Abstract

We describe a 2048 QAM single-carrier coherent optical transmission over 150 km in detail. The OSNR at the transmitter was increased by 5 dB and the phase noise at the receiver was reduced from 0.35 to 0.17 degrees compared with a previous 1024 QAM transmission. Furthermore, we employed an A/D converter with a higher ENOB (7 bit) to guarantee the SNR of the digital QAM data, and introduced a polarization-demultiplexing algorithm to fast track the polarization state transition. As a result, a 66 Gbit/s polarization-multiplexed 2048 QAM signal was successfully transmitted within an optical bandwidth of 3.6 GHz including a pilot tone, and a potential SE of 15.3 bit/s/Hz under a 20% FEC overhead was achieved.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
448 Gbit/s, 32 Gbaud 128 QAM coherent transmission over 150 km with a potential spectral efficiency of 10.7 bit/s/Hz

Keisuke Kasai, Yixin Wang, David Odeke Otuya, Masato Yoshida, and Masataka Nakazawa
Opt. Express 23(22) 28423-28429 (2015)

1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km

Yuki Koizumi, Kazushi Toyoda, Masato Yoshida, and Masataka Nakazawa
Opt. Express 20(11) 12508-12514 (2012)

Single-channel 15.3 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 8.3 bit/s/Hz

Masato Yoshida, Kosuke Kimura, Taro Iwaya, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 27(20) 28952-28967 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds., High Spectral Density Optical Transmission Technologies (Springer, 2010).
  2. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” OFC2011, PDPB5.
  3. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, and J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
    [PubMed]
  4. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
    [Crossref] [PubMed]
  5. M. -F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” OECC2011, PDP1.
  6. D. Qian, E. Ip, M. -F. Huang, M. -J. Li, and T. Wan, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” ECOC2013, Th.1.C.5.
  7. T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express 21(3), 2632–2641 (2013).
    [Crossref] [PubMed]
  8. S. Beppu, M. Yoshida, K. Kasai, and M. Nakazawa, “2048 QAM (66 Gbit/s) Single-Carrier Coherent Optical Transmission over 150 km with a Potential SE of 15.3 bit/s/Hz,” OFC 2014, W1A.6.
  9. D. Chang, F. Yu, Z. Xiao, Y. Li, N. Stojanovic, C. Xie, X. Shi, X. Xu, and Q. Xiong, “FPGA verification of a single QC-LDPC code for 100 Gb/s optical systems without error floor down to BER of 10−15,” OFC 2011, OTuN2.
  10. B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
    [Crossref] [PubMed]
  11. C. Paré, A. Villeneuve, P.-A. Bélanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21(7), 459–461 (1996).
    [Crossref] [PubMed]
  12. P. K. A. Wai, C. R. Menyuk, and H. H. Chen, “Stability of solitons in randomly varying birefringent fibers,” Opt. Lett. 16(16), 1231–1233 (1991).
    [Crossref] [PubMed]
  13. K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. LT-2(6), 1024–1033 (1984).
    [Crossref]
  14. T. Marshall, B. Szafraniec, and B. Nebendahl, “Kalman filter carrier and polarization-state tracking,” Opt. Lett. 35(13), 2203–2205 (2010).
    [Crossref] [PubMed]
  15. Z. Yu, X. Yi, Q. Yang, M. Luo, J. Zhang, L. Chen, and K. Qiu, “Polarization demultiplexing in stokes space for coherent optical PDM-OFDM,” Opt. Express 21(3), 3885–3890 (2013).
    [Crossref] [PubMed]
  16. R. H. Walden, “Analog–to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
    [Crossref]

2013 (2)

2012 (2)

2010 (2)

1999 (1)

R. H. Walden, “Analog–to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

1996 (1)

1991 (1)

1984 (1)

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. LT-2(6), 1024–1033 (1984).
[Crossref]

Bäuerle, B.

Bélanger, P.-A.

Chen, H. H.

Chen, L.

Dippon, T.

Doran, N. J.

Freude, W.

Henmi, N.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. LT-2(6), 1024–1033 (1984).
[Crossref]

Hillerkuss, D.

Kikuchi, K.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. LT-2(6), 1024–1033 (1984).
[Crossref]

Kleinow, P.

Koizumi, Y.

Koos, C.

Leuthold, J.

Luo, M.

Marshall, T.

Menyuk, C. R.

Nagamatsu, M.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. LT-2(6), 1024–1033 (1984).
[Crossref]

Nakazawa, M.

Nebendahl, B.

Okoshi, T.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. LT-2(6), 1024–1033 (1984).
[Crossref]

Omiya, T.

Paré, C.

Qiu, K.

Schindler, P. C.

Schmogrow, R.

Szafraniec, B.

Toyoda, K.

Villeneuve, A.

Wai, P. K. A.

Walden, R. H.

R. H. Walden, “Analog–to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

Winter, M.

Wolf, S.

Yang, Q.

Yi, X.

Yoshida, M.

Yu, Z.

Zhang, J.

IEEE J. Sel. Areas Comm. (1)

R. H. Walden, “Analog–to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

J. Lightwave Technol. (1)

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. LT-2(6), 1024–1033 (1984).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Other (6)

M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds., High Spectral Density Optical Transmission Technologies (Springer, 2010).

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” OFC2011, PDPB5.

M. -F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” OECC2011, PDP1.

D. Qian, E. Ip, M. -F. Huang, M. -J. Li, and T. Wan, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” ECOC2013, Th.1.C.5.

S. Beppu, M. Yoshida, K. Kasai, and M. Nakazawa, “2048 QAM (66 Gbit/s) Single-Carrier Coherent Optical Transmission over 150 km with a Potential SE of 15.3 bit/s/Hz,” OFC 2014, W1A.6.

D. Chang, F. Yu, Z. Xiao, Y. Li, N. Stojanovic, C. Xie, X. Shi, X. Xu, and Q. Xiong, “FPGA verification of a single QC-LDPC code for 100 Gb/s optical systems without error floor down to BER of 10−15,” OFC 2011, OTuN2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup for 2048 QAM coherent optical transmission over 150 km.
Fig. 2
Fig. 2 Configuration of transmitters for coherent QAM signals (a) before and (b) after improvement
Fig. 3
Fig. 3 Optical spectra of 2048 QAM signal under a back-to-back condition (a) before and (b) after improvement.
Fig. 4
Fig. 4 Configuration of receivers for coherent QAM signals (a) before and (b) after improvement.
Fig. 5
Fig. 5 SSB phase noise power spectrum under a back-to-back condition (a) before and (b) after improvement.
Fig. 6
Fig. 6 Constellation maps of 2048 QAM signal under a back-to-back condition by employing digital oscilloscopes with ENOBs of (a) 5.8 and (b) 7 bits.
Fig. 7
Fig. 7 Measured 40 Gb/s polarization-multiplexed QPSK data in the Stokes space. The data set includes transitions that traverse the complex plane [10].The inset sphere top left shows the same set of data after polarization alignment.
Fig. 8
Fig. 8 Constellation maps of QAM signals after polarization-demultiplexing with algorithm based on (a) the Stokes vectors and (b) the extended Kalman filter.
Fig. 9
Fig. 9 BER as a function of launched power of 2048 QAM transmission.
Fig. 10
Fig. 10 Experimental results for 2048 QAM transmission over 150 km, (a) and (b) correspond to BER characteristics and constellation map respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ϕ 2 = δ f T +δ f L 2 f c
ENOB(bit)= SNR(dB)1.76 6.02

Metrics