Abstract

Optical antennas are key elements in quantum optics emitting and sensing, and behave wide range applications in optical domain. However, integration of optical antenna radiating orbital angular momentum is still a challenge in nano-scale. We theoretically demonstrate a sub-wavelength phased optical antenna array, which manipulates the distribution of the orbital angular momentum in the near field. Orbital angular momentum with topological charge of 4 can be obtained by controlling the phase distribution of the fundamental mode orbital angular momentum in each antenna element. Our results indicate this phased array may be utilized in high integrated optical communication systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Perfect optical vortex array with controllable diffraction order and topological charge

Shiyao Fu, Tonglu Wang, and Chunqing Gao
J. Opt. Soc. Am. A 33(9) 1836-1842 (2016)

Three-dimensional Dammann vortex array with tunable topological charge

Junjie Yu, Changhe Zhou, Wei Jia, Anduo Hu, Wugang Cao, Jun Wu, and Shaoqing Wang
Appl. Opt. 51(13) 2485-2490 (2012)

Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device

Yue Chen, Zhao-Xiang Fang, Yu-Xuan Ren, Lei Gong, and Rong-De Lu
Appl. Opt. 54(27) 8030-8035 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  2. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser and Photonics Reviews 2(4), 299–313 (2008).
    [Crossref]
  3. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3(2), 161–204 (2011).
    [Crossref]
  4. N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  5. I. B. Djordjevic, “Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation,” Opt. Express 19(15), 14277–14289 (2011).
    [Crossref] [PubMed]
  6. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  7. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [Crossref] [PubMed]
  8. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
    [Crossref] [PubMed]
  9. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  10. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
    [Crossref] [PubMed]
  11. D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat Commun 4, 2527 (2013).
    [Crossref] [PubMed]
  12. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  13. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [Crossref] [PubMed]
  14. X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
    [Crossref] [PubMed]
  15. G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
    [Crossref] [PubMed]
  16. Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  17. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  18. Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
    [Crossref] [PubMed]
  19. T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by the metallic slab lens with nanlslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
    [Crossref]
  20. T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, “Plasmonic beam deflector,” Opt. Express 16(7), 4753–4759 (2008).
    [Crossref] [PubMed]

2014 (1)

Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

2013 (3)

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat Commun 4, 2527 (2013).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

2012 (3)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

2011 (3)

2008 (2)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser and Photonics Reviews 2(4), 299–313 (2008).
[Crossref]

T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, “Plasmonic beam deflector,” Opt. Express 16(7), 4753–4759 (2008).
[Crossref] [PubMed]

2007 (1)

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by the metallic slab lens with nanlslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

2006 (1)

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref] [PubMed]

2004 (2)

2003 (3)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Aieta, F.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Allen, L.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser and Photonics Reviews 2(4), 299–313 (2008).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Anzolin, G.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref] [PubMed]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Barbieri, C.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref] [PubMed]

Barnett, S.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Biancalana, F.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Bianchini, A.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref] [PubMed]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Briggs, D. P.

Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Cai, X. L.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Capasso, F.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Conti, C.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Courtial, J.

Ding, D. S.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat Commun 4, 2527 (2013).
[Crossref] [PubMed]

Djordjevic, I. B.

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Drezet, A.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

Du, C. L.

T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, “Plasmonic beam deflector,” Opt. Express 16(7), 4753–4759 (2008).
[Crossref] [PubMed]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by the metallic slab lens with nanlslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Ebbesen, T. W.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Franke-Arnold, S.

Gaburro, Z.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Genet, C.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

Genevet, P.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gibson, G.

Gorodetski, Y.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

Grier, D. G.

Guo, G. C.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat Commun 4, 2527 (2013).
[Crossref] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Huang, H.

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Johnson-Morris, B.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Kang, M. S.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Kats, M. A.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Kravchenko, I. I.

Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ladavac, K.

Lee, H. W.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Luo, X. G.

T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, “Plasmonic beam deflector,” Opt. Express 16(7), 4753–4759 (2008).
[Crossref] [PubMed]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by the metallic slab lens with nanlslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Moitra, P.

Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

O’Brien, J. L.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Padgett, M.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser and Photonics Reviews 2(4), 299–313 (2008).
[Crossref]

Padgett, M. J.

Pas’ko, V.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ren, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ren, Y. X.

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Russell, P. St. J.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Shi, B. S.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat Commun 4, 2527 (2013).
[Crossref] [PubMed]

Sorel, M.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Strain, M. J.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Tamburini, F.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref] [PubMed]

Tetienne, J. P.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thompson, M. G.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Tong, L. M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Tur, M.

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Umbriaco, G.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref] [PubMed]

Valentine, J.

Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Vasnetsov, M.

Wang, C. T.

T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, “Plasmonic beam deflector,” Opt. Express 16(7), 4753–4759 (2008).
[Crossref] [PubMed]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by the metallic slab lens with nanlslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Wang, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, J. W.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Wang, W. Y.

Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Weiss, T.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wong, G. K. L.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

Xu, T.

T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, “Plasmonic beam deflector,” Opt. Express 16(7), 4753–4759 (2008).
[Crossref] [PubMed]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by the metallic slab lens with nanlslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, Y. M.

Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yao, A. M.

Yu, N. F.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, S. Y.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Yue, Y.

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhou, Z. Y.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat Commun 4, 2527 (2013).
[Crossref] [PubMed]

Zhu, J. B.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by the metallic slab lens with nanlslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Laser and Photonics Reviews (1)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser and Photonics Reviews 2(4), 299–313 (2008).
[Crossref]

Nano Lett. (1)

Y. M. Yang, W. Y. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Nat Commun (1)

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat Commun 4, 2527 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref] [PubMed]

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating far-field orbital angular momenta from near-field optical chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref] [PubMed]

Science (4)

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Y. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337(6093), 446–449 (2012).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale orbital angular momentum mode division multiplexing in Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Geometry of the optical antenna for OAM modulation. (a) Schematic of the optical antenna array for OAM generation. (b) Side view and (c) front view of the effect geometry of each optical antenna.
Fig. 2
Fig. 2 Electric field of the radiated circularly polarized light from the single waveguide at 1550nm. (a)-(c) are respectively the instant electric field of Ex, the average energy intensity, and the phase distribution of the transmitted circularly polarized light in single antenna element. (d), (e) and (f) depict the corresponding elements of the radiated OAM light with topological charge l = 1.
Fig. 3
Fig. 3 Transmission spectra of each waveguide when propagating OAM lights with different topological charges.
Fig. 4
Fig. 4 Simulated results of the phased array when propagating OAM lights with certain phase differences at 1550nm. (a)The schematic of the circle optical antenna array with eight antenna elements. (b) Front view of the antenna array, displaced uniformly in a circle with radius of R = 2.7 μm. (c)-(i) The phase distribution of the interfered electric field at the aperture of each antenna with phase difference of −135°, −90°, −45°, 0°, 45°, 90°, 135° between neighboring antenna elements in clockwise direction. (c1)-(i1) The instant x-component electric field in near field range with phase difference of −135°, −90°, −45°, 0°, 45°, 90°, 135° between neighboring antenna elements in clockwise direction. (c2)-(i2) The intensity of the radiation field in with the corresponding phase difference above each figure.
Fig. 5
Fig. 5 Interfered electric field distribution of the optical antenna array when fed with OAM lights of l = 1 at 1550nm. (a)-(g) The instant Ex distribution in the case of θ equals to -3π/4, -π/2, -π/4,, 0,π/4, π/2, and 3π/4, respectively. (a1)-(g1) The average power distribution for the interfered field with corresponding θ above each figure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E= E 0 n=1 n=m exp{ i*[lϕn*θ] } .
l ' =lm*θ/2π.

Metrics