Abstract

Entangled state of light is one of the essential quantum resources in quantum information science and technology. Especially, when the fundamental principle experiments have been achieved in labs and the applications of continuous variable quantum information in the real world are considered, it is crucial to design and construct the generation devices of entangled states with high entanglement and compact configuration. We have designed and built an efficient and compact light source of entangled state, which is a non-degenerate optical parametric amplifier (NOPA) with the triple resonance of the pump and two subharmonic modes. A wedged type-II KTP crystal inside the NOPA is used for implementing frequency-down-conversion of the pump field to generate the optical entangled state and achieving the dispersion compensation between the pump and the subharmonic waves. The EPR entangled state of light with quantum correlations of 8.4 dB for both amplitude and phase quadratures are experimentally produced by a single NOPA under the pump power of 75 mW.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bright entanglement characteristics of subharmonic modes reflected from cavity for type II second-harmonic generation

Zehui Zhai, Hongxin Zou, Junxiang Zhang, and Jiangrui Gao
J. Opt. Soc. Am. B 22(4) 878-883 (2005)

Deterministic generation of bright polarization squeezed state of light resonant with the rubidium D1 absorption line

Liang Wu, Yanhong Liu, Ruijie Deng, Zhihui Yan, Xiaojun Jia, and Kunchi Peng
J. Opt. Soc. Am. B 33(11) 2296-2301 (2016)

Squeezing and entanglement in doubly resonant, type II, second-harmonic generation

Ulrik L. Andersen and Preben Buchhave
J. Opt. Soc. Am. B 20(9) 1947-1958 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
    [Crossref]
  2. D. Boschi, S. Branca, F. D. Marini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
    [Crossref]
  3. L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473–1476 (1994).
    [Crossref] [PubMed]
  4. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869 (1998).
    [Crossref]
  5. A. Furusawa, J. L. Sorensen, S. L. Braustein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
    [Crossref] [PubMed]
  6. M. Yukawa, H. Benichi, and A. Furusawa, “High-fidelity continuous-variable quantum teleportation toward multi-step quantum operations,” Phys. Rev. A 77, 022314 (2008).
    [Crossref]
  7. X. J. Jia, J. Zhang, Y. Wang, Y. P. Zhao, C. D. Xie, and K. C. Peng, “Superactivation of multipartite unlockable bound entanglement,” Phys. Rev. Lett. 108, 190501 (2012).
    [Crossref] [PubMed]
  8. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
    [Crossref] [PubMed]
  9. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
    [Crossref]
  10. O. Morin, J. Liu, K. Huang, F. Barbosa, C. Fabre, and J. Laurat, “Quantum state engineering of light with continuous-wave optical parametric oscillators,” J. Vis. Exp. 87, 51224 (2014).
  11. T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “A Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83, 052329 (2011).
    [Crossref]
  12. W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
    [Crossref]
  13. J. Mizuno, K. Wakui, A. Furusawa, and M. Sasaki, “Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state,” Phys. Rev. A 71, 012304 (2005).
    [Crossref]
  14. Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie, and K. C. Peng, “Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,” Phys. Rev. A 62, 023813 (2000).
    [Crossref]
  15. J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
    [Crossref]
  16. N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa, “High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables,” Phys. Rev. Lett. 94, 220502 (2005).
    [Crossref] [PubMed]
  17. Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, “Experimental generation of 6 dB continuous variable entanglement from a non-degenerate optical parametric amplifier,” Opt. Express 18, 6149–6155 (2010).
    [Crossref] [PubMed]
  18. Z. H. Yan, X. J. Jia, X. L. Su, Z. Y. Duan, C. D. Xie, and K. C. Peng, “Cascaded entanglement enhancement,” Phys. Rev. A 85, 040305(R) (2012).
    [Crossref]
  19. O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570 (2014).
    [Crossref]
  20. C. Fabre, E. Giacobino, A. Heidmann, and S. Reynaud, “Noise characteristics of a non-degenerate Optical Parametric Oscillator -Application to quantum noise reduction,” J. Phys. France 50, 1209–1225 (1989).
    [Crossref]
  21. R. X. Guo, X. J. Jia, C. D. Xie, and K. C. Peng, “A portable multi-purpose non-classical light source,” Opt. Commun. 211, 243–248 (2002).
    [Crossref]
  22. I. Juwiler, A. Arie, A. Skliar, and G. Rosenman, “Efficient quasi-phase-matched frequency doubling with phase compensation by a wedged crystal in a standing-wave external cavity,” Opt. Lett. 24, 1236–1238 (1999).
    [Crossref]
  23. M. Zhang, Y. Y. Zhou, F. Li, and X. J. Jia, “Realization of low threshold operation of NOPA with wedged KTP crystal,” Acta Optica Sinica 34, 0327001 (2014).
    [Crossref]
  24. V. DAuria, S. Fornaro, A. Porzio, E.A. Sete, and S. Solimeno, “Fine tuning of a triply resonant OPO for generating frequency degenerate CV entangled beams at low pump powers,” Appl. Phys. B 91, 309–314 (2008).
    [Crossref]
  25. P. Groß, K.-J. Boller, and M. E. Klein, “High-precision wavelength-flexible frequency division for metrology,” Phys. Rev. A 71, 043824 (2005).
    [Crossref]
  26. M. Stefszky, C. M. Mow-Lowry, K. McKenzie, S. Chua, B. C. Buchler, T. Symul, D. E. McClelland, and P. K. Lam, “An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing,” J. Phys. B 44, 015502 (2011).
    [Crossref]
  27. G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal,” Opt. Lett. 23, 165–167 (1998).
    [Crossref]
  28. S. S. Y. Chua, M. S. Stefszky, C M. Mow-Lowry, B. C. Buchler, S. Dwyer, D. A. Shaddock, P. K. Lam, and D. E. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36, 4680–4682 (2011).
    [Crossref] [PubMed]
  29. B. Boulanger, J. P. Fève, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
    [Crossref]
  30. D. W. Anthon and C. D. Crowder, “Wavelength dependent phase matching in KTP,” Appl. Opt. 27, 2650–2652 (1988).
    [Crossref] [PubMed]
  31. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
    [Crossref]
  32. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988).
  33. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54,” Opt. Lett. 17, 640–642 (1992).
    [Crossref] [PubMed]
  34. X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger-Horne- Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007).
    [Crossref]
  35. T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
    [Crossref] [PubMed]
  36. X. L. Su, Y. P. Zhao, S. H. Hao, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental preparation of eight-Partite Cluster state for photonic qumodes,” Opt. Lett. 37, 5178–5180 (2012).
    [Crossref] [PubMed]
  37. A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A 78, 013828 (2008).
    [Crossref]
  38. P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482 (2000).
    [Crossref] [PubMed]
  39. M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301 (2008).
    [Crossref]

2014 (3)

O. Morin, J. Liu, K. Huang, F. Barbosa, C. Fabre, and J. Laurat, “Quantum state engineering of light with continuous-wave optical parametric oscillators,” J. Vis. Exp. 87, 51224 (2014).

O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570 (2014).
[Crossref]

M. Zhang, Y. Y. Zhou, F. Li, and X. J. Jia, “Realization of low threshold operation of NOPA with wedged KTP crystal,” Acta Optica Sinica 34, 0327001 (2014).
[Crossref]

2012 (3)

Z. H. Yan, X. J. Jia, X. L. Su, Z. Y. Duan, C. D. Xie, and K. C. Peng, “Cascaded entanglement enhancement,” Phys. Rev. A 85, 040305(R) (2012).
[Crossref]

X. L. Su, Y. P. Zhao, S. H. Hao, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental preparation of eight-Partite Cluster state for photonic qumodes,” Opt. Lett. 37, 5178–5180 (2012).
[Crossref] [PubMed]

X. J. Jia, J. Zhang, Y. Wang, Y. P. Zhao, C. D. Xie, and K. C. Peng, “Superactivation of multipartite unlockable bound entanglement,” Phys. Rev. Lett. 108, 190501 (2012).
[Crossref] [PubMed]

2011 (4)

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “A Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83, 052329 (2011).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

S. S. Y. Chua, M. S. Stefszky, C M. Mow-Lowry, B. C. Buchler, S. Dwyer, D. A. Shaddock, P. K. Lam, and D. E. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36, 4680–4682 (2011).
[Crossref] [PubMed]

M. Stefszky, C. M. Mow-Lowry, K. McKenzie, S. Chua, B. C. Buchler, T. Symul, D. E. McClelland, and P. K. Lam, “An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing,” J. Phys. B 44, 015502 (2011).
[Crossref]

2010 (1)

2008 (4)

M. Yukawa, H. Benichi, and A. Furusawa, “High-fidelity continuous-variable quantum teleportation toward multi-step quantum operations,” Phys. Rev. A 77, 022314 (2008).
[Crossref]

V. DAuria, S. Fornaro, A. Porzio, E.A. Sete, and S. Solimeno, “Fine tuning of a triply resonant OPO for generating frequency degenerate CV entangled beams at low pump powers,” Appl. Phys. B 91, 309–314 (2008).
[Crossref]

A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A 78, 013828 (2008).
[Crossref]

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301 (2008).
[Crossref]

2007 (1)

X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger-Horne- Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007).
[Crossref]

2005 (3)

P. Groß, K.-J. Boller, and M. E. Klein, “High-precision wavelength-flexible frequency division for metrology,” Phys. Rev. A 71, 043824 (2005).
[Crossref]

N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa, “High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables,” Phys. Rev. Lett. 94, 220502 (2005).
[Crossref] [PubMed]

J. Mizuno, K. Wakui, A. Furusawa, and M. Sasaki, “Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state,” Phys. Rev. A 71, 012304 (2005).
[Crossref]

2004 (2)

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

2003 (1)

T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[Crossref] [PubMed]

2002 (1)

R. X. Guo, X. J. Jia, C. D. Xie, and K. C. Peng, “A portable multi-purpose non-classical light source,” Opt. Commun. 211, 243–248 (2002).
[Crossref]

2000 (3)

P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482 (2000).
[Crossref] [PubMed]

B. Boulanger, J. P. Fève, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
[Crossref]

Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie, and K. C. Peng, “Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,” Phys. Rev. A 62, 023813 (2000).
[Crossref]

1999 (1)

1998 (4)

G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal,” Opt. Lett. 23, 165–167 (1998).
[Crossref]

D. Boschi, S. Branca, F. D. Marini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869 (1998).
[Crossref]

A. Furusawa, J. L. Sorensen, S. L. Braustein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

1997 (1)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[Crossref]

1994 (1)

L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473–1476 (1994).
[Crossref] [PubMed]

1992 (2)

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54,” Opt. Lett. 17, 640–642 (1992).
[Crossref] [PubMed]

1989 (2)

C. Fabre, E. Giacobino, A. Heidmann, and S. Reynaud, “Noise characteristics of a non-degenerate Optical Parametric Oscillator -Application to quantum noise reduction,” J. Phys. France 50, 1209–1225 (1989).
[Crossref]

J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
[Crossref]

1988 (1)

Anthon, D. W.

Aoki, T.

N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa, “High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables,” Phys. Rev. Lett. 94, 220502 (2005).
[Crossref] [PubMed]

T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[Crossref] [PubMed]

Arie, A.

Ast, S.

Barbosa, F.

O. Morin, J. Liu, K. Huang, F. Barbosa, C. Fabre, and J. Laurat, “Quantum state engineering of light with continuous-wave optical parametric oscillators,” J. Vis. Exp. 87, 51224 (2014).

Benichi, H.

M. Yukawa, H. Benichi, and A. Furusawa, “High-fidelity continuous-variable quantum teleportation toward multi-step quantum operations,” Phys. Rev. A 77, 022314 (2008).
[Crossref]

Bierlein, J. D.

Boller, K.-J.

P. Groß, K.-J. Boller, and M. E. Klein, “High-precision wavelength-flexible frequency division for metrology,” Phys. Rev. A 71, 043824 (2005).
[Crossref]

Boschi, D.

D. Boschi, S. Branca, F. D. Marini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Boulanger, B.

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[Crossref]

Bowen, W. P.

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

Branca, S.

D. Boschi, S. Branca, F. D. Marini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Braunstein, S. L.

P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482 (2000).
[Crossref] [PubMed]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869 (1998).
[Crossref]

Braustein, S. L.

A. Furusawa, J. L. Sorensen, S. L. Braustein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Buchler, B. C.

S. S. Y. Chua, M. S. Stefszky, C M. Mow-Lowry, B. C. Buchler, S. Dwyer, D. A. Shaddock, P. K. Lam, and D. E. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36, 4680–4682 (2011).
[Crossref] [PubMed]

M. Stefszky, C. M. Mow-Lowry, K. McKenzie, S. Chua, B. C. Buchler, T. Symul, D. E. McClelland, and P. K. Lam, “An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing,” J. Phys. B 44, 015502 (2011).
[Crossref]

Chua, S.

M. Stefszky, C. M. Mow-Lowry, K. McKenzie, S. Chua, B. C. Buchler, T. Symul, D. E. McClelland, and P. K. Lam, “An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing,” J. Phys. B 44, 015502 (2011).
[Crossref]

Chua, S. S. Y.

Coudreau, T.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Crowder, C. D.

DAuria, V.

V. DAuria, S. Fornaro, A. Porzio, E.A. Sete, and S. Solimeno, “Fine tuning of a triply resonant OPO for generating frequency degenerate CV entangled beams at low pump powers,” Appl. Phys. B 91, 309–314 (2008).
[Crossref]

Duan, Z. Y.

Z. H. Yan, X. J. Jia, X. L. Su, Z. Y. Duan, C. D. Xie, and K. C. Peng, “Cascaded entanglement enhancement,” Phys. Rev. A 85, 040305(R) (2012).
[Crossref]

Duhme, J.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “A Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83, 052329 (2011).
[Crossref]

Dwyer, S.

Eberle, T.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “A Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83, 052329 (2011).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[Crossref]

Fabre, C.

O. Morin, J. Liu, K. Huang, F. Barbosa, C. Fabre, and J. Laurat, “Quantum state engineering of light with continuous-wave optical parametric oscillators,” J. Vis. Exp. 87, 51224 (2014).

O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570 (2014).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

C. Fabre, E. Giacobino, A. Heidmann, and S. Reynaud, “Noise characteristics of a non-degenerate Optical Parametric Oscillator -Application to quantum noise reduction,” J. Phys. France 50, 1209–1225 (1989).
[Crossref]

Fejer, M. M.

Fève, J. P.

Fornaro, S.

V. DAuria, S. Fornaro, A. Porzio, E.A. Sete, and S. Solimeno, “Fine tuning of a triply resonant OPO for generating frequency degenerate CV entangled beams at low pump powers,” Appl. Phys. B 91, 309–314 (2008).
[Crossref]

Franz, T.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “A Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83, 052329 (2011).
[Crossref]

Fuchs, C. A.

A. Furusawa, J. L. Sorensen, S. L. Braustein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Furusawa, A.

M. Yukawa, H. Benichi, and A. Furusawa, “High-fidelity continuous-variable quantum teleportation toward multi-step quantum operations,” Phys. Rev. A 77, 022314 (2008).
[Crossref]

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301 (2008).
[Crossref]

N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa, “High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables,” Phys. Rev. Lett. 94, 220502 (2005).
[Crossref] [PubMed]

J. Mizuno, K. Wakui, A. Furusawa, and M. Sasaki, “Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state,” Phys. Rev. A 71, 012304 (2005).
[Crossref]

T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[Crossref] [PubMed]

A. Furusawa, J. L. Sorensen, S. L. Braustein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Giacobino, E.

C. Fabre, E. Giacobino, A. Heidmann, and S. Reynaud, “Noise characteristics of a non-degenerate Optical Parametric Oscillator -Application to quantum noise reduction,” J. Phys. France 50, 1209–1225 (1989).
[Crossref]

Groß, P.

P. Groß, K.-J. Boller, and M. E. Klein, “High-precision wavelength-flexible frequency division for metrology,” Phys. Rev. A 71, 043824 (2005).
[Crossref]

Guillien, Y.

Guo, R. X.

R. X. Guo, X. J. Jia, C. D. Xie, and K. C. Peng, “A portable multi-purpose non-classical light source,” Opt. Commun. 211, 243–248 (2002).
[Crossref]

Handchen, V.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “A Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83, 052329 (2011).
[Crossref]

Hao, S. H.

Hardy, L.

D. Boschi, S. Branca, F. D. Marini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Heidmann, A.

C. Fabre, E. Giacobino, A. Heidmann, and S. Reynaud, “Noise characteristics of a non-degenerate Optical Parametric Oscillator -Application to quantum noise reduction,” J. Phys. France 50, 1209–1225 (1989).
[Crossref]

Hiraoka, T.

T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[Crossref] [PubMed]

Huang, K.

O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570 (2014).
[Crossref]

O. Morin, J. Liu, K. Huang, F. Barbosa, C. Fabre, and J. Laurat, “Quantum state engineering of light with continuous-wave optical parametric oscillators,” J. Vis. Exp. 87, 51224 (2014).

Imeshev, G.

Jeannic, H. L.

O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570 (2014).
[Crossref]

Jia, X. J.

M. Zhang, Y. Y. Zhou, F. Li, and X. J. Jia, “Realization of low threshold operation of NOPA with wedged KTP crystal,” Acta Optica Sinica 34, 0327001 (2014).
[Crossref]

Z. H. Yan, X. J. Jia, X. L. Su, Z. Y. Duan, C. D. Xie, and K. C. Peng, “Cascaded entanglement enhancement,” Phys. Rev. A 85, 040305(R) (2012).
[Crossref]

X. J. Jia, J. Zhang, Y. Wang, Y. P. Zhao, C. D. Xie, and K. C. Peng, “Superactivation of multipartite unlockable bound entanglement,” Phys. Rev. Lett. 108, 190501 (2012).
[Crossref] [PubMed]

X. L. Su, Y. P. Zhao, S. H. Hao, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental preparation of eight-Partite Cluster state for photonic qumodes,” Opt. Lett. 37, 5178–5180 (2012).
[Crossref] [PubMed]

A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A 78, 013828 (2008).
[Crossref]

X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger-Horne- Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007).
[Crossref]

R. X. Guo, X. J. Jia, C. D. Xie, and K. C. Peng, “A portable multi-purpose non-classical light source,” Opt. Commun. 211, 243–248 (2002).
[Crossref]

Jin, X. L.

Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, “Experimental generation of 6 dB continuous variable entanglement from a non-degenerate optical parametric amplifier,” Opt. Express 18, 6149–6155 (2010).
[Crossref] [PubMed]

A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A 78, 013828 (2008).
[Crossref]

Jing, J. T.

Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie, and K. C. Peng, “Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,” Phys. Rev. A 62, 023813 (2000).
[Crossref]

Juwiler, I.

Keller, G.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Kimble, H. J.

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869 (1998).
[Crossref]

A. Furusawa, J. L. Sorensen, S. L. Braustein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54,” Opt. Lett. 17, 640–642 (1992).
[Crossref] [PubMed]

Klein, M. E.

P. Groß, K.-J. Boller, and M. E. Klein, “High-precision wavelength-flexible frequency division for metrology,” Phys. Rev. A 71, 043824 (2005).
[Crossref]

Lam, P. K.

M. Stefszky, C. M. Mow-Lowry, K. McKenzie, S. Chua, B. C. Buchler, T. Symul, D. E. McClelland, and P. K. Lam, “An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing,” J. Phys. B 44, 015502 (2011).
[Crossref]

S. S. Y. Chua, M. S. Stefszky, C M. Mow-Lowry, B. C. Buchler, S. Dwyer, D. A. Shaddock, P. K. Lam, and D. E. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36, 4680–4682 (2011).
[Crossref] [PubMed]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

Laurat, J.

O. Morin, J. Liu, K. Huang, F. Barbosa, C. Fabre, and J. Laurat, “Quantum state engineering of light with continuous-wave optical parametric oscillators,” J. Vis. Exp. 87, 51224 (2014).

O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570 (2014).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Li, F.

M. Zhang, Y. Y. Zhou, F. Li, and X. J. Jia, “Realization of low threshold operation of NOPA with wedged KTP crystal,” Acta Optica Sinica 34, 0327001 (2014).
[Crossref]

Li, X. Y.

Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie, and K. C. Peng, “Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,” Phys. Rev. A 62, 023813 (2000).
[Crossref]

Liu, J.

O. Morin, J. Liu, K. Huang, F. Barbosa, C. Fabre, and J. Laurat, “Quantum state engineering of light with continuous-wave optical parametric oscillators,” J. Vis. Exp. 87, 51224 (2014).

O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570 (2014).
[Crossref]

Marini, F. D.

D. Boschi, S. Branca, F. D. Marini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[Crossref]

McClelland, D. E.

M. Stefszky, C. M. Mow-Lowry, K. McKenzie, S. Chua, B. C. Buchler, T. Symul, D. E. McClelland, and P. K. Lam, “An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing,” J. Phys. B 44, 015502 (2011).
[Crossref]

S. S. Y. Chua, M. S. Stefszky, C M. Mow-Lowry, B. C. Buchler, S. Dwyer, D. A. Shaddock, P. K. Lam, and D. E. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36, 4680–4682 (2011).
[Crossref] [PubMed]

McKenzie, K.

M. Stefszky, C. M. Mow-Lowry, K. McKenzie, S. Chua, B. C. Buchler, T. Symul, D. E. McClelland, and P. K. Lam, “An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing,” J. Phys. B 44, 015502 (2011).
[Crossref]

Mehmet, M.

Mizuno, J.

J. Mizuno, K. Wakui, A. Furusawa, and M. Sasaki, “Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state,” Phys. Rev. A 71, 012304 (2005).
[Crossref]

Morin, O.

O. Morin, J. Liu, K. Huang, F. Barbosa, C. Fabre, and J. Laurat, “Quantum state engineering of light with continuous-wave optical parametric oscillators,” J. Vis. Exp. 87, 51224 (2014).

O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570 (2014).
[Crossref]

Mow-Lowry, C M.

Mow-Lowry, C. M.

M. Stefszky, C. M. Mow-Lowry, K. McKenzie, S. Chua, B. C. Buchler, T. Symul, D. E. McClelland, and P. K. Lam, “An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing,” J. Phys. B 44, 015502 (2011).
[Crossref]

Ou, Z. Y.

Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54,” Opt. Lett. 17, 640–642 (1992).
[Crossref] [PubMed]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[Crossref]

Peng, K. C.

X. J. Jia, J. Zhang, Y. Wang, Y. P. Zhao, C. D. Xie, and K. C. Peng, “Superactivation of multipartite unlockable bound entanglement,” Phys. Rev. Lett. 108, 190501 (2012).
[Crossref] [PubMed]

Z. H. Yan, X. J. Jia, X. L. Su, Z. Y. Duan, C. D. Xie, and K. C. Peng, “Cascaded entanglement enhancement,” Phys. Rev. A 85, 040305(R) (2012).
[Crossref]

X. L. Su, Y. P. Zhao, S. H. Hao, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental preparation of eight-Partite Cluster state for photonic qumodes,” Opt. Lett. 37, 5178–5180 (2012).
[Crossref] [PubMed]

Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, “Experimental generation of 6 dB continuous variable entanglement from a non-degenerate optical parametric amplifier,” Opt. Express 18, 6149–6155 (2010).
[Crossref] [PubMed]

A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A 78, 013828 (2008).
[Crossref]

X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger-Horne- Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007).
[Crossref]

R. X. Guo, X. J. Jia, C. D. Xie, and K. C. Peng, “A portable multi-purpose non-classical light source,” Opt. Commun. 211, 243–248 (2002).
[Crossref]

Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie, and K. C. Peng, “Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,” Phys. Rev. A 62, 023813 (2000).
[Crossref]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

Pereira, S. F.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54,” Opt. Lett. 17, 640–642 (1992).
[Crossref] [PubMed]

Polzik, E. S.

A. Furusawa, J. L. Sorensen, S. L. Braustein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54,” Opt. Lett. 17, 640–642 (1992).
[Crossref] [PubMed]

Popescu, S.

D. Boschi, S. Branca, F. D. Marini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Porzio, A.

V. DAuria, S. Fornaro, A. Porzio, E.A. Sete, and S. Solimeno, “Fine tuning of a triply resonant OPO for generating frequency degenerate CV entangled beams at low pump powers,” Appl. Phys. B 91, 309–314 (2008).
[Crossref]

Proctor, M.

Ralph, T. C.

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

Reynaud, S.

C. Fabre, E. Giacobino, A. Heidmann, and S. Reynaud, “Noise characteristics of a non-degenerate Optical Parametric Oscillator -Application to quantum noise reduction,” J. Phys. France 50, 1209–1225 (1989).
[Crossref]

Rosenman, G.

Sasaki, M.

J. Mizuno, K. Wakui, A. Furusawa, and M. Sasaki, “Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state,” Phys. Rev. A 71, 012304 (2005).
[Crossref]

Schnabel, R.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “A Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83, 052329 (2011).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

Sete, E.A.

V. DAuria, S. Fornaro, A. Porzio, E.A. Sete, and S. Solimeno, “Fine tuning of a triply resonant OPO for generating frequency degenerate CV entangled beams at low pump powers,” Appl. Phys. B 91, 309–314 (2008).
[Crossref]

Shaddock, D. A.

Shen, H.

Skliar, A.

Solimeno, S.

V. DAuria, S. Fornaro, A. Porzio, E.A. Sete, and S. Solimeno, “Fine tuning of a triply resonant OPO for generating frequency degenerate CV entangled beams at low pump powers,” Appl. Phys. B 91, 309–314 (2008).
[Crossref]

Sorensen, J. L.

A. Furusawa, J. L. Sorensen, S. L. Braustein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Stefszky, M.

M. Stefszky, C. M. Mow-Lowry, K. McKenzie, S. Chua, B. C. Buchler, T. Symul, D. E. McClelland, and P. K. Lam, “An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing,” J. Phys. B 44, 015502 (2011).
[Crossref]

Stefszky, M. S.

Steinlechner, S.

Su, X. L.

Z. H. Yan, X. J. Jia, X. L. Su, Z. Y. Duan, C. D. Xie, and K. C. Peng, “Cascaded entanglement enhancement,” Phys. Rev. A 85, 040305(R) (2012).
[Crossref]

X. L. Su, Y. P. Zhao, S. H. Hao, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental preparation of eight-Partite Cluster state for photonic qumodes,” Opt. Lett. 37, 5178–5180 (2012).
[Crossref] [PubMed]

Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, “Experimental generation of 6 dB continuous variable entanglement from a non-degenerate optical parametric amplifier,” Opt. Express 18, 6149–6155 (2010).
[Crossref] [PubMed]

A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A 78, 013828 (2008).
[Crossref]

X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger-Horne- Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007).
[Crossref]

Symul, T.

M. Stefszky, C. M. Mow-Lowry, K. McKenzie, S. Chua, B. C. Buchler, T. Symul, D. E. McClelland, and P. K. Lam, “An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing,” J. Phys. B 44, 015502 (2011).
[Crossref]

Takei, N.

N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa, “High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables,” Phys. Rev. Lett. 94, 220502 (2005).
[Crossref] [PubMed]

T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[Crossref] [PubMed]

Tan, A. H.

A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A 78, 013828 (2008).
[Crossref]

X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger-Horne- Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007).
[Crossref]

Treps, N.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Ukai, R.

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301 (2008).
[Crossref]

Vahlbruch, H.

Vaidman, L.

L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473–1476 (1994).
[Crossref] [PubMed]

van Loock, P.

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301 (2008).
[Crossref]

T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[Crossref] [PubMed]

P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482 (2000).
[Crossref] [PubMed]

Vanherzeele, H.

Wakui, K.

J. Mizuno, K. Wakui, A. Furusawa, and M. Sasaki, “Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state,” Phys. Rev. A 71, 012304 (2005).
[Crossref]

T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[Crossref] [PubMed]

Wang, H.

Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie, and K. C. Peng, “Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,” Phys. Rev. A 62, 023813 (2000).
[Crossref]

Wang, Y.

X. J. Jia, J. Zhang, Y. Wang, Y. P. Zhao, C. D. Xie, and K. C. Peng, “Superactivation of multipartite unlockable bound entanglement,” Phys. Rev. Lett. 108, 190501 (2012).
[Crossref] [PubMed]

Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, “Experimental generation of 6 dB continuous variable entanglement from a non-degenerate optical parametric amplifier,” Opt. Express 18, 6149–6155 (2010).
[Crossref] [PubMed]

A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A 78, 013828 (2008).
[Crossref]

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[Crossref]

Werner, R. F.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “A Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83, 052329 (2011).
[Crossref]

Xie, C. D.

X. J. Jia, J. Zhang, Y. Wang, Y. P. Zhao, C. D. Xie, and K. C. Peng, “Superactivation of multipartite unlockable bound entanglement,” Phys. Rev. Lett. 108, 190501 (2012).
[Crossref] [PubMed]

Z. H. Yan, X. J. Jia, X. L. Su, Z. Y. Duan, C. D. Xie, and K. C. Peng, “Cascaded entanglement enhancement,” Phys. Rev. A 85, 040305(R) (2012).
[Crossref]

X. L. Su, Y. P. Zhao, S. H. Hao, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental preparation of eight-Partite Cluster state for photonic qumodes,” Opt. Lett. 37, 5178–5180 (2012).
[Crossref] [PubMed]

Y. Wang, H. Shen, X. L. Jin, X. L. Su, C. D. Xie, and K. C. Peng, “Experimental generation of 6 dB continuous variable entanglement from a non-degenerate optical parametric amplifier,” Opt. Express 18, 6149–6155 (2010).
[Crossref] [PubMed]

A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A 78, 013828 (2008).
[Crossref]

X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger-Horne- Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007).
[Crossref]

R. X. Guo, X. J. Jia, C. D. Xie, and K. C. Peng, “A portable multi-purpose non-classical light source,” Opt. Commun. 211, 243–248 (2002).
[Crossref]

Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie, and K. C. Peng, “Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,” Phys. Rev. A 62, 023813 (2000).
[Crossref]

Yan, Z. H.

Z. H. Yan, X. J. Jia, X. L. Su, Z. Y. Duan, C. D. Xie, and K. C. Peng, “Cascaded entanglement enhancement,” Phys. Rev. A 85, 040305(R) (2012).
[Crossref]

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988).

Yonezawa, H.

N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa, “High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables,” Phys. Rev. Lett. 94, 220502 (2005).
[Crossref] [PubMed]

T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[Crossref] [PubMed]

Yukawa, M.

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301 (2008).
[Crossref]

M. Yukawa, H. Benichi, and A. Furusawa, “High-fidelity continuous-variable quantum teleportation toward multi-step quantum operations,” Phys. Rev. A 77, 022314 (2008).
[Crossref]

Zeilinger, A.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[Crossref]

Zhang, J.

X. J. Jia, J. Zhang, Y. Wang, Y. P. Zhao, C. D. Xie, and K. C. Peng, “Superactivation of multipartite unlockable bound entanglement,” Phys. Rev. Lett. 108, 190501 (2012).
[Crossref] [PubMed]

A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A 78, 013828 (2008).
[Crossref]

X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger-Horne- Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007).
[Crossref]

Zhang, M.

M. Zhang, Y. Y. Zhou, F. Li, and X. J. Jia, “Realization of low threshold operation of NOPA with wedged KTP crystal,” Acta Optica Sinica 34, 0327001 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie, and K. C. Peng, “Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,” Phys. Rev. A 62, 023813 (2000).
[Crossref]

Zhao, Y. P.

X. J. Jia, J. Zhang, Y. Wang, Y. P. Zhao, C. D. Xie, and K. C. Peng, “Superactivation of multipartite unlockable bound entanglement,” Phys. Rev. Lett. 108, 190501 (2012).
[Crossref] [PubMed]

X. L. Su, Y. P. Zhao, S. H. Hao, X. J. Jia, C. D. Xie, and K. C. Peng, “Experimental preparation of eight-Partite Cluster state for photonic qumodes,” Opt. Lett. 37, 5178–5180 (2012).
[Crossref] [PubMed]

Zhou, Y. Y.

M. Zhang, Y. Y. Zhou, F. Li, and X. J. Jia, “Realization of low threshold operation of NOPA with wedged KTP crystal,” Acta Optica Sinica 34, 0327001 (2014).
[Crossref]

Acta Optica Sinica (1)

M. Zhang, Y. Y. Zhou, F. Li, and X. J. Jia, “Realization of low threshold operation of NOPA with wedged KTP crystal,” Acta Optica Sinica 34, 0327001 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

V. DAuria, S. Fornaro, A. Porzio, E.A. Sete, and S. Solimeno, “Fine tuning of a triply resonant OPO for generating frequency degenerate CV entangled beams at low pump powers,” Appl. Phys. B 91, 309–314 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

M. Stefszky, C. M. Mow-Lowry, K. McKenzie, S. Chua, B. C. Buchler, T. Symul, D. E. McClelland, and P. K. Lam, “An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing,” J. Phys. B 44, 015502 (2011).
[Crossref]

J. Phys. France (1)

C. Fabre, E. Giacobino, A. Heidmann, and S. Reynaud, “Noise characteristics of a non-degenerate Optical Parametric Oscillator -Application to quantum noise reduction,” J. Phys. France 50, 1209–1225 (1989).
[Crossref]

J. Vis. Exp. (1)

O. Morin, J. Liu, K. Huang, F. Barbosa, C. Fabre, and J. Laurat, “Quantum state engineering of light with continuous-wave optical parametric oscillators,” J. Vis. Exp. 87, 51224 (2014).

Nat. Photonics (1)

O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570 (2014).
[Crossref]

Nature (1)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[Crossref]

Opt. Commun. (1)

R. X. Guo, X. J. Jia, C. D. Xie, and K. C. Peng, “A portable multi-purpose non-classical light source,” Opt. Commun. 211, 243–248 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. A (11)

A. H. Tan, Y. Wang, X. L. Jin, X. L. Su, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables,” Phys. Rev. A 78, 013828 (2008).
[Crossref]

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301 (2008).
[Crossref]

P. Groß, K.-J. Boller, and M. E. Klein, “High-precision wavelength-flexible frequency division for metrology,” Phys. Rev. A 71, 043824 (2005).
[Crossref]

Z. H. Yan, X. J. Jia, X. L. Su, Z. Y. Duan, C. D. Xie, and K. C. Peng, “Cascaded entanglement enhancement,” Phys. Rev. A 85, 040305(R) (2012).
[Crossref]

M. Yukawa, H. Benichi, and A. Furusawa, “High-fidelity continuous-variable quantum teleportation toward multi-step quantum operations,” Phys. Rev. A 77, 022314 (2008).
[Crossref]

L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473–1476 (1994).
[Crossref] [PubMed]

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “A Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83, 052329 (2011).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

J. Mizuno, K. Wakui, A. Furusawa, and M. Sasaki, “Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state,” Phys. Rev. A 71, 012304 (2005).
[Crossref]

Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie, and K. C. Peng, “Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier,” Phys. Rev. A 62, 023813 (2000).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Phys. Rev. Lett. (8)

N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa, “High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables,” Phys. Rev. Lett. 94, 220502 (2005).
[Crossref] [PubMed]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869 (1998).
[Crossref]

D. Boschi, S. Branca, F. D. Marini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

X. J. Jia, J. Zhang, Y. Wang, Y. P. Zhao, C. D. Xie, and K. C. Peng, “Superactivation of multipartite unlockable bound entanglement,” Phys. Rev. Lett. 108, 190501 (2012).
[Crossref] [PubMed]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482 (2000).
[Crossref] [PubMed]

X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger-Horne- Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007).
[Crossref]

T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[Crossref] [PubMed]

Science (1)

A. Furusawa, J. L. Sorensen, S. L. Braustein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Other (1)

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup of the NOPA. Laser: Nd: YAP/LBO laser source; MC1: mode cleaner of 1080 nm; MC2: mode cleaner of 540 nm; HWP1-2: λ/2 waveplate; PBS1-3: polarizing beam splitter; EOM: phase electro-optic modulator; ISO: isolator; PZT1-7: piezoelectric transducer; D0-4: detector; BHD1-2: balanced homodyne detector; SA: spectrum analyzer.
Fig. 2
Fig. 2 The process for the experimental realization of three modes resonance in the NOPA when the length of NOPA is scanned. The uper trace for the signals when the cavity length of the NOPA is scanning, the middle trace for the pump modes, the lower trace for the signal and idler modes.
Fig. 3
Fig. 3 The measured correlation and anti-correlation variances noise powers of the EPR beams, where (i) is the SNL; (ii) is the correlation variance of amplitude-sum (a) and phase-difference (b); (iii) is the anti-correlation variance of amplitude-difference (a) and phase-sum (b); (iv) is the ENL. The measurement parameters of SA: RBW 10kHz; VBW 100Hz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ 2 ( X ^ a 1 out ± X ^ a 2 out ) = δ 2 ( Y ^ a 1 out Y ^ a 2 out ) = 2 ( 1 η det η esc 4 P / P thr ( 1 ± P / P thr ) 2 + 4 ( 2 π f κ 1 ) 2 ) ,
P thr = ( T 0 + L 0 ) 2 ( T + L ) 2 8 χ 2 T 0
l ( n j , d ) = 2 n j * ( l x d * tan θ ) + 2 ( l air + d * tan θ ) = A j * λ j
Φ ( n j , d ) = 2 π λ j l ( n j , d ) 4 Φ G ( n j )

Metrics