crossref]

2010 (1)

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283(2), 309–312 (2010).
[Crossref]

2007 (1)

V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278(1), 8–13 (2007).
[Crossref]

2006 (1)

2004 (2)

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

J. Y. Zhao and K. S. Zhang, “High-power single-frequency Nd:YVO4 laser dual-end-pumped by diode laser,” Acta Sinica Quantum Optica 10(2), 87–92 (2004).

2002 (1)

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19(7), 1793–1801 (2002).
[Crossref]

2001 (1)

1996 (1)

1990 (1)

M. E. Innocenzil, H. T. Yural, C. L. Fincherl, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

1988 (1)

T. Y. Fan and R. L. Byer, “Diode laser pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Amin, R.

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Amin, R. S.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19(7), 1793–1801 (2002).
[Crossref]

Andreev, N. F.

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Bell, D. S.

E. Cheng, D. R. Dudley, W. L. Nighan, J. D. Kafka, D. E. Spence, and D. S. Bell, “Lasers with low doped gain medium,” US Patent6185235, Feb.6 (2001).

Byer, R. L.

Chen, D. Y.

D. Y. Chen, X. D. Li, Y. Zhang, X. Yu, F. Chen, R. P. Yan, Y. F. Ma, and C. Wang, “Research on diffusion-bonding composite YVO4/Nd:GdVO4 crystal,” Laser Phys. Lett. 8(1), 46–49 (2011).
[Crossref]

Chen, F.

D. Y. Chen, X. D. Li, Y. Zhang, X. Yu, F. Chen, R. P. Yan, Y. F. Ma, and C. Wang, “Research on diffusion-bonding composite YVO4/Nd:GdVO4 crystal,” Laser Phys. Lett. 8(1), 46–49 (2011).
[Crossref]

Cheng, E.

E. Cheng, D. R. Dudley, W. L. Nighan, J. D. Kafka, D. E. Spence, and D. S. Bell, “Lasers with low doped gain medium,” US Patent6185235, Feb.6 (2001).

Clarkson, W. A.

Clubley, D.

Dudley, D. R.

E. Cheng, D. R. Dudley, W. L. Nighan, J. D. Kafka, D. E. Spence, and D. S. Bell, “Lasers with low doped gain medium,” US Patent6185235, Feb.6 (2001).

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Diode laser pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Fejer, M. M.

Fields, R. A.

M. E. Innocenzil, H. T. Yural, C. L. Fincherl, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Fincherl, C. L.

M. E. Innocenzil, H. T. Yural, C. L. Fincherl, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Guagliardo, D.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19(7), 1793–1801 (2002).
[Crossref]

Gustafson, E. K.

Hanna, D. C.

Hennawi, J.

Innocenzil, M. E.

M. E. Innocenzil, H. T. Yural, C. L. Fincherl, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Ivanov, I. A.

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Kafka, J. D.

E. Cheng, D. R. Dudley, W. L. Nighan, J. D. Kafka, D. E. Spence, and D. S. Bell, “Lasers with low doped gain medium,” US Patent6185235, Feb.6 (2001).

Khazanov, E.

V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278(1), 8–13 (2007).
[Crossref]

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Knappe, Ralf

Li, F. Q.

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283(2), 309–312 (2010).
[Crossref]

Li, X. D.

D. Y. Chen, X. D. Li, Y. Zhang, X. Yu, F. Chen, R. P. Yan, Y. F. Ma, and C. Wang, “Research on diffusion-bonding composite YVO4/Nd:GdVO4 crystal,” Laser Phys. Lett. 8(1), 46–49 (2011).
[Crossref]

Lu, H. D.

Lundock, R.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19(7), 1793–1801 (2002).
[Crossref]

Ma, Y. F.

D. Y. Chen, X. D. Li, Y. Zhang, X. Yu, F. Chen, R. P. Yan, Y. F. Ma, and C. Wang, “Research on diffusion-bonding composite YVO4/Nd:GdVO4 crystal,” Laser Phys. Lett. 8(1), 46–49 (2011).
[Crossref]

Mal’shakov, A.

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Mansell, J. D.

Martin, K. I.

McDonagh, L.

McFeron, D.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19(7), 1793–1801 (2002).
[Crossref]

Mueller, G.

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19(7), 1793–1801 (2002).
[Crossref]

Nebel, A.

Nighan, W. L.

E. Cheng, D. R. Dudley, W. L. Nighan, J. D. Kafka, D. E. Spence, and D. S. Bell, “Lasers with low doped gain medium,” US Patent6185235, Feb.6 (2001).

Palashov, O.

V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278(1), 8–13 (2007).
[Crossref]

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Peng, K. C.

H. D. Lu, J. Su, Y. H. Zheng, and K. C. Peng, “Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers,” Opt. Lett. 39(5), 1117–1120 (2014).
[Crossref] [PubMed]

Y. J. Wang, Y. H. Zheng, Z. Shi, and K. C. Peng, “High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms,” Laser Phys. Lett. 9(7), 506–510 (2012).

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283(2), 309–312 (2010).
[Crossref]

Poteomkin, A. K.

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Reitze, D. H

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19(7), 1793–1801 (2002).
[Crossref]

Reitze, D. H.

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wavefront sensor,” Appl. Opt. 40(3), 366–374 (2001).
[Crossref]

Sergeev, A.

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Shaykin, A. A.

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Shi, Z.

Y. J. Wang, Y. H. Zheng, Z. Shi, and K. C. Peng, “High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms,” Laser Phys. Lett. 9(7), 506–510 (2012).

Spence, D. E.

E. Cheng, D. R. Dudley, W. L. Nighan, J. D. Kafka, D. E. Spence, and D. S. Bell, “Lasers with low doped gain medium,” US Patent6185235, Feb.6 (2001).

Su, J.

Tanner, D. B.

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19(7), 1793–1801 (2002).
[Crossref]

Wallenstein, R.

Wang, C.

D. Y. Chen, X. D. Li, Y. Zhang, X. Yu, F. Chen, R. P. Yan, Y. F. Ma, and C. Wang, “Research on diffusion-bonding composite YVO4/Nd:GdVO4 crystal,” Laser Phys. Lett. 8(1), 46–49 (2011).
[Crossref]

Wang, Y. J.

Y. J. Wang, Y. H. Zheng, Z. Shi, and K. C. Peng, “High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms,” Laser Phys. Lett. 9(7), 506–510 (2012).

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283(2), 309–312 (2010).
[Crossref]

Yan, R. P.

D. Y. Chen, X. D. Li, Y. Zhang, X. Yu, F. Chen, R. P. Yan, Y. F. Ma, and C. Wang, “Research on diffusion-bonding composite YVO4/Nd:GdVO4 crystal,” Laser Phys. Lett. 8(1), 46–49 (2011).
[Crossref]

Yin, Q. W.

Yoshida, S.

Yu, X.

D. Y. Chen, X. D. Li, Y. Zhang, X. Yu, F. Chen, R. P. Yan, Y. F. Ma, and C. Wang, “Research on diffusion-bonding composite YVO4/Nd:GdVO4 crystal,” Laser Phys. Lett. 8(1), 46–49 (2011).
[Crossref]

Yural, H. T.

M. E. Innocenzil, H. T. Yural, C. L. Fincherl, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Zelenogorsky, V.

V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278(1), 8–13 (2007).
[Crossref]

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Zhang, C. W.

Zhang, K. S.

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283(2), 309–312 (2010).
[Crossref]

J. Y. Zhao and K. S. Zhang, “High-power single-frequency Nd:YVO4 laser dual-end-pumped by diode laser,” Acta Sinica Quantum Optica 10(2), 87–92 (2004).

Zhang, Y.

D. Y. Chen, X. D. Li, Y. Zhang, X. Yu, F. Chen, R. P. Yan, Y. F. Ma, and C. Wang, “Research on diffusion-bonding composite YVO4/Nd:GdVO4 crystal,” Laser Phys. Lett. 8(1), 46–49 (2011).
[Crossref]

Zhao, J. Y.

J. Y. Zhao and K. S. Zhang, “High-power single-frequency Nd:YVO4 laser dual-end-pumped by diode laser,” Acta Sinica Quantum Optica 10(2), 87–92 (2004).

Zheng, Y. H.

H. D. Lu, J. Su, Y. H. Zheng, and K. C. Peng, “Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers,” Opt. Lett. 39(5), 1117–1120 (2014).
[Crossref] [PubMed]

Y. J. Wang, Y. H. Zheng, Z. Shi, and K. C. Peng, “High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms,” Laser Phys. Lett. 9(7), 506–510 (2012).

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283(2), 309–312 (2010).
[Crossref]

Acta Sinica Quantum Optica (1)

J. Y. Zhao and K. S. Zhang, “High-power single-frequency Nd:YVO4 laser dual-end-pumped by diode laser,” Acta Sinica Quantum Optica 10(2), 87–92 (2004).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. E. Innocenzil, H. T. Yural, C. L. Fincherl, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Class. Quantum Grav. (1)

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19(7), 1793–1801 (2002).
[Crossref]

IEEE J. Quantum Electron. (2)

E. Khazanov, N. F. Andreev, A. Mal’shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

T. Y. Fan and R. L. Byer, “Diode laser pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Laser Phys. Lett. (2)

D. Y. Chen, X. D. Li, Y. Zhang, X. Yu, F. Chen, R. P. Yan, Y. F. Ma, and C. Wang, “Research on diffusion-bonding composite YVO4/Nd:GdVO4 crystal,” Laser Phys. Lett. 8(1), 46–49 (2011).
[Crossref]

Y. J. Wang, Y. H. Zheng, Z. Shi, and K. C. Peng, “High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms,” Laser Phys. Lett. 9(7), 506–510 (2012).

Opt. Commun. (2)

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283(2), 309–312 (2010).
[Crossref]

V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278(1), 8–13 (2007).
[Crossref]

Opt. Lett. (3)

Other (2)

http://gb.castech.com/productsdetail/&productId=7ccbe98d-bbbc-4a1f-a81b-58314dfc57d9.html .

E. Cheng, D. R. Dudley, W. L. Nighan, J. D. Kafka, D. E. Spence, and D. S. Bell, “Lasers with low doped gain medium,” US Patent6185235, Feb.6 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Beam radius at gain medium. (a) L34=101 mm without considering the thermal lens effect of the TGG crystal, (b) L34=101 mm with considering the thermal lens effect of the TGG crystal, (c)L34=97 mm with considering the thermal lens effect of the TGG crystal.
Fig. 2
Fig. 2 Theoretical value of L34 versus the allowable incident pump power.
Fig. 3
Fig. 3 Schematic diagram of single-end pumped intracavity frequency doubled laser with high output power.
Fig. 4
Fig. 4 Output power of 532 nm laser versus the incident pump power.
Fig. 5
Fig. 5 Output power of the 532 nm laser in the cases of increasing and decreasing the incident pump power.
Fig. 6
Fig. 6 Long term power stability of 532 nm laser for 5 h.
Fig. 7
Fig. 7 Longitudinal-mode structure of the laser by scanning the confocal F-P cavity.
Fig. 8
Fig. 8 Measured M2 values and the spatial beam profile for a 532 nm laser.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f = π K c ω T 2 η P d n d t 1 1 exp ( α l )
P = π ω 2 ( L I 0 + K N C ) + ( L I 0 + K N C ) 2 4 K N C I 0 ( L g 0 l 0 ) 2 K N C I 0
f = K c ω T 2 η ω 2 ( L I 0 + K N C ) + ( L I 0 + K N C ) 2 4 K N C I 0 ( L g 0 l 0 ) 2 K N C I 0 d n d t 1 1 exp ( α l )
1 f f i n a l = 1 f N d : Y V O 4 + 1 f T G G

Metrics