Abstract

A general approach based on mid-infrared (MIR) laser scanning is proposed to measure the 3-D ice shape no matter whether the ice is composed of clear ice, rime ice, mixed ice, or even supercooled water droplets or films. This is possible because MIR radiation penetrates ice and water only within a depth of less than 10 micrometers. First, an MIR laser point scanning technique is implemented and verified on transparent glass and clear ice. Then, to improve efficiency, an MIR laser line scanning method is developed and validated on different models. At last, several sequential MIR laser line scans are applied to trace the 3-D shape evolution of the continuous ice accretion on an airfoil in an icing wind tunnel. The ice growth process can be well observed in the results. The MIR scan shows a good agreement with the traditional visible laser scan on a plastic replication of the final ice shape made by the mold and casting method.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scanning from heating: 3D shape estimation of transparent objects from local surface heating

Gonen Eren, Olivier Aubreton, Fabrice Meriaudeau, L.A. Sanchez Secades, David Fofi, A. Teoman Naskali, Frederic Truchetet, and Aytul Ercil
Opt. Express 17(14) 11457-11468 (2009)

Stereo line-scan sensor calibration for 3D shape measurement

Bo Sun, Jigui Zhu, Linghui Yang, Yin Guo, and Jiarui Lin
Appl. Opt. 56(28) 7905-7914 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Bragg, A. Broeren, and L. Blumenthal, “Iced-airfoil aerodynamics,” Prog. Aerosp. Sci. 41(5), 323–362 (2005).
    [Crossref]
  2. H. Addy, D. Sheldon, and M. Potatpczuk, Jr., “Modern Airfoil ice accretions,” in 35th Aerospace Sciences Meeting and Exhibit, 97–0174 (American Institute of Aeronautics and Astronautics, 1997).
  3. P. Collier, L. Dixon, D. Fontana, D. Payne, and A. W. Pearson, “The Use of Close Range Photogrammetry for Studying Ice Accretion on Aerofoil Sections,” Photogramm. Rec. 16(94), 671–684 (1999).
    [Crossref]
  4. R. J. Hansman, M. S. Kirby, R. C. McKnight, and R. L. Humes, “In-flight measurement of airfoil icing using an array of ultrasonic transducers,” J. Aircr. 25(6), 531–537 (1988).
    [Crossref]
  5. C. R. Mercer, M. Vargas, and J. R. Oldenburg, “A preliminary study on ice shape tracing with a laser light sheet,” NASA Tech. Memo. 105964 (1993).
  6. R. C. McKnight, R. L. Palko, and R. L. Humes, “In-flight photogrammetric measurement of wing ice accretions,” in 24th Aerospace Sciences Meeting, 86–0483 (American Institute of Aeronautics and Astronautics, 1986).
    [Crossref]
  7. E. Hovenac and M. Vargas, “A laser-based ice shape profilometer for use in icing wind tunnels,” NASA Tech. Memo, 106936 (1995).
  8. Y. Han, J. L. Palacios, and E. C. Smith, “An Experimental Correlation between Rotor Test and Wind Tunnel Ice Shapes on NACA 0012 Airfoils,” in SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing, 2011–38–0092 (Society of Automotive Engineers, 2011).
    [Crossref]
  9. S. Lee, A. P. Broeren, R. E. Kreeger, M. G. Potapczuk, and L. Utt, “Implementation and Validation of 3-D Ice Accretion Measurement Methodology,” in 6th AIAA Atmospheric and Space Environments Conference, 2014–2613 (American Institute of Aeronautics and Astronautics, 2014).
    [Crossref]
  10. S. T. McClain, D. Reed, M. M. Vargas, R. E. Kreeger, and J.-C. Tsao, “Ice Roughness in Short Duration SLD Icing Events,” in 6th AIAA Atmospheric and Space Environments Conference, 2014–2330 (American Institute of Aeronautics and Astronautics, 2014).
    [Crossref]
  11. R. E. Kreeger and J.-C. Tsao, “Ice Shapes on a Tail Rotor,” in 6th AIAA Atmospheric and Space Environments Conference, 2014–2612 (American Institute of Aeronautics and Astronautics, 2014).
    [Crossref]
  12. I. Ihrke, K. Kutulakos, and H. Lensch, “State of the art in transparent and specular object reconstruction,” in EUROGRAPHICS 2008 STAR (EUROGRAPHICS Association, 2008), pp. 87–108.
  13. S. K. Lau, D. P. Almond, and J. M. Milne, “A quantitative analysis of pulsed video thermography,” NDT Int. 24(4), 195–202 (1991).
    [Crossref]
  14. E. Barker, “Shape reconstruction from a single thermal image,” Opt. Eng. 34(1), 154–159 (1995).
    [Crossref]
  15. G. Eren, O. Aubreton, F. Meriaudeau, L. A. Sanchez Secades, D. Fofi, A. T. Naskali, F. Truchetet, and A. Ercil, “Scanning from heating: 3D shape estimation of transparent objects from local surface heating,” Opt. Express 17(14), 11457–11468 (2009).
    [Crossref] [PubMed]
  16. F. Meriaudeau, L. Alonso Sanchez Secades, G. Eren, A. Ercil, F. Truchetet, O. Aubreton, and D. Fofi, “3-D Scanning of Nonopaque Objects by Means of Imaging Emitted Structured Infrared Patterns,” IEEE Trans. Instrum. Meas. 59(11), 2898–2906 (2010).
    [Crossref]
  17. A. Bajard, O. Aubreton, G. Eren, P. Sallamand, and F. Truchetet, “3D digitization of metallic specular surfaces using scanning from heating approach,” Proc. SPIE 7864, 786413 (2011).
    [Crossref]
  18. O. Aubreton, A. Bajard, B. Verney, and F. Truchetet, “Infrared system for 3D scanning of metallic surfaces,” Mach. Vis. Appl. 24(7), 1513–1524 (2013).
    [Crossref]
  19. A. Bajard, A. Olivier, B. Youssef, V. Benjamin, G. Eren, A. Erçil, and F. Truchetet, “Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 063603 (2012).
    [Crossref]
  20. T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed. (John Wiley & Sons, 2011).
  21. S. Warren, “Optical properties of snow,” Rev. Geophys. 20(1), 67–82 (1982).
    [Crossref]
  22. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
    [Crossref]
  23. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23(8), 1206–1224 (1984).
    [Crossref] [PubMed]
  24. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200- µm Wavelength Region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  25. H. D. Baehr and K. Stephan, Heat and Mass Transfer, 2nd ed. (Springer, 2006).
  26. M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
    [Crossref]
  27. J. A. Sobrino and J. Cuenca, “Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements,” Appl. Opt. 38(18), 3931–3936 (1999).
    [Crossref] [PubMed]
  28. L. Gerhardt, “The use of laser structured light for 3D surface measurement and inspection,” in Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and Automation Technology (IEEE, 1994), pp. 215–221.
  29. F. S. Marzani, Y. Voisin, L. F. C. L. Y. Voon, and A. Diou, “Calibration of a three-dimensional reconstruction system using a structured light source,” Opt. Eng. 41(2), 484–492 (2002).
  30. M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson Surface Reconstruction,” in Proceedings of the Fourth Eurographics Symposium on Geometry Processing (Eurographics Association, 2006), pp. 61–70.
  31. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
    [Crossref]
  32. D. Lanman and G. Taubin, “Build Your Own 3D Scanner: 3D Photography for Beginners,” in ACM SIGGRAPH 2009 Courses (ACM, 2009), pp. 8:1–8:94.
  33. S. Y. Cheng, S. Park, and M. M. Trivedi, “Multiperspective Thermal IR and Video Arrays for 3D Body Tracking and Driver Activity Analysis,” in Computer Vision and Pattern Recognition-Workshops,2005. CVPR Workshops (IEEE, 2005), Vol. 3, pp. 1–8.
  34. S. Vidas, R. Lakemond, S. Denman, C. Fookes, S. Sridharan, and T. Wark, “A Mask-Based Approach for the Geometric Calibration of Thermal-Infrared Cameras,” IEEE Trans. Instrum. Meas. 61(6), 1625–1635 (2012).
    [Crossref]
  35. P. Engström, H. Larsson, and J. Rydell, “Geometric calibration of thermal cameras,” Proc. SPIE 8897, 88970C (2013).
    [Crossref]
  36. Y. H. Ng and R. Du, “Acquisition of 3D surface temperature distribution of a car body,” in 2005 IEEE International Conference on Information Acquisition (IEEE, 2005), pp. 16–20.
    [Crossref]
  37. G. Cardone, A. Ianiro, G. dello Ioio, and A. Passaro, “Temperature maps measurements on 3D surfaces with infrared thermography,” Exp. Fluids 52(2), 375–385 (2011).
    [Crossref]
  38. V. Hilsenstein, “Surface reconstruction of water waves using thermographic stereo imaging,” presented at Image and Vision Computing New Zealand 2005, Dunedin, New Zealand, 102–107 Nov. 2005.
  39. J.-Y. Bouguet, “Camera Calibration Toolbox for Matlab,” http://www.vision.caltech.edu/bouguetj/calib_doc/index.html .
  40. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
    [Crossref]
  41. Josep Forest i Collado, “New methods for triangulation-based shape acquisition using laser scanners,” PhD thesis, University of Girona (1997).
  42. P. J. Besl and H. D. McKay, “A Method for Registration of 3-D Shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992).
    [Crossref]
  43. S. Jaiwon and H. Thomas, “Repeatability of Ice Shapes in the NASA Lewis Icing Research,” J. Aircr. 31(5), 1057–1063 (1994).
    [Crossref]
  44. D. Miller, M. Potapczuk, and T. Langhals, “Preliminary Investigation of Ice Shape Sensitivity to Parameter Variations,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005–0073 (American Institute of Aeronautics and Astronautics, 2005).
    [Crossref]

2013 (2)

O. Aubreton, A. Bajard, B. Verney, and F. Truchetet, “Infrared system for 3D scanning of metallic surfaces,” Mach. Vis. Appl. 24(7), 1513–1524 (2013).
[Crossref]

P. Engström, H. Larsson, and J. Rydell, “Geometric calibration of thermal cameras,” Proc. SPIE 8897, 88970C (2013).
[Crossref]

2012 (2)

A. Bajard, A. Olivier, B. Youssef, V. Benjamin, G. Eren, A. Erçil, and F. Truchetet, “Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 063603 (2012).
[Crossref]

S. Vidas, R. Lakemond, S. Denman, C. Fookes, S. Sridharan, and T. Wark, “A Mask-Based Approach for the Geometric Calibration of Thermal-Infrared Cameras,” IEEE Trans. Instrum. Meas. 61(6), 1625–1635 (2012).
[Crossref]

2011 (2)

A. Bajard, O. Aubreton, G. Eren, P. Sallamand, and F. Truchetet, “3D digitization of metallic specular surfaces using scanning from heating approach,” Proc. SPIE 7864, 786413 (2011).
[Crossref]

G. Cardone, A. Ianiro, G. dello Ioio, and A. Passaro, “Temperature maps measurements on 3D surfaces with infrared thermography,” Exp. Fluids 52(2), 375–385 (2011).
[Crossref]

2010 (1)

F. Meriaudeau, L. Alonso Sanchez Secades, G. Eren, A. Ercil, F. Truchetet, O. Aubreton, and D. Fofi, “3-D Scanning of Nonopaque Objects by Means of Imaging Emitted Structured Infrared Patterns,” IEEE Trans. Instrum. Meas. 59(11), 2898–2906 (2010).
[Crossref]

2009 (2)

2006 (1)

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

2005 (1)

M. Bragg, A. Broeren, and L. Blumenthal, “Iced-airfoil aerodynamics,” Prog. Aerosp. Sci. 41(5), 323–362 (2005).
[Crossref]

2004 (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
[Crossref]

2002 (1)

F. S. Marzani, Y. Voisin, L. F. C. L. Y. Voon, and A. Diou, “Calibration of a three-dimensional reconstruction system using a structured light source,” Opt. Eng. 41(2), 484–492 (2002).

2000 (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

1999 (2)

J. A. Sobrino and J. Cuenca, “Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements,” Appl. Opt. 38(18), 3931–3936 (1999).
[Crossref] [PubMed]

P. Collier, L. Dixon, D. Fontana, D. Payne, and A. W. Pearson, “The Use of Close Range Photogrammetry for Studying Ice Accretion on Aerofoil Sections,” Photogramm. Rec. 16(94), 671–684 (1999).
[Crossref]

1995 (1)

E. Barker, “Shape reconstruction from a single thermal image,” Opt. Eng. 34(1), 154–159 (1995).
[Crossref]

1994 (1)

S. Jaiwon and H. Thomas, “Repeatability of Ice Shapes in the NASA Lewis Icing Research,” J. Aircr. 31(5), 1057–1063 (1994).
[Crossref]

1992 (1)

P. J. Besl and H. D. McKay, “A Method for Registration of 3-D Shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992).
[Crossref]

1991 (1)

S. K. Lau, D. P. Almond, and J. M. Milne, “A quantitative analysis of pulsed video thermography,” NDT Int. 24(4), 195–202 (1991).
[Crossref]

1988 (1)

R. J. Hansman, M. S. Kirby, R. C. McKnight, and R. L. Humes, “In-flight measurement of airfoil icing using an array of ultrasonic transducers,” J. Aircr. 25(6), 531–537 (1988).
[Crossref]

1984 (1)

1982 (1)

S. Warren, “Optical properties of snow,” Rev. Geophys. 20(1), 67–82 (1982).
[Crossref]

1973 (1)

Almond, D. P.

S. K. Lau, D. P. Almond, and J. M. Milne, “A quantitative analysis of pulsed video thermography,” NDT Int. 24(4), 195–202 (1991).
[Crossref]

Alonso Sanchez Secades, L.

F. Meriaudeau, L. Alonso Sanchez Secades, G. Eren, A. Ercil, F. Truchetet, O. Aubreton, and D. Fofi, “3-D Scanning of Nonopaque Objects by Means of Imaging Emitted Structured Infrared Patterns,” IEEE Trans. Instrum. Meas. 59(11), 2898–2906 (2010).
[Crossref]

Aoki, T.

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Aubreton, O.

O. Aubreton, A. Bajard, B. Verney, and F. Truchetet, “Infrared system for 3D scanning of metallic surfaces,” Mach. Vis. Appl. 24(7), 1513–1524 (2013).
[Crossref]

A. Bajard, O. Aubreton, G. Eren, P. Sallamand, and F. Truchetet, “3D digitization of metallic specular surfaces using scanning from heating approach,” Proc. SPIE 7864, 786413 (2011).
[Crossref]

F. Meriaudeau, L. Alonso Sanchez Secades, G. Eren, A. Ercil, F. Truchetet, O. Aubreton, and D. Fofi, “3-D Scanning of Nonopaque Objects by Means of Imaging Emitted Structured Infrared Patterns,” IEEE Trans. Instrum. Meas. 59(11), 2898–2906 (2010).
[Crossref]

G. Eren, O. Aubreton, F. Meriaudeau, L. A. Sanchez Secades, D. Fofi, A. T. Naskali, F. Truchetet, and A. Ercil, “Scanning from heating: 3D shape estimation of transparent objects from local surface heating,” Opt. Express 17(14), 11457–11468 (2009).
[Crossref] [PubMed]

Bajard, A.

O. Aubreton, A. Bajard, B. Verney, and F. Truchetet, “Infrared system for 3D scanning of metallic surfaces,” Mach. Vis. Appl. 24(7), 1513–1524 (2013).
[Crossref]

A. Bajard, A. Olivier, B. Youssef, V. Benjamin, G. Eren, A. Erçil, and F. Truchetet, “Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 063603 (2012).
[Crossref]

A. Bajard, O. Aubreton, G. Eren, P. Sallamand, and F. Truchetet, “3D digitization of metallic specular surfaces using scanning from heating approach,” Proc. SPIE 7864, 786413 (2011).
[Crossref]

Baldridge, A. M.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[Crossref]

Barker, E.

E. Barker, “Shape reconstruction from a single thermal image,” Opt. Eng. 34(1), 154–159 (1995).
[Crossref]

Benjamin, V.

A. Bajard, A. Olivier, B. Youssef, V. Benjamin, G. Eren, A. Erçil, and F. Truchetet, “Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 063603 (2012).
[Crossref]

Besl, P. J.

P. J. Besl and H. D. McKay, “A Method for Registration of 3-D Shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992).
[Crossref]

Blais, F.

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
[Crossref]

Blumenthal, L.

M. Bragg, A. Broeren, and L. Blumenthal, “Iced-airfoil aerodynamics,” Prog. Aerosp. Sci. 41(5), 323–362 (2005).
[Crossref]

Bragg, M.

M. Bragg, A. Broeren, and L. Blumenthal, “Iced-airfoil aerodynamics,” Prog. Aerosp. Sci. 41(5), 323–362 (2005).
[Crossref]

Broeren, A.

M. Bragg, A. Broeren, and L. Blumenthal, “Iced-airfoil aerodynamics,” Prog. Aerosp. Sci. 41(5), 323–362 (2005).
[Crossref]

Cardone, G.

G. Cardone, A. Ianiro, G. dello Ioio, and A. Passaro, “Temperature maps measurements on 3D surfaces with infrared thermography,” Exp. Fluids 52(2), 375–385 (2011).
[Crossref]

Collier, P.

P. Collier, L. Dixon, D. Fontana, D. Payne, and A. W. Pearson, “The Use of Close Range Photogrammetry for Studying Ice Accretion on Aerofoil Sections,” Photogramm. Rec. 16(94), 671–684 (1999).
[Crossref]

Cuenca, J.

dello Ioio, G.

G. Cardone, A. Ianiro, G. dello Ioio, and A. Passaro, “Temperature maps measurements on 3D surfaces with infrared thermography,” Exp. Fluids 52(2), 375–385 (2011).
[Crossref]

Denman, S.

S. Vidas, R. Lakemond, S. Denman, C. Fookes, S. Sridharan, and T. Wark, “A Mask-Based Approach for the Geometric Calibration of Thermal-Infrared Cameras,” IEEE Trans. Instrum. Meas. 61(6), 1625–1635 (2012).
[Crossref]

Diou, A.

F. S. Marzani, Y. Voisin, L. F. C. L. Y. Voon, and A. Diou, “Calibration of a three-dimensional reconstruction system using a structured light source,” Opt. Eng. 41(2), 484–492 (2002).

Dixon, L.

P. Collier, L. Dixon, D. Fontana, D. Payne, and A. W. Pearson, “The Use of Close Range Photogrammetry for Studying Ice Accretion on Aerofoil Sections,” Photogramm. Rec. 16(94), 671–684 (1999).
[Crossref]

Du, R.

Y. H. Ng and R. Du, “Acquisition of 3D surface temperature distribution of a car body,” in 2005 IEEE International Conference on Information Acquisition (IEEE, 2005), pp. 16–20.
[Crossref]

Eide, H.

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Engström, P.

P. Engström, H. Larsson, and J. Rydell, “Geometric calibration of thermal cameras,” Proc. SPIE 8897, 88970C (2013).
[Crossref]

Ercil, A.

F. Meriaudeau, L. Alonso Sanchez Secades, G. Eren, A. Ercil, F. Truchetet, O. Aubreton, and D. Fofi, “3-D Scanning of Nonopaque Objects by Means of Imaging Emitted Structured Infrared Patterns,” IEEE Trans. Instrum. Meas. 59(11), 2898–2906 (2010).
[Crossref]

G. Eren, O. Aubreton, F. Meriaudeau, L. A. Sanchez Secades, D. Fofi, A. T. Naskali, F. Truchetet, and A. Ercil, “Scanning from heating: 3D shape estimation of transparent objects from local surface heating,” Opt. Express 17(14), 11457–11468 (2009).
[Crossref] [PubMed]

Erçil, A.

A. Bajard, A. Olivier, B. Youssef, V. Benjamin, G. Eren, A. Erçil, and F. Truchetet, “Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 063603 (2012).
[Crossref]

Eren, G.

A. Bajard, A. Olivier, B. Youssef, V. Benjamin, G. Eren, A. Erçil, and F. Truchetet, “Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 063603 (2012).
[Crossref]

A. Bajard, O. Aubreton, G. Eren, P. Sallamand, and F. Truchetet, “3D digitization of metallic specular surfaces using scanning from heating approach,” Proc. SPIE 7864, 786413 (2011).
[Crossref]

F. Meriaudeau, L. Alonso Sanchez Secades, G. Eren, A. Ercil, F. Truchetet, O. Aubreton, and D. Fofi, “3-D Scanning of Nonopaque Objects by Means of Imaging Emitted Structured Infrared Patterns,” IEEE Trans. Instrum. Meas. 59(11), 2898–2906 (2010).
[Crossref]

G. Eren, O. Aubreton, F. Meriaudeau, L. A. Sanchez Secades, D. Fofi, A. T. Naskali, F. Truchetet, and A. Ercil, “Scanning from heating: 3D shape estimation of transparent objects from local surface heating,” Opt. Express 17(14), 11457–11468 (2009).
[Crossref] [PubMed]

Fofi, D.

F. Meriaudeau, L. Alonso Sanchez Secades, G. Eren, A. Ercil, F. Truchetet, O. Aubreton, and D. Fofi, “3-D Scanning of Nonopaque Objects by Means of Imaging Emitted Structured Infrared Patterns,” IEEE Trans. Instrum. Meas. 59(11), 2898–2906 (2010).
[Crossref]

G. Eren, O. Aubreton, F. Meriaudeau, L. A. Sanchez Secades, D. Fofi, A. T. Naskali, F. Truchetet, and A. Ercil, “Scanning from heating: 3D shape estimation of transparent objects from local surface heating,” Opt. Express 17(14), 11457–11468 (2009).
[Crossref] [PubMed]

Fontana, D.

P. Collier, L. Dixon, D. Fontana, D. Payne, and A. W. Pearson, “The Use of Close Range Photogrammetry for Studying Ice Accretion on Aerofoil Sections,” Photogramm. Rec. 16(94), 671–684 (1999).
[Crossref]

Fookes, C.

S. Vidas, R. Lakemond, S. Denman, C. Fookes, S. Sridharan, and T. Wark, “A Mask-Based Approach for the Geometric Calibration of Thermal-Infrared Cameras,” IEEE Trans. Instrum. Meas. 61(6), 1625–1635 (2012).
[Crossref]

Gerhardt, L.

L. Gerhardt, “The use of laser structured light for 3D surface measurement and inspection,” in Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and Automation Technology (IEEE, 1994), pp. 215–221.

Grove, C. I.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[Crossref]

Hachikubo, A.

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Hale, G. M.

Hansman, R. J.

R. J. Hansman, M. S. Kirby, R. C. McKnight, and R. L. Humes, “In-flight measurement of airfoil icing using an array of ultrasonic transducers,” J. Aircr. 25(6), 531–537 (1988).
[Crossref]

Hook, S. J.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[Crossref]

Hori, M.

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Humes, R. L.

R. J. Hansman, M. S. Kirby, R. C. McKnight, and R. L. Humes, “In-flight measurement of airfoil icing using an array of ultrasonic transducers,” J. Aircr. 25(6), 531–537 (1988).
[Crossref]

Ianiro, A.

G. Cardone, A. Ianiro, G. dello Ioio, and A. Passaro, “Temperature maps measurements on 3D surfaces with infrared thermography,” Exp. Fluids 52(2), 375–385 (2011).
[Crossref]

Jaiwon, S.

S. Jaiwon and H. Thomas, “Repeatability of Ice Shapes in the NASA Lewis Icing Research,” J. Aircr. 31(5), 1057–1063 (1994).
[Crossref]

Kirby, M. S.

R. J. Hansman, M. S. Kirby, R. C. McKnight, and R. L. Humes, “In-flight measurement of airfoil icing using an array of ultrasonic transducers,” J. Aircr. 25(6), 531–537 (1988).
[Crossref]

Lakemond, R.

S. Vidas, R. Lakemond, S. Denman, C. Fookes, S. Sridharan, and T. Wark, “A Mask-Based Approach for the Geometric Calibration of Thermal-Infrared Cameras,” IEEE Trans. Instrum. Meas. 61(6), 1625–1635 (2012).
[Crossref]

Larsson, H.

P. Engström, H. Larsson, and J. Rydell, “Geometric calibration of thermal cameras,” Proc. SPIE 8897, 88970C (2013).
[Crossref]

Lau, S. K.

S. K. Lau, D. P. Almond, and J. M. Milne, “A quantitative analysis of pulsed video thermography,” NDT Int. 24(4), 195–202 (1991).
[Crossref]

Marzani, F. S.

F. S. Marzani, Y. Voisin, L. F. C. L. Y. Voon, and A. Diou, “Calibration of a three-dimensional reconstruction system using a structured light source,” Opt. Eng. 41(2), 484–492 (2002).

McKay, H. D.

P. J. Besl and H. D. McKay, “A Method for Registration of 3-D Shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992).
[Crossref]

McKnight, R. C.

R. J. Hansman, M. S. Kirby, R. C. McKnight, and R. L. Humes, “In-flight measurement of airfoil icing using an array of ultrasonic transducers,” J. Aircr. 25(6), 531–537 (1988).
[Crossref]

Meriaudeau, F.

F. Meriaudeau, L. Alonso Sanchez Secades, G. Eren, A. Ercil, F. Truchetet, O. Aubreton, and D. Fofi, “3-D Scanning of Nonopaque Objects by Means of Imaging Emitted Structured Infrared Patterns,” IEEE Trans. Instrum. Meas. 59(11), 2898–2906 (2010).
[Crossref]

G. Eren, O. Aubreton, F. Meriaudeau, L. A. Sanchez Secades, D. Fofi, A. T. Naskali, F. Truchetet, and A. Ercil, “Scanning from heating: 3D shape estimation of transparent objects from local surface heating,” Opt. Express 17(14), 11457–11468 (2009).
[Crossref] [PubMed]

Milne, J. M.

S. K. Lau, D. P. Almond, and J. M. Milne, “A quantitative analysis of pulsed video thermography,” NDT Int. 24(4), 195–202 (1991).
[Crossref]

Motoyoshi, H.

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Nakajima, Y.

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Naskali, A. T.

Ng, Y. H.

Y. H. Ng and R. Du, “Acquisition of 3D surface temperature distribution of a car body,” in 2005 IEEE International Conference on Information Acquisition (IEEE, 2005), pp. 16–20.
[Crossref]

Olivier, A.

A. Bajard, A. Olivier, B. Youssef, V. Benjamin, G. Eren, A. Erçil, and F. Truchetet, “Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 063603 (2012).
[Crossref]

Passaro, A.

G. Cardone, A. Ianiro, G. dello Ioio, and A. Passaro, “Temperature maps measurements on 3D surfaces with infrared thermography,” Exp. Fluids 52(2), 375–385 (2011).
[Crossref]

Payne, D.

P. Collier, L. Dixon, D. Fontana, D. Payne, and A. W. Pearson, “The Use of Close Range Photogrammetry for Studying Ice Accretion on Aerofoil Sections,” Photogramm. Rec. 16(94), 671–684 (1999).
[Crossref]

Pearson, A. W.

P. Collier, L. Dixon, D. Fontana, D. Payne, and A. W. Pearson, “The Use of Close Range Photogrammetry for Studying Ice Accretion on Aerofoil Sections,” Photogramm. Rec. 16(94), 671–684 (1999).
[Crossref]

Querry, M. R.

Rivera, G.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[Crossref]

Rydell, J.

P. Engström, H. Larsson, and J. Rydell, “Geometric calibration of thermal cameras,” Proc. SPIE 8897, 88970C (2013).
[Crossref]

Sallamand, P.

A. Bajard, O. Aubreton, G. Eren, P. Sallamand, and F. Truchetet, “3D digitization of metallic specular surfaces using scanning from heating approach,” Proc. SPIE 7864, 786413 (2011).
[Crossref]

Sanchez Secades, L. A.

Sobrino, J. A.

Sridharan, S.

S. Vidas, R. Lakemond, S. Denman, C. Fookes, S. Sridharan, and T. Wark, “A Mask-Based Approach for the Geometric Calibration of Thermal-Infrared Cameras,” IEEE Trans. Instrum. Meas. 61(6), 1625–1635 (2012).
[Crossref]

Storvold, R.

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Sugiura, K.

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Takahashi, F.

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Tanikawa, T.

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Thomas, H.

S. Jaiwon and H. Thomas, “Repeatability of Ice Shapes in the NASA Lewis Icing Research,” J. Aircr. 31(5), 1057–1063 (1994).
[Crossref]

Truchetet, F.

O. Aubreton, A. Bajard, B. Verney, and F. Truchetet, “Infrared system for 3D scanning of metallic surfaces,” Mach. Vis. Appl. 24(7), 1513–1524 (2013).
[Crossref]

A. Bajard, A. Olivier, B. Youssef, V. Benjamin, G. Eren, A. Erçil, and F. Truchetet, “Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 063603 (2012).
[Crossref]

A. Bajard, O. Aubreton, G. Eren, P. Sallamand, and F. Truchetet, “3D digitization of metallic specular surfaces using scanning from heating approach,” Proc. SPIE 7864, 786413 (2011).
[Crossref]

F. Meriaudeau, L. Alonso Sanchez Secades, G. Eren, A. Ercil, F. Truchetet, O. Aubreton, and D. Fofi, “3-D Scanning of Nonopaque Objects by Means of Imaging Emitted Structured Infrared Patterns,” IEEE Trans. Instrum. Meas. 59(11), 2898–2906 (2010).
[Crossref]

G. Eren, O. Aubreton, F. Meriaudeau, L. A. Sanchez Secades, D. Fofi, A. T. Naskali, F. Truchetet, and A. Ercil, “Scanning from heating: 3D shape estimation of transparent objects from local surface heating,” Opt. Express 17(14), 11457–11468 (2009).
[Crossref] [PubMed]

Verney, B.

O. Aubreton, A. Bajard, B. Verney, and F. Truchetet, “Infrared system for 3D scanning of metallic surfaces,” Mach. Vis. Appl. 24(7), 1513–1524 (2013).
[Crossref]

Vidas, S.

S. Vidas, R. Lakemond, S. Denman, C. Fookes, S. Sridharan, and T. Wark, “A Mask-Based Approach for the Geometric Calibration of Thermal-Infrared Cameras,” IEEE Trans. Instrum. Meas. 61(6), 1625–1635 (2012).
[Crossref]

Voisin, Y.

F. S. Marzani, Y. Voisin, L. F. C. L. Y. Voon, and A. Diou, “Calibration of a three-dimensional reconstruction system using a structured light source,” Opt. Eng. 41(2), 484–492 (2002).

Voon, L. F. C. L. Y.

F. S. Marzani, Y. Voisin, L. F. C. L. Y. Voon, and A. Diou, “Calibration of a three-dimensional reconstruction system using a structured light source,” Opt. Eng. 41(2), 484–492 (2002).

Wark, T.

S. Vidas, R. Lakemond, S. Denman, C. Fookes, S. Sridharan, and T. Wark, “A Mask-Based Approach for the Geometric Calibration of Thermal-Infrared Cameras,” IEEE Trans. Instrum. Meas. 61(6), 1625–1635 (2012).
[Crossref]

Warren, S.

S. Warren, “Optical properties of snow,” Rev. Geophys. 20(1), 67–82 (1982).
[Crossref]

Warren, S. G.

Yasunari, T. J.

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Youssef, B.

A. Bajard, A. Olivier, B. Youssef, V. Benjamin, G. Eren, A. Erçil, and F. Truchetet, “Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 063603 (2012).
[Crossref]

Zhang, Z.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Appl. Opt. (3)

Exp. Fluids (1)

G. Cardone, A. Ianiro, G. dello Ioio, and A. Passaro, “Temperature maps measurements on 3D surfaces with infrared thermography,” Exp. Fluids 52(2), 375–385 (2011).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

S. Vidas, R. Lakemond, S. Denman, C. Fookes, S. Sridharan, and T. Wark, “A Mask-Based Approach for the Geometric Calibration of Thermal-Infrared Cameras,” IEEE Trans. Instrum. Meas. 61(6), 1625–1635 (2012).
[Crossref]

F. Meriaudeau, L. Alonso Sanchez Secades, G. Eren, A. Ercil, F. Truchetet, O. Aubreton, and D. Fofi, “3-D Scanning of Nonopaque Objects by Means of Imaging Emitted Structured Infrared Patterns,” IEEE Trans. Instrum. Meas. 59(11), 2898–2906 (2010).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

P. J. Besl and H. D. McKay, “A Method for Registration of 3-D Shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992).
[Crossref]

J. Aircr. (2)

S. Jaiwon and H. Thomas, “Repeatability of Ice Shapes in the NASA Lewis Icing Research,” J. Aircr. 31(5), 1057–1063 (1994).
[Crossref]

R. J. Hansman, M. S. Kirby, R. C. McKnight, and R. L. Humes, “In-flight measurement of airfoil icing using an array of ultrasonic transducers,” J. Aircr. 25(6), 531–537 (1988).
[Crossref]

J. Electron. Imaging (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
[Crossref]

Mach. Vis. Appl. (1)

O. Aubreton, A. Bajard, B. Verney, and F. Truchetet, “Infrared system for 3D scanning of metallic surfaces,” Mach. Vis. Appl. 24(7), 1513–1524 (2013).
[Crossref]

NDT Int. (1)

S. K. Lau, D. P. Almond, and J. M. Milne, “A quantitative analysis of pulsed video thermography,” NDT Int. 24(4), 195–202 (1991).
[Crossref]

Opt. Eng. (3)

E. Barker, “Shape reconstruction from a single thermal image,” Opt. Eng. 34(1), 154–159 (1995).
[Crossref]

A. Bajard, A. Olivier, B. Youssef, V. Benjamin, G. Eren, A. Erçil, and F. Truchetet, “Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 063603 (2012).
[Crossref]

F. S. Marzani, Y. Voisin, L. F. C. L. Y. Voon, and A. Diou, “Calibration of a three-dimensional reconstruction system using a structured light source,” Opt. Eng. 41(2), 484–492 (2002).

Opt. Express (1)

Photogramm. Rec. (1)

P. Collier, L. Dixon, D. Fontana, D. Payne, and A. W. Pearson, “The Use of Close Range Photogrammetry for Studying Ice Accretion on Aerofoil Sections,” Photogramm. Rec. 16(94), 671–684 (1999).
[Crossref]

Proc. SPIE (2)

P. Engström, H. Larsson, and J. Rydell, “Geometric calibration of thermal cameras,” Proc. SPIE 8897, 88970C (2013).
[Crossref]

A. Bajard, O. Aubreton, G. Eren, P. Sallamand, and F. Truchetet, “3D digitization of metallic specular surfaces using scanning from heating approach,” Proc. SPIE 7864, 786413 (2011).
[Crossref]

Prog. Aerosp. Sci. (1)

M. Bragg, A. Broeren, and L. Blumenthal, “Iced-airfoil aerodynamics,” Prog. Aerosp. Sci. 41(5), 323–362 (2005).
[Crossref]

Remote Sens. Environ. (2)

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[Crossref]

M. Hori, T. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. J. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100(4), 486–502 (2006).
[Crossref]

Rev. Geophys. (1)

S. Warren, “Optical properties of snow,” Rev. Geophys. 20(1), 67–82 (1982).
[Crossref]

Other (20)

H. D. Baehr and K. Stephan, Heat and Mass Transfer, 2nd ed. (Springer, 2006).

L. Gerhardt, “The use of laser structured light for 3D surface measurement and inspection,” in Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and Automation Technology (IEEE, 1994), pp. 215–221.

M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson Surface Reconstruction,” in Proceedings of the Fourth Eurographics Symposium on Geometry Processing (Eurographics Association, 2006), pp. 61–70.

Y. H. Ng and R. Du, “Acquisition of 3D surface temperature distribution of a car body,” in 2005 IEEE International Conference on Information Acquisition (IEEE, 2005), pp. 16–20.
[Crossref]

D. Lanman and G. Taubin, “Build Your Own 3D Scanner: 3D Photography for Beginners,” in ACM SIGGRAPH 2009 Courses (ACM, 2009), pp. 8:1–8:94.

S. Y. Cheng, S. Park, and M. M. Trivedi, “Multiperspective Thermal IR and Video Arrays for 3D Body Tracking and Driver Activity Analysis,” in Computer Vision and Pattern Recognition-Workshops,2005. CVPR Workshops (IEEE, 2005), Vol. 3, pp. 1–8.

Josep Forest i Collado, “New methods for triangulation-based shape acquisition using laser scanners,” PhD thesis, University of Girona (1997).

V. Hilsenstein, “Surface reconstruction of water waves using thermographic stereo imaging,” presented at Image and Vision Computing New Zealand 2005, Dunedin, New Zealand, 102–107 Nov. 2005.

J.-Y. Bouguet, “Camera Calibration Toolbox for Matlab,” http://www.vision.caltech.edu/bouguetj/calib_doc/index.html .

H. Addy, D. Sheldon, and M. Potatpczuk, Jr., “Modern Airfoil ice accretions,” in 35th Aerospace Sciences Meeting and Exhibit, 97–0174 (American Institute of Aeronautics and Astronautics, 1997).

T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed. (John Wiley & Sons, 2011).

C. R. Mercer, M. Vargas, and J. R. Oldenburg, “A preliminary study on ice shape tracing with a laser light sheet,” NASA Tech. Memo. 105964 (1993).

R. C. McKnight, R. L. Palko, and R. L. Humes, “In-flight photogrammetric measurement of wing ice accretions,” in 24th Aerospace Sciences Meeting, 86–0483 (American Institute of Aeronautics and Astronautics, 1986).
[Crossref]

E. Hovenac and M. Vargas, “A laser-based ice shape profilometer for use in icing wind tunnels,” NASA Tech. Memo, 106936 (1995).

Y. Han, J. L. Palacios, and E. C. Smith, “An Experimental Correlation between Rotor Test and Wind Tunnel Ice Shapes on NACA 0012 Airfoils,” in SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing, 2011–38–0092 (Society of Automotive Engineers, 2011).
[Crossref]

S. Lee, A. P. Broeren, R. E. Kreeger, M. G. Potapczuk, and L. Utt, “Implementation and Validation of 3-D Ice Accretion Measurement Methodology,” in 6th AIAA Atmospheric and Space Environments Conference, 2014–2613 (American Institute of Aeronautics and Astronautics, 2014).
[Crossref]

S. T. McClain, D. Reed, M. M. Vargas, R. E. Kreeger, and J.-C. Tsao, “Ice Roughness in Short Duration SLD Icing Events,” in 6th AIAA Atmospheric and Space Environments Conference, 2014–2330 (American Institute of Aeronautics and Astronautics, 2014).
[Crossref]

R. E. Kreeger and J.-C. Tsao, “Ice Shapes on a Tail Rotor,” in 6th AIAA Atmospheric and Space Environments Conference, 2014–2612 (American Institute of Aeronautics and Astronautics, 2014).
[Crossref]

I. Ihrke, K. Kutulakos, and H. Lensch, “State of the art in transparent and specular object reconstruction,” in EUROGRAPHICS 2008 STAR (EUROGRAPHICS Association, 2008), pp. 87–108.

D. Miller, M. Potapczuk, and T. Langhals, “Preliminary Investigation of Ice Shape Sensitivity to Parameter Variations,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005–0073 (American Institute of Aeronautics and Astronautics, 2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 (a) Reflectivity of ice and water [22]. (b) Penetration depth of ice [23] and water [24].
Fig. 2
Fig. 2 (a) Directional emissivity of ice and water. (b) Spectral absorption, reflection, transmission, and emission associated with ice under the MIR laser radiation.
Fig. 3
Fig. 3 (a) Experimental setup for MIR laser point scanning. (b) Laser beam on glass. (c) Laser beam on ice. (d) Triangulation.
Fig. 4
Fig. 4 (a) Glass bowl. (b) Painted glass bowl. (c) Ice bowl.
Fig. 5
Fig. 5 Comparison of MIR laser point scanning on glass bowl and ice bowl. (a) Glass bowl point cloud and error. (b) Ice bowl point cloud and error. (c) Error distribution of glass bowl results. (d) Error distribution of ice bowl results.
Fig. 6
Fig. 6 (a) Geometrical description of MIR line scanning. (b) Checkerboard made from a PCB plate. (c) Checkerboard observed by an IR camera. (d) Printed black fiducial markers on a piece of white paper. (e) Fiducial markers observed by an IR camera.
Fig. 7
Fig. 7 (a) One frame of scanning images. (b) Intensity distribution along an image row.
Fig. 8
Fig. 8 Comparison of MIR laser line scanning on glass bowl and ice bowl. (a) Glass bowl reconstructed surface and error. (b) Ice bowl reconstructed surface and error. (c) Error distribution of glass bowl results. (d) Error distribution of ice bowl results.
Fig. 9
Fig. 9 (a) Plastic frustum. (b) Ice frustum.
Fig. 10
Fig. 10 Comparison of visible laser line scanning on plastic frustum and MIR laser line scanning on ice frustum. (a) Plastic frustum reconstructed surface and error. (b) Ice frustum reconstructed surface and error. (c) Error distribution of plastic frustum results. (d) Error distribution of ice frustum results.
Fig. 11
Fig. 11 Icing wind tunnel.
Fig. 12
Fig. 12 (a) Setup for the icing wind tunnel. (b) One frame of thermal images.
Fig. 13
Fig. 13 Measured 3-D ice shapes evolving over time.
Fig. 14
Fig. 14 The procedure of mold and casting. (a) Airfoil fixed in the box. (b) Molding in the box. (c) Casting in the box. (d) Negative mold. (e) Replication of final ice shape.
Fig. 15
Fig. 15 Comparison of MIR ice scan and visual casting scan. (a) Image of casting. (b) Reconstructed surface of casting. (c) Deviation of MIR ice scan from visual casting scan. (d) Deviation distribution.
Fig. 16
Fig. 16 (a) Comparison at cross-section cut. (b) Temporal evolution of ice profile.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

G λ = G λ, a + G λ, r + G λ, t .
a λ + r λ +  t λ =1.
ε λ,θ = 2cos( θ ) n 2 sin 2 ( θ ) ( cos( θ )+ n 2 sin 2 ( θ ) ) 2 ( 1+ n 2 ( cos( θ ) n 2 sin 2 ( θ ) + sin 2 ( θ ) ) 2 ),
ΔZ=C( tan θ 1 tan θ 0 ),
Δd=f( tan( φ θ 0 )tan( φ θ 1 ) ),
ΔZ= ( C/f )( 1+tanφtan θ 0 )Δd ( tanφ/f )Δd+1+tanφtan( φ θ 0 ) .
ΔZ= αΔd+β γΔd+1 ,

Metrics