Abstract

We show for the first time 100 Gbit/s total capacity at 2 µm waveband, using 4 × 9.3 Gbit/s 4-ASK Fast-OFDM direct modulation and 4 × 15.7 Gbit/s NRZ-OOK external modulation, spanning a 36.3 nm wide wavelength range. WDM transmission was successfully demonstrated over 1.15 km of low-loss hollow core photonic bandgap fiber (HC-PBGF) and over 1 km of solid core fiber (SCF). We conclude that the OSNR penalty associated with the SCF is minimal, while a ~1-2 dB penalty was observed after the HC-PBGF probably due to mode coupling to higher-order modes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber

M. N. Petrovich, F. Poletti, J. P. Wooler, A.M. Heidt, N.K. Baddela, Z. Li, D.R. Gray, R. Slavík, F. Parmigiani, N.V. Wheeler, J.R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, John O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F.C. Garcia Gunning, A.D. Ellis, P. Petropoulos, S.U. Alam, and D.J. Richardson
Opt. Express 21(23) 28559-28569 (2013)

PMD tolerance of 288 Gbit/s Coherent WDM and transmission over unrepeatered 124 km of field-installed single mode optical fiber

Paola Frascella, Fatima C. Garcia Gunning, Selwan K. Ibrahim, Paul Gunning, and Andrew D. Ellis
Opt. Express 18(13) 13908-13914 (2010)

1024 QAM, 7-core (60 Gbit/s x 7) fiber transmission over 55 km with an aggregate potential spectral efficiency of 109 bit/s/Hz

Masato Yoshida, Shohei Beppu, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 23(16) 20760-20766 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis, D. Rafique, and S. Sygletos, “Capacity in fiber optic communications– the case for a radically new fiber,” IEEE Phot. Conference (2011), Arlington, paper TuN1.
  2. B. Inan, Y. Jung, V. Sleiffer, M. Kuschnerov, L. Gruner-Nielsen, S. Adhikari, S. L. Jansen, D. J. Richardson, S. Alam, B. Spinnler, and N. Hanik, “Low computational complexity mode division multiplexed OFDM transmission over 130 km of few mode fiber,” in Proceedings of OFC (2013), Anaheim, paper OW4F.4.
  3. A. D. Ellis, “The nonlinear Shannon limit and the need for new fibres,” Proc. SPIE 8434, 84340H (2012).
  4. N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. R. Numkam Fokoua, I. Giles, D. Giles, R. Phelan, J. O'Carroll, B. Kelly, B. Corbett, D. Murphy, A. D. Ellis, D. J. Richardson, and F. Garcia Gunning, “WDM transmission at 2µm over low-loss hollow core photonic bandgap fiber,” in Proceedings of OFC (2013), Anaheim, paper OW1I.6.
  5. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
    [Crossref] [PubMed]
  6. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
  7. Y. Chen, N. V. Wheeler, N. Baddela, J. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fibers,” in Proceedings of OFC (2014), San Francisco, paper M2F.4.
  8. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  9. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
    [Crossref] [PubMed]
  10. R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum well discrete mode laser diode emitting at 2µm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
    [Crossref]
  11. B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
    [Crossref]
  12. H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O'Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “81 Gbit/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of ECOC (2014), Cannes, paper P.5.20.
  13. M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
    [Crossref]
  14. J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett. 23(9), 594–596 (2011).
    [Crossref]

2014 (1)

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

2013 (4)

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

2012 (2)

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum well discrete mode laser diode emitting at 2µm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

A. D. Ellis, “The nonlinear Shannon limit and the need for new fibres,” Proc. SPIE 8434, 84340H (2012).

2011 (1)

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett. 23(9), 594–596 (2011).
[Crossref]

2005 (1)

Alam, S.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Alam, S. U.

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Baddela, N. K.

Becker, M.

Belal, M.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Birks, T. A.

Byrne, D.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum well discrete mode laser diode emitting at 2µm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Corbett, B.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Couny, F.

Daniel, J. M. O.

Ellis, A. D.

Farr, L.

Gray, D. R.

Gruner-Nielsen, L.

Gunning, F.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Gunning, F. C.

Gunning, P.

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett. 23(9), 594–596 (2011).
[Crossref]

Han, W.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Hayes, J. R.

Heidt, A. M.

Herbert, C.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum well discrete mode laser diode emitting at 2µm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Ibrahim, S. K.

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett. 23(9), 594–596 (2011).
[Crossref]

Jung, Y.

Kelly, B.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum well discrete mode laser diode emitting at 2µm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Knight, J. C.

Li, Z.

MacSuibhne, N.

Mangan, B. J.

Mason, M. W.

Masoudi, A.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Newson, T.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Nudds, N.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Numkam, E.

Numkam Fokoua, E.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

O’Brien, P.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

O’Carroll, J.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum well discrete mode laser diode emitting at 2µm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Pálsdóttir, B.

Parmigiani, F.

Peters, F. H.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Petropoulos, P.

Petrovich, M.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Petrovich, M. N.

Phelan, R.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum well discrete mode laser diode emitting at 2µm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Poletti, F.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

Rafique, D.

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett. 23(9), 594–596 (2011).
[Crossref]

Richardson, D.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Richardson, D. J.

Roberts, P. J.

Russell, P. St. J.

Sabert, H.

Simakov, N.

Slavik, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Slavík, R.

Somers, J.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum well discrete mode laser diode emitting at 2µm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Tomlinson, A.

Wang, X.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Wheeler, N.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Wheeler, N. V.

Williams, D. P.

Wooler, J.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Wooler, J. P.

Yang, H.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Ye, N.

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Zhao, J.

Electron. Lett. (1)

B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (3)

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First demonstration of a 2-µm OTDR and its use in photonic bandgap CO2 sensing fiber,” IEEE Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett. 23(9), 594–596 (2011).
[Crossref]

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum well discrete mode laser diode emitting at 2µm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Opt. Express (3)

Proc. SPIE (1)

A. D. Ellis, “The nonlinear Shannon limit and the need for new fibres,” Proc. SPIE 8434, 84340H (2012).

Other (5)

N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. R. Numkam Fokoua, I. Giles, D. Giles, R. Phelan, J. O'Carroll, B. Kelly, B. Corbett, D. Murphy, A. D. Ellis, D. J. Richardson, and F. Garcia Gunning, “WDM transmission at 2µm over low-loss hollow core photonic bandgap fiber,” in Proceedings of OFC (2013), Anaheim, paper OW1I.6.

A. D. Ellis, D. Rafique, and S. Sygletos, “Capacity in fiber optic communications– the case for a radically new fiber,” IEEE Phot. Conference (2011), Arlington, paper TuN1.

B. Inan, Y. Jung, V. Sleiffer, M. Kuschnerov, L. Gruner-Nielsen, S. Adhikari, S. L. Jansen, D. J. Richardson, S. Alam, B. Spinnler, and N. Hanik, “Low computational complexity mode division multiplexed OFDM transmission over 130 km of few mode fiber,” in Proceedings of OFC (2013), Anaheim, paper OW4F.4.

Y. Chen, N. V. Wheeler, N. Baddela, J. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fibers,” in Proceedings of OFC (2014), San Francisco, paper M2F.4.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O'Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “81 Gbit/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of ECOC (2014), Cannes, paper P.5.20.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup. AWG: arbitrary waveform generator; MZM: mach-zehnder modulator; PPG: pulse pattern generator; Amp: amplifier; ATT: attenuator; DPO: digital phosphor oscilloscope; ED: error detector.
Fig. 2
Fig. 2 (a) 3-dB bandwidth vs. bias current for a directly modulated channel 1992.5 nm; (b)S21 characterization for: a directly modulated channel at 1992.5 nm at a bias current of 32.5 mA (black, dotted), and an externally modulated channel at 1998.4 nm with a modulator bias of −5.3 V(green, solid), both with a photo-detector at 2 µm.
Fig. 3
Fig. 3 (a) OSA spectra of (blue, dashed, top) transmitter, (black, solid, middle) after HC-PBGF, and (green, dotted, lowest) after SCF transmission. Narrow dips centered at 1965 and 2004 nm within the black trace are due to CO2 absorption. (b) Total loss of the HC-PBGF and SCF both including spliced connectorized pigtails. Peaks within the loss spectrum of the HC-PBGF (black, solid) are due to CO2 absorption. OSA resolution: 0.05 nm.
Fig. 4
Fig. 4 BER vs. OSNR performance for (a) direct modulation over PBGF, (b) 15.7 Gbit/s external modulation over PBGF, (c) direct modulation over SCF, and (d) 15.7 Gbit/s external modulation over SCF. (In the figures, solid lines – B2B; dashed lines – over PBGF; dotted lines – over SCF.)
Fig. 5
Fig. 5 OSNR penalties at BER = 1 × 10−9 for externally modulated channels at different bit rates. Note that the dashed and dotted lines are for guidance only.
Fig. 6
Fig. 6 (top) Eye diagrams of 15.7 Gbit/s NRZ-OOK signal (1998.4 nm) and (bottom) constellation diagrams for 4-ASK Fast-OFDM signal (1992.5 nm), both for (left) B2B, (middle) over HC-PBGF, and (right) over SCF.

Metrics