Abstract

The optically pumped rare-gas metastable laser is a chemically inert analogue to three-state optically pumped alkali laser systems. The concept requires efficient generation of electronically excited metastable atoms in a continuous-wave (CW) electric discharge in flowing gas mixtures near atmospheric pressure. We have observed CW optical gain and laser oscillation at 912.3 nm using a linear micro-discharge array to generate metastable Ar(4s, 1s5) atoms at atmospheric pressure. We observed the optical excitation of the 1s5 → 2p9 transition at 811.5 nm and the corresponding fluorescence, optical gain and laser oscillation on the 2p10 ↔ 1s5 transition at 912.3 nm, following 2p9→2p10 collisional energy transfer. A steady-state kinetics model indicates efficient collisional coupling within the Ar(4s) manifold.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-dependent simulations of a CW pumped, pulsed DC discharge Ar metastable laser system

Pengfei Sun, Duluo Zuo, Pavel A. Mikheyev, Jiande Han, and Michael C. Heaven
Opt. Express 27(16) 22289-22301 (2019)

Transversely optically pumped Ar:He laser with a pulsed-periodic discharge

P. A. Mikheyev, A. K. Chernyshov, M. I. Svistun, N. I. Ufimtsev, O. S. Kartamysheva, M. C. Heaven, and V. N. Azyazov
Opt. Express 27(26) 38759-38767 (2019)

Modeling of diode pumped metastable rare gas lasers

Zining Yang, Guangqi Yu, Hongyan Wang, Qisheng Lu, and Xiaojun Xu
Opt. Express 23(11) 13823-13832 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
    [Crossref] [PubMed]
  2. J. Han, L. Glebov, G. Venus, and M. C. Heaven, “Demonstration of a diode-pumped metastable Ar laser,” Opt. Lett. 38(24), 5458–5461 (2013).
    [Crossref] [PubMed]
  3. J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE Paper 8962–2, LASE 2014 High Energy/Average Power Lasers and Intense Beam Applications VIII, San Francisco, CA, February (2014).
  4. R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006).
    [Crossref] [PubMed]
  5. J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali-vapor lasers: a new class of photoassociation lasers,” Proc. SPIE Paper 7581–19, LASE 2010 High Energy/Average Power Lasers and Intense Beam Applications V, San Francisco, CA, January (2010).
    [Crossref]
  6. J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm Laser Pumped by Photoassociation of Cs-Kr Pairs: Excitation of the Cs D2 Blue and Red Satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
    [Crossref] [PubMed]
  7. A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
    [Crossref]
  8. Z.-B. Zhang and J. Hopwood, “Linear arrays of stable atmospheric pressure microplasmas,” Appl. Phys. Lett. 95(16), 161502 (2009).
    [Crossref]
  9. C. Wu, A. R. Hoskinson, and J. Hopwood, “Stable linear plasma arrays at atmospheric pressure,” Plasma Sources Sci. Technol. 20(4), 045022 (2011).
    [Crossref]
  10. N. Miura and J. Hopwood, “Spatially resolved argon microplasma diagnostics by diode laser absorption,” J. Appl. Phys. 109(1), 013304 (2011).
    [Crossref]
  11. N. Miura and J. Hopwood, “Internal structure of 0.9 GHz microplasma,” J. Appl. Phys. 109(11), 113303 (2011).
    [Crossref]
  12. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2012), NIST Atomic Spectra Database (ver. 5.0), [Online]. Available: http://physics.nist.gov/asd [2013, May 13]. National Institute of Standards and Technology, Gaithersburg, MD.
  13. G. P. Perram, The Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson Air Force Base, OH 45414 (personal communication, 2014).
  14. X.-M. Zhu, W.-C. Chen, and Y.-K. Pu, “Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma,” J. Phys. D Appl. Phys. 41(10), 105212 (2008).
    [Crossref]
  15. X.-M. Zhu and Y.-K. Pu, “A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of Paschen 1s and 2p levels,” J. Phys. D Appl. Phys. 43(1), 015204 (2010).
    [Crossref]
  16. W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE Paper 8962–2, LASE 2014 High Energy/Average Power Lasers and Intense Beam Applications VIII, San Francisco, CA, February (2014).

2013 (2)

J. Han, L. Glebov, G. Venus, and M. C. Heaven, “Demonstration of a diode-pumped metastable Ar laser,” Opt. Lett. 38(24), 5458–5461 (2013).
[Crossref] [PubMed]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

2012 (1)

2011 (3)

C. Wu, A. R. Hoskinson, and J. Hopwood, “Stable linear plasma arrays at atmospheric pressure,” Plasma Sources Sci. Technol. 20(4), 045022 (2011).
[Crossref]

N. Miura and J. Hopwood, “Spatially resolved argon microplasma diagnostics by diode laser absorption,” J. Appl. Phys. 109(1), 013304 (2011).
[Crossref]

N. Miura and J. Hopwood, “Internal structure of 0.9 GHz microplasma,” J. Appl. Phys. 109(11), 113303 (2011).
[Crossref]

2010 (1)

X.-M. Zhu and Y.-K. Pu, “A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of Paschen 1s and 2p levels,” J. Phys. D Appl. Phys. 43(1), 015204 (2010).
[Crossref]

2009 (2)

2008 (1)

X.-M. Zhu, W.-C. Chen, and Y.-K. Pu, “Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma,” J. Phys. D Appl. Phys. 41(10), 105212 (2008).
[Crossref]

2006 (1)

Beach, R. J.

Chen, W.-C.

X.-M. Zhu, W.-C. Chen, and Y.-K. Pu, “Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma,” J. Phys. D Appl. Phys. 41(10), 105212 (2008).
[Crossref]

Davis, S. J.

Demyanov, A. V.

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Eden, J. G.

Gabally-Kinney, K. L.

Glebov, L.

Han, J.

Heaven, M. C.

Hopwood, J.

C. Wu, A. R. Hoskinson, and J. Hopwood, “Stable linear plasma arrays at atmospheric pressure,” Plasma Sources Sci. Technol. 20(4), 045022 (2011).
[Crossref]

N. Miura and J. Hopwood, “Spatially resolved argon microplasma diagnostics by diode laser absorption,” J. Appl. Phys. 109(1), 013304 (2011).
[Crossref]

N. Miura and J. Hopwood, “Internal structure of 0.9 GHz microplasma,” J. Appl. Phys. 109(11), 113303 (2011).
[Crossref]

Z.-B. Zhang and J. Hopwood, “Linear arrays of stable atmospheric pressure microplasmas,” Appl. Phys. Lett. 95(16), 161502 (2009).
[Crossref]

Hoskinson, A. R.

C. Wu, A. R. Hoskinson, and J. Hopwood, “Stable linear plasma arrays at atmospheric pressure,” Plasma Sources Sci. Technol. 20(4), 045022 (2011).
[Crossref]

Kanz, V. K.

Kessler, W. J.

Kochetov, I. V.

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Krupke, W. F.

Mikheyev, P. A.

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Miura, N.

N. Miura and J. Hopwood, “Spatially resolved argon microplasma diagnostics by diode laser absorption,” J. Appl. Phys. 109(1), 013304 (2011).
[Crossref]

N. Miura and J. Hopwood, “Internal structure of 0.9 GHz microplasma,” J. Appl. Phys. 109(11), 113303 (2011).
[Crossref]

Page, R. H.

Pu, Y.-K.

X.-M. Zhu and Y.-K. Pu, “A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of Paschen 1s and 2p levels,” J. Phys. D Appl. Phys. 43(1), 015204 (2010).
[Crossref]

X.-M. Zhu, W.-C. Chen, and Y.-K. Pu, “Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma,” J. Phys. D Appl. Phys. 41(10), 105212 (2008).
[Crossref]

Rawlins, W. T.

Readle, J. D.

Venus, G.

Verdeyen, J. T.

Wu, C.

C. Wu, A. R. Hoskinson, and J. Hopwood, “Stable linear plasma arrays at atmospheric pressure,” Plasma Sources Sci. Technol. 20(4), 045022 (2011).
[Crossref]

Zhang, Z.-B.

Z.-B. Zhang and J. Hopwood, “Linear arrays of stable atmospheric pressure microplasmas,” Appl. Phys. Lett. 95(16), 161502 (2009).
[Crossref]

Zhu, X.-M.

X.-M. Zhu and Y.-K. Pu, “A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of Paschen 1s and 2p levels,” J. Phys. D Appl. Phys. 43(1), 015204 (2010).
[Crossref]

X.-M. Zhu, W.-C. Chen, and Y.-K. Pu, “Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma,” J. Phys. D Appl. Phys. 41(10), 105212 (2008).
[Crossref]

Appl. Phys. Lett. (1)

Z.-B. Zhang and J. Hopwood, “Linear arrays of stable atmospheric pressure microplasmas,” Appl. Phys. Lett. 95(16), 161502 (2009).
[Crossref]

J. Appl. Phys. (2)

N. Miura and J. Hopwood, “Spatially resolved argon microplasma diagnostics by diode laser absorption,” J. Appl. Phys. 109(1), 013304 (2011).
[Crossref]

N. Miura and J. Hopwood, “Internal structure of 0.9 GHz microplasma,” J. Appl. Phys. 109(11), 113303 (2011).
[Crossref]

J. Phys. D Appl. Phys. (3)

X.-M. Zhu, W.-C. Chen, and Y.-K. Pu, “Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma,” J. Phys. D Appl. Phys. 41(10), 105212 (2008).
[Crossref]

X.-M. Zhu and Y.-K. Pu, “A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of Paschen 1s and 2p levels,” J. Phys. D Appl. Phys. 43(1), 015204 (2010).
[Crossref]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Opt. Lett. (4)

Plasma Sources Sci. Technol. (1)

C. Wu, A. R. Hoskinson, and J. Hopwood, “Stable linear plasma arrays at atmospheric pressure,” Plasma Sources Sci. Technol. 20(4), 045022 (2011).
[Crossref]

Other (5)

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE Paper 8962–2, LASE 2014 High Energy/Average Power Lasers and Intense Beam Applications VIII, San Francisco, CA, February (2014).

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE Paper 8962–2, LASE 2014 High Energy/Average Power Lasers and Intense Beam Applications VIII, San Francisco, CA, February (2014).

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer-pumped alkali-vapor lasers: a new class of photoassociation lasers,” Proc. SPIE Paper 7581–19, LASE 2010 High Energy/Average Power Lasers and Intense Beam Applications V, San Francisco, CA, January (2010).
[Crossref]

A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2012), NIST Atomic Spectra Database (ver. 5.0), [Online]. Available: http://physics.nist.gov/asd [2013, May 13]. National Institute of Standards and Technology, Gaithersburg, MD.

G. P. Perram, The Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson Air Force Base, OH 45414 (personal communication, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic illustration of Ar(I) energy levels in the 11-14 eV region: 3p54s and 3p54p configurations, with Paschen and Racah notation. The specific transitions observed for optical excitation, collisional energy transfer, and lasing are highlighted.
Fig. 2
Fig. 2 Illustration of micro-discharge array board with 15 microstrip resonators. The microwave power input is the SMA connector. The micro-discharges occur in the gaps between the ends of the resonator strips and the ground.
Fig. 3
Fig. 3 Schematic of optical layout for Ar* pump/probe experiments. Direction of gas flow is out of the page. WM = wavemeter; BS = beamsplitter; PD = photodiode.
Fig. 4
Fig. 4 Near-infrared image of the micro-discharge array (inset) and spatial profile along the array, laser-induced 2p10 fluorescence, 900-1100 nm. 6.9 kW/cm2 Ti:S intensity at 811.5 nm, 1.0% Ar in He at 7.5 mmole/s, 767 Torr, 6.9 W net microwave power at 920 MHz. Gas flow direction in the image is from top to bottom.
Fig. 5
Fig. 5 Laser-induced fluorescence spectrum of the Ar 2p10→1s5 (912 nm) and 2p10→1s4 (966 nm) lines. 2.0 kW/cm2 total Ti:S intensity at 811.5 nm, 4.3% Ar in He at 5.4 mmole/s, 766 Torr, 6 W net microwave power, spectral resolution 0.27 nm.
Fig. 6
Fig. 6 Gain (Ti:S laser on) and absorbance (Ti:S laser off) on the 2p10-1s5 transition at 912.3 nm, 1.9 cm path length. 2% Ar/He, 3.7 mmole/s total flow, 769 Torr, 9 W net microwave power, 4 kW/cm2 Ti:S intensity on the 1s5→2p9 transition at 811.5 nm.
Fig. 7
Fig. 7 Optical gain along the microplasma centerline versus incident pump intensity. 2% Ar/He at 3.7 mmole/s, 769 Torr, 9 W net microwave power.
Fig. 8
Fig. 8 3-D image of optically pumped argon metastable laser output beam at 912.3 nm.
Fig. 9
Fig. 9 Illustration of four-level model with excitation and deactivation terms.
Fig. 10
Fig. 10 Steady-state three-level model predictions of Ar(2p10→1s5) optical gain as a function of incident excitation laser intensity, for two different initial Ar(1s5) number densities.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n 3 = I B 13 I B 31 + A 31 +( k c +k Q )[ M ] n 1
n 2 = k c [ M ] A 21 + A 24 n 3
n 1 = ( IB + 31 A 31 + k Q [ M ] ) n 3 + A 21 n 2 + k 41 [ M ] n 4 I B 13 + k 14 [ M ]
n 4 = A 24 n 2 + k 14 [ M ] n 1 k 41 [ M ]+ A 40
n TOT = n 1 + n 2 + n 3 + n 4
I= I 0 δν O L exp( σ 13 N 13 z )dz, N 13 = n 1 5 7 n 3 .

Metrics