Abstract

Standard silicon photonic strip waveguides offer a high intrinsic refractive index contrast; this permits strong light confinement, leading to compact bends, which in turn facilitates the fabrication of devices with small footprints. Sub-wavelength grating (SWG) based waveguides can allow the fabrication of low loss devices with specific, engineered optical properties. The combination of SWG waveguides with optical micro-resonators can offer the possibility of achieving resonators with properties different from the traditional SOI rings. One important property that SWG rings can offer is decreased light confinement in the waveguide core; this improves the resonator’s sensitivity to changes in the cladding refractive index, making the rings ideal for refractive index sensing applications. In this paper, we present the design and experimental characterization of SWG based rings realized on SOI chips without upper cladding (permitting their use as sensors). The fabricated rings offer quality factors in the range of ~1k-6k, depending on SWG parameters. Based on the comparison of experimental and simulated data we expect sensitivities exceeding 383 nm/RIU in water and 270 nm/RIU in air, showing excellent potential for use in sensing applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sub-wavelength grating components for integrated optics applications on SOI chips

Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Sahba Talebi Fard, Samantha M. Grist, and Lukas Chrostowski
Opt. Express 22(17) 21037-21050 (2014)

Sub-wavelength grating for enhanced ring resonator biosensor

Jonas Flueckiger, Shon Schmidt, Valentina Donzella, Ahmed Sherwali, Daniel M. Ratner, Lukas Chrostowski, and Karen C. Cheung
Opt. Express 24(14) 15672-15686 (2016)

Subwavelength grating filtering devices

Junjia Wang, Ivan Glesk, and Lawrence R. Chen
Opt. Express 22(13) 15335-15345 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [Crossref]
  2. V. Donzella and F. Crea, “Optical biosensors to analyze novel biomarkers in oncology,” J. Biophotonics 4(6), 442–452 (2011).
    [Crossref] [PubMed]
  3. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
    [Crossref] [PubMed]
  4. K. Thyagarajan, C. W. Chien, R. V. Ramaswamy, H. S. Kim, and H. C. Cheng, “Proton-exchange periodically segmented waveguides in LiNbO3,” Opt. Lett. 19(12), 1732 (1994).
    [Crossref] [PubMed]
  5. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
    [Crossref] [PubMed]
  6. D. Ortega, J. M. Aldariz, J. M. Arnold, and J. S. Aitchison, “Analysis of “quasi-modes” in periodic segmented waveguides,” J. Lightwave Technol. 17(2), 369–375 (1999).
    [Crossref]
  7. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
    [Crossref] [PubMed]
  8. V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt. Express 22(17), 21037–21050 (2014).
    [Crossref] [PubMed]
  9. V. Donzella, J. Flueckiger, A. Sherwali, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Compact and broad band directional coupler for sub-wavelength grating SOI components,” IEEE Photonics Conference (2014).
  10. R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21(7), 9103–9112 (2013).
    [Crossref] [PubMed]
  11. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  12. D. F. Logan, P. Velha, M. Sorel, R. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 m,” IEEE Photon. Technol. Lett. 22(20), 1530–1532 (2010).
    [Crossref]
  13. V. Donzella, S. Talebi Fard, and L. Chrostowski, “Fabrication and experimental characterization of cascaded SOI micro-rings for high-throughput label-free molecular sensing,” IEEE Photonics Conference (IPC) 614–615 (2013).
  14. J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22(13), 15335–15345 (2014).
    [Crossref] [PubMed]
  15. L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University Press, 2014)
  16. X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
    [Crossref] [PubMed]
  17. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  18. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  19. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  20. http://www.lumerical.com
  21. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
    [Crossref] [PubMed]
  22. https://www.wnf.uw.edu/
  23. M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B 25(6), 2034 (2007).
    [Crossref]
  24. Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
    [Crossref]
  25. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
    [Crossref] [PubMed]
  26. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” Optical Fiber Communication Conference, Th2A–37 (2014).
    [Crossref]
  27. S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. F. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
    [Crossref] [PubMed]
  28. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [Crossref] [PubMed]
  29. J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with sub-wavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
  30. S. A. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, J. T. Kirk, K. C. Cheung, L. Chrostowski, and D. M. Ratner, “Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing,” SPIE Optics + Photonics, 9166 (2014).
  31. S Talebi Fard, S.M. Grist, V Donzella, S.A. Schmidt, J. Flueckiger, X Wang, W Shi, A Millspaugh, M Webb, DM Ratner, KC Cheung, and L Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” SPIE OPTO 862909 (2013)

2014 (5)

2013 (3)

2012 (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (1)

V. Donzella and F. Crea, “Optical biosensors to analyze novel biomarkers in oncology,” J. Biophotonics 4(6), 442–452 (2011).
[Crossref] [PubMed]

2010 (5)

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

D. F. Logan, P. Velha, M. Sorel, R. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 m,” IEEE Photon. Technol. Lett. 22(20), 1530–1532 (2010).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[Crossref]

2008 (2)

2007 (2)

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B 25(6), 2034 (2007).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

2001 (1)

1999 (1)

1994 (1)

Aers, G. C.

Aitchison, J. S.

Aldariz, J. M.

Alonso-Ramos, C.

Arnold, J. M.

Baehr-Jones, T.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

Bartolozzi, I.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

Bock, P. J.

Boeck, R.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bojko, R.

Bojko, R. J.

Cerrina, F.

Cheben, P.

Chen, L.

Chen, L. R.

Chen, Y.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[Crossref]

Cheng, H. C.

Cheung, K. C.

Chien, C. W.

Chrostowski, L.

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. F. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt. Express 22(17), 21037–21050 (2014).
[Crossref] [PubMed]

X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[Crossref] [PubMed]

R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21(7), 9103–9112 (2013).
[Crossref] [PubMed]

V. Donzella, J. Flueckiger, A. Sherwali, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Compact and broad band directional coupler for sub-wavelength grating SOI components,” IEEE Photonics Conference (2014).

Citrin, D. S.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Crea, F.

V. Donzella and F. Crea, “Optical biosensors to analyze novel biomarkers in oncology,” J. Biophotonics 4(6), 442–452 (2011).
[Crossref] [PubMed]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De La Rue, R.

D. F. Logan, P. Velha, M. Sorel, R. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 m,” IEEE Photon. Technol. Lett. 22(20), 1530–1532 (2010).
[Crossref]

De La Rue, R. M.

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B 25(6), 2034 (2007).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

Delâge, A.

Densmore, A.

Donzella, V.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Fan, X.

Fard, S. T.

Feng, J.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[Crossref]

Flueckiger, J.

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. F. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt. Express 22(17), 21037–21050 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[Crossref] [PubMed]

X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
[Crossref] [PubMed]

R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21(7), 9103–9112 (2013).
[Crossref] [PubMed]

V. Donzella, J. Flueckiger, A. Sherwali, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Compact and broad band directional coupler for sub-wavelength grating SOI components,” IEEE Photonics Conference (2014).

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Glesk, I.

Gnan, M.

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B 25(6), 2034 (2007).
[Crossref]

Gonzalo Wangüemert-Pérez, J.

Grist, S.

Grist, S. M.

Halir, R.

Hall, T. J.

Hochberg, M.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Jaeger, N. A.

Jaeger, N. A. F.

Janz, S.

Jessop, P. E.

D. F. Logan, P. Velha, M. Sorel, R. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 m,” IEEE Photon. Technol. Lett. 22(20), 1530–1532 (2010).
[Crossref]

Kim, H. S.

Kimerling, L. C.

Kirk, J. T.

Knights, A. P.

D. F. Logan, P. Velha, M. Sorel, R. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 m,” IEEE Photon. Technol. Lett. 22(20), 1530–1532 (2010).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kwok, E.

Lamontagne, B.

Lapointe, J.

Lee, K. K.

Lim, D. R.

Lipson, M.

Logan, D. F.

D. F. Logan, P. Velha, M. Sorel, R. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 m,” IEEE Photon. Technol. Lett. 22(20), 1530–1532 (2010).
[Crossref]

Macintyre, D. S.

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B 25(6), 2034 (2007).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Molina-Fernández, I.

Ortega, D.

Ortega-Moñux, A.

Pérez-Galacho, D.

Ramaswamy, R. V.

Ratner, D. M.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Robinson, J. T.

Schacht, E.

Schmid, J. H.

Schmidt, S. A.

Sherwali, A.

V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt. Express 22(17), 21037–21050 (2014).
[Crossref] [PubMed]

V. Donzella, J. Flueckiger, A. Sherwali, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Compact and broad band directional coupler for sub-wavelength grating SOI components,” IEEE Photonics Conference (2014).

Shi, W.

Shin, J.

Sorel, M.

D. F. Logan, P. Velha, M. Sorel, R. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 m,” IEEE Photon. Technol. Lett. 22(20), 1530–1532 (2010).
[Crossref]

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B 25(6), 2034 (2007).
[Crossref]

Summers, C. J.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[Crossref]

Talebi Fard, P.

Talebi Fard, S.

Thoms, S.

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B 25(6), 2034 (2007).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Thyagarajan, K.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Velha, P.

D. F. Logan, P. Velha, M. Sorel, R. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 m,” IEEE Photon. Technol. Lett. 22(20), 1530–1532 (2010).
[Crossref]

Wang, J.

Wang, X.

Wang, Y.

White, I. M.

Wu, Y.

Xu, D. X.

Xu, D.-X.

Yu, J.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[Crossref]

Yun, H.

Zhou, Z.

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[Crossref]

Front. Optoelectron. China (1)

Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China 2(3), 308–311 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. F. Logan, P. Velha, M. Sorel, R. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-Enhanced Silicon-on-Insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 m,” IEEE Photon. Technol. Lett. 22(20), 1530–1532 (2010).
[Crossref]

J. Biophotonics (1)

V. Donzella and F. Crea, “Optical biosensors to analyze novel biomarkers in oncology,” J. Biophotonics 4(6), 442–452 (2011).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B 25(6), 2034 (2007).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nat. Photonics (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Opt. Express (11)

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt. Express 22(17), 21037–21050 (2014).
[Crossref] [PubMed]

R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21(7), 9103–9112 (2013).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express 21(16), 19029–19039 (2013).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[Crossref] [PubMed]

J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22(13), 15335–15345 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. F. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Other (8)

V. Donzella, J. Flueckiger, A. Sherwali, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Compact and broad band directional coupler for sub-wavelength grating SOI components,” IEEE Photonics Conference (2014).

http://www.lumerical.com

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Fabrication and experimental characterization of cascaded SOI micro-rings for high-throughput label-free molecular sensing,” IEEE Photonics Conference (IPC) 614–615 (2013).

S. A. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, J. T. Kirk, K. C. Cheung, L. Chrostowski, and D. M. Ratner, “Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing,” SPIE Optics + Photonics, 9166 (2014).

S Talebi Fard, S.M. Grist, V Donzella, S.A. Schmidt, J. Flueckiger, X Wang, W Shi, A Millspaugh, M Webb, DM Ratner, KC Cheung, and L Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” SPIE OPTO 862909 (2013)

https://www.wnf.uw.edu/

L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University Press, 2014)

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” Optical Fiber Communication Conference, Th2A–37 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic view, not at scale, of an SWG waveguide fabricated on SOI chip (a) and SEM picture of one fabricated ring with Ebeam lithography on SOI chip. Ring radius is 10 μm and SWG period is 250 nm (b).
Fig. 2
Fig. 2 Fundamental TE mode propagation calculated via 3D FDTD in different SWG based structures. Electric field intensity profile is plotted on cross-sectional monitors (placed in the silicon blocks of the core): (a) in a SWG straight waveguide; (b) in a 10 μm radius SWG bent waveguide. c) Electric field intensity profile on a longitudinal monitor for an SWG directional coupler with gap of 200 nm. In all the plots SWG waveguide parameters are w = 500 nm, h = 220 nm, Π = 250 nm, Πον = 175 nm (i.e. δ = 0.7); SWG parameters and monitors are schematically shown in (d). Plots (a) and (b) are achieved on a 2-D cross-sectional monitors (red line in figure (d)), while (c) is achieved by a 2-D longitudinal monitor, placed parallel to the substrate and in the middle of the silicon blocks (dotted box).
Fig. 3
Fig. 3 SEM images of SWG ring test structures a) with enlarged component details b), c) and d). Full etch grating couplers (highlighted by green boxes) are used to couple light in and out the chip, and are connected to regular strip waveguides. An SWG directional coupler (blue box) is used to couple light into the resonator, shown in b) and c); c) is a higher magnification picture of the coupling region and the silicon blocks used to build up the SWG waveguide core. It is clearly shown that the small spaces (50 nm long for δ = 0.8) between the silicon blocks in the core have not properly a rectangular shape, as designed, but spaces are wider at the centre of the SWG waveguides and narrower near the waveguide edges. Tapers (purple boxes) are used to convert strip waveguides in SWG waveguides and vice-versa c). SWG period is 250 nm and block cross section is 500 nm (width) x 220 nm (height).
Fig. 4
Fig. 4 a) Measured outputs of two SWG ring resonators with identical specifics but fabricated on different chip quadrants (Q2 blue curve, and Q1 red curve). The spectra are normalized with respect to the GC link response. Ring radius is 20 μm and SWG waveguide has a width of 500 nm, with Π = 250 nm and δ = 0.8. b) Magnified spectrum of the ring resonator on Q2 around its central wavelength region, ~1545-1555 nm.
Fig. 5
Fig. 5 a) Experimental results of SWG based ring resonators with different radii (R = 10-40 μm) onto two different quadrants of the SOI chip (named Q1 and Q2, labeled respectively with cross and square markers in the plots) for the resonator quality factor (a) and (b) and for extinction ratio (c) and (d). (a) and (c) are the plots for SWG duty cycle of 0.7, (b) and (d) for 0.8. Continuous lines are the mean values extracted from measured values. In all cases, SWG period is 250 nm, waveguide width is 500 nm.
Fig. 6
Fig. 6 a) 3D FDTD simulation showing light propagation in a 10 μm radius SWG ring (electric field is represented on a logarithmic scale); the light source, represented by the black arrow, injects light from the bottom left of the simulation area. b) Comparison of SWG resonator quality factor versus ring radius between 3D FDTD simulation (dotted lines) and experimental results (continuous lines stand for the mean value, and error bars take into account measurement variation on the two different chip quarters, Q1 and Q2). The SWG waveguide has a width of 500 nm and SWG Π is 250 nm. The two duty cycles, δ = 0.7 and 0.8, are plotted in green and red, respectively.
Fig. 7
Fig. 7 SWG resonator FSR and ng, versus ring radius; comparison of simulations and experimental results. In (a) measurements taken onto the quarters Q1 and Q2 are compared with 3D FDTD simulations (continuous line) while in (b) the mean group index has been extracted from the two sets of measurements and compared with 3D FDTD and MODE (applied to the equivalent waveguide) simulations. SWG waveguide has a width of 500 nm and SWG Π is 250 nm, the two duty cycles, δ = 0.7 and 0.8 are plotted with different colors, green and red respectively.
Fig. 8
Fig. 8 Simulated evaluation of the sensitivity in air and water of SWG waveguides (a) and rings (b), and their comparison with SOI strip and slot waveguides and rings. The SWG waveguides have a width of 500 nm and SWG Π is 250 nm.

Tables (2)

Tables Icon

Table 1 SWG geometries and optical properties at λ = 1550 nm used to fabricate the SWG resonatorsa.

Tables Icon

Table 2 Comparison of the main parameters measured in water for TE ring resonator sensors based on different kinds of waveguidesa.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n eqcore = n cl +Δ n eq
λ res = 2( πR+ L c ) n eff m
Q= ω res E dE dt = 2π n g 4.34 λ res α [ dB /m ] λ res Δ λ 3dB
S ring = S wg λ res n g
S wg = Δ n eff Δ n cl

Metrics