Abstract

To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flip-chip optical couplers with scalable I/O count for silicon photonics

Ibrahim Murat Soganci, Antonio La Porta, and Bert Jan Offrein
Opt. Express 21(13) 16075-16085 (2013)

A scalable silicon photonic chip-scale optical switch for high performance computing systems

Runxiang Yu, Stanley Cheung, Yuliang Li, Katsunari Okamoto, Roberto Proietti, Yawei Yin, and S. J. B. Yoo
Opt. Express 21(26) 32655-32667 (2013)

Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler

Xiaohui Lin, Amir Hosseini, Xinyuan Dou, Harish Subbaraman, and Ray T. Chen
Opt. Express 21(1) 60-69 (2013)

References

  • View by:
  • |
  • |
  • |

  1. statista, The Statistics Portal (2014), “Global data center IP traffic from 2012 to 2017, by data center type,” http://www.statista.com/statistics/227268/global-data-center-ip-traffic-growth-by-data-center-type .
  2. TOP500 supercomputer list of June 2014, http://s.top500.org/static/lists/2014/06/TOP500_201406_Poster.png .
  3. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
    [Crossref]
  4. P. W. Coteus, J. U. Knickerbocker, C. H. Lam, and Y. A. Vlasov, “Technologies for exascale systems,” IBM J. Res. Develop. 55(5), 141–1412 (2011).
    [Crossref]
  5. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11(3), 155–168 (1997).
  6. B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
    [Crossref]
  7. T. Lamprecht, F. Horst, R. Dangel, R. Beyeler, N. Meier, L. Dellmann, M. Gmür, C. Berger, and B. J. Offrein, “Passive alignment of optical elements in a printed circuit board,” in Proceedings of 56th Electronic Components and Technology Conference, pp. 761−767 (2006).
    [Crossref]
  8. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
    [Crossref]
  9. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
    [Crossref]
  10. D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
    [Crossref]
  11. R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. DeShazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31(24), 3915–3926 (2013).
    [Crossref]
  12. M. Fields, “Applications and commercialization of board mounted parallel optics,” presented at Market Focus at ECOC2013Exhibition, http://www.ecocexhibition.com/sites/default/files/files/ECOC 2013 Market Focus Avago FIELDS FINAL.pdf .
  13. S. Assefa, S. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. J. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. A. Vlasov, “A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” in IEEE Electron Devices Meeting (IEDM), pp. 33.8.1 - 33.8.3 (2012).
    [Crossref]
  14. F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon-on-insulator Echelle grating WDM demultiplexers with two stigmatic points,” IEEE Photon. Technol. Lett. 21(23), 1743–1745 (2009).
    [Crossref]
  15. F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
    [Crossref] [PubMed]
  16. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [Crossref] [PubMed]
  17. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
    [Crossref] [PubMed]
  18. K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
    [Crossref]
  19. Y. Liu, Y. Li, Z. Fan, B. Xing, Y. Yu, and J. Yu, “Fabrication and optical optimization of spot-size converters with strong cladding layers,” J. Opt. A, Pure Appl. Opt. 11(8), 085002 (2009).
    [Crossref]
  20. A. Yariv, Quantum Electronics, Third Edition (Wiley, 1989), Chap. 22.
  21. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chaps. 19, 28.
  22. I. M. Soganci, A. La Porta, and B. J. Offrein, “Flip-chip optical couplers with scalable I/O count for silicon photonics,” Opt. Express 21(13), 16075–16085 (2013).
    [Crossref] [PubMed]

2013 (3)

2012 (1)

2011 (1)

P. W. Coteus, J. U. Knickerbocker, C. H. Lam, and Y. A. Vlasov, “Technologies for exascale systems,” IBM J. Res. Develop. 55(5), 141–1412 (2011).
[Crossref]

2010 (1)

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

2009 (3)

F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon-on-insulator Echelle grating WDM demultiplexers with two stigmatic points,” IEEE Photon. Technol. Lett. 21(23), 1743–1745 (2009).
[Crossref]

Y. Liu, Y. Li, Z. Fan, B. Xing, Y. Yu, and J. Yu, “Fabrication and optical optimization of spot-size converters with strong cladding layers,” J. Opt. A, Pure Appl. Opt. 11(8), 085002 (2009).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

2008 (1)

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

2007 (1)

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[Crossref]

2006 (1)

2005 (1)

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

2004 (1)

1997 (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11(3), 155–168 (1997).

Amb, C. M.

Assefa, S.

Baets, R.

Baks, C. W.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Berger, C.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

T. Lamprecht, F. Horst, R. Dangel, R. Beyeler, N. Meier, L. Dellmann, M. Gmür, C. Berger, and B. J. Offrein, “Passive alignment of optical elements in a printed circuit board,” in Proceedings of 56th Electronic Components and Technology Conference, pp. 761−767 (2006).
[Crossref]

Betschon, F.

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

Beyeler, R.

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

T. Lamprecht, F. Horst, R. Dangel, R. Beyeler, N. Meier, L. Dellmann, M. Gmür, C. Berger, and B. J. Offrein, “Passive alignment of optical elements in a printed circuit board,” in Proceedings of 56th Electronic Components and Technology Conference, pp. 761−767 (2006).
[Crossref]

Bienstman, P.

Budd, R.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

Coteus, P. W.

P. W. Coteus, J. U. Knickerbocker, C. H. Lam, and Y. A. Vlasov, “Technologies for exascale systems,” IBM J. Res. Develop. 55(5), 141–1412 (2011).
[Crossref]

Dangel, R.

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. DeShazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31(24), 3915–3926 (2013).
[Crossref]

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

T. Lamprecht, F. Horst, R. Dangel, R. Beyeler, N. Meier, L. Dellmann, M. Gmür, C. Berger, and B. J. Offrein, “Passive alignment of optical elements in a printed circuit board,” in Proceedings of 56th Electronic Components and Technology Conference, pp. 761−767 (2006).
[Crossref]

Dellmann, L.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

T. Lamprecht, F. Horst, R. Dangel, R. Beyeler, N. Meier, L. Dellmann, M. Gmür, C. Berger, and B. J. Offrein, “Passive alignment of optical elements in a printed circuit board,” in Proceedings of 56th Electronic Components and Technology Conference, pp. 761−767 (2006).
[Crossref]

DeShazer, D. J.

Doany, F. E.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Fan, Z.

Y. Liu, Y. Li, Z. Fan, B. Xing, Y. Yu, and J. Yu, “Fabrication and optical optimization of spot-size converters with strong cladding layers,” J. Opt. A, Pure Appl. Opt. 11(8), 085002 (2009).
[Crossref]

Gmür, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

T. Lamprecht, F. Horst, R. Dangel, R. Beyeler, N. Meier, L. Dellmann, M. Gmür, C. Berger, and B. J. Offrein, “Passive alignment of optical elements in a printed circuit board,” in Proceedings of 56th Electronic Components and Technology Conference, pp. 761−767 (2006).
[Crossref]

Green, W. M. J.

F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon-on-insulator Echelle grating WDM demultiplexers with two stigmatic points,” IEEE Photon. Technol. Lett. 21(23), 1743–1745 (2009).
[Crossref]

Halter, M.

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

Hamelin, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Horst, F.

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. DeShazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31(24), 3915–3926 (2013).
[Crossref]

F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon-on-insulator Echelle grating WDM demultiplexers with two stigmatic points,” IEEE Photon. Technol. Lett. 21(23), 1743–1745 (2009).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

T. Lamprecht, F. Horst, R. Dangel, R. Beyeler, N. Meier, L. Dellmann, M. Gmür, C. Berger, and B. J. Offrein, “Passive alignment of optical elements in a printed circuit board,” in Proceedings of 56th Electronic Components and Technology Conference, pp. 761−767 (2006).
[Crossref]

Ikedo, H.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[Crossref]

Jubin, D.

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. DeShazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31(24), 3915–3926 (2013).
[Crossref]

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

Kash, J.

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

Kash, J. A.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Knickerbocker, J. U.

P. W. Coteus, J. U. Knickerbocker, C. H. Lam, and Y. A. Vlasov, “Technologies for exascale systems,” IBM J. Res. Develop. 55(5), 141–1412 (2011).
[Crossref]

Kuchta, D. M.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

La Porta, A.

Lam, C. H.

P. W. Coteus, J. U. Knickerbocker, C. H. Lam, and Y. A. Vlasov, “Technologies for exascale systems,” IBM J. Res. Develop. 55(5), 141–1412 (2011).
[Crossref]

Lamprecht, T.

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

T. Lamprecht, F. Horst, R. Dangel, R. Beyeler, N. Meier, L. Dellmann, M. Gmür, C. Berger, and B. J. Offrein, “Passive alignment of optical elements in a printed circuit board,” in Proceedings of 56th Electronic Components and Technology Conference, pp. 761−767 (2006).
[Crossref]

Li, Y.

Y. Liu, Y. Li, Z. Fan, B. Xing, Y. Yu, and J. Yu, “Fabrication and optical optimization of spot-size converters with strong cladding layers,” J. Opt. A, Pure Appl. Opt. 11(8), 085002 (2009).
[Crossref]

Libsch, F.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

Liu, Y.

Y. Liu, Y. Li, Z. Fan, B. Xing, Y. Yu, and J. Yu, “Fabrication and optical optimization of spot-size converters with strong cladding layers,” J. Opt. A, Pure Appl. Opt. 11(8), 085002 (2009).
[Crossref]

Meier, N.

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. DeShazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31(24), 3915–3926 (2013).
[Crossref]

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

T. Lamprecht, F. Horst, R. Dangel, R. Beyeler, N. Meier, L. Dellmann, M. Gmür, C. Berger, and B. J. Offrein, “Passive alignment of optical elements in a printed circuit board,” in Proceedings of 56th Electronic Components and Technology Conference, pp. 761−767 (2006).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11(3), 155–168 (1997).

Morf, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Offrein, B. J.

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. DeShazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31(24), 3915–3926 (2013).
[Crossref]

I. M. Soganci, A. La Porta, and B. J. Offrein, “Flip-chip optical couplers with scalable I/O count for silicon photonics,” Opt. Express 21(13), 16075–16085 (2013).
[Crossref] [PubMed]

F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon-on-insulator Echelle grating WDM demultiplexers with two stigmatic points,” IEEE Photon. Technol. Lett. 21(23), 1743–1745 (2009).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

T. Lamprecht, F. Horst, R. Dangel, R. Beyeler, N. Meier, L. Dellmann, M. Gmür, C. Berger, and B. J. Offrein, “Passive alignment of optical elements in a printed circuit board,” in Proceedings of 56th Electronic Components and Technology Conference, pp. 761−767 (2006).
[Crossref]

Oggioni, S.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Ohshima, A.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[Crossref]

Pepeljugoski, P.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Roelkens, G.

Schares, L.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Schow, C. L.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Shank, S. M.

Shiraishi, K.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[Crossref]

Soganci, I. M.

Spreafico, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Stevens, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Stieger, R.

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

Swatowski, B. W.

Taillaert, D.

Taubenblatt, M. A.

Tsai, C. S.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[Crossref]

Van Thourhout, D.

Vlasov, Y. A.

F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

P. W. Coteus, J. U. Knickerbocker, C. H. Lam, and Y. A. Vlasov, “Technologies for exascale systems,” IBM J. Res. Develop. 55(5), 141–1412 (2011).
[Crossref]

F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon-on-insulator Echelle grating WDM demultiplexers with two stigmatic points,” IEEE Photon. Technol. Lett. 21(23), 1743–1745 (2009).
[Crossref]

Weidner, W. K.

Weiss, J.

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. DeShazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31(24), 3915–3926 (2013).
[Crossref]

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

Xing, B.

Y. Liu, Y. Li, Z. Fan, B. Xing, Y. Yu, and J. Yu, “Fabrication and optical optimization of spot-size converters with strong cladding layers,” J. Opt. A, Pure Appl. Opt. 11(8), 085002 (2009).
[Crossref]

Yoda, H.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[Crossref]

Yu, J.

Y. Liu, Y. Li, Z. Fan, B. Xing, Y. Yu, and J. Yu, “Fabrication and optical optimization of spot-size converters with strong cladding layers,” J. Opt. A, Pure Appl. Opt. 11(8), 085002 (2009).
[Crossref]

Yu, Y.

Y. Liu, Y. Li, Z. Fan, B. Xing, Y. Yu, and J. Yu, “Fabrication and optical optimization of spot-size converters with strong cladding layers,” J. Opt. A, Pure Appl. Opt. 11(8), 085002 (2009).
[Crossref]

Appl. Phys. Lett. (1)

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[Crossref]

IBM J. Res. Develop. (1)

P. W. Coteus, J. U. Knickerbocker, C. H. Lam, and Y. A. Vlasov, “Technologies for exascale systems,” IBM J. Res. Develop. 55(5), 141–1412 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Horst, W. M. J. Green, B. J. Offrein, and Y. A. Vlasov, “Silicon-on-insulator Echelle grating WDM demultiplexers with two stigmatic points,” IEEE Photon. Technol. Lett. 21(23), 1743–1745 (2009).
[Crossref]

IEEE Trans. Adv. Packag. (2)

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag. 32(2), 345–359 (2009).
[Crossref]

Int. J. Optoelectron. (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11(3), 155–168 (1997).

J. Lightwave Technol. (2)

J. Opt. A, Pure Appl. Opt. (1)

Y. Liu, Y. Li, Z. Fan, B. Xing, Y. Yu, and J. Yu, “Fabrication and optical optimization of spot-size converters with strong cladding layers,” J. Opt. A, Pure Appl. Opt. 11(8), 085002 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (2)

B. J. Offrein, C. Berger, R. Beyeler, R. Dangel, L. Dellmann, F. Horst, T. Lamprecht, N. Meier, R. Budd, F. Libsch, and J. Kash, “Parallel optical interconnects in printed circuit boards,” Proc. SPIE 5990, 59900E (2005).
[Crossref]

D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide based multi-layer optical connector,” Proc. SPIE 7607, 76070K (2010).
[Crossref]

Other (7)

M. Fields, “Applications and commercialization of board mounted parallel optics,” presented at Market Focus at ECOC2013Exhibition, http://www.ecocexhibition.com/sites/default/files/files/ECOC 2013 Market Focus Avago FIELDS FINAL.pdf .

S. Assefa, S. Shank, W. M. J. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. J. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. A. Vlasov, “A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” in IEEE Electron Devices Meeting (IEDM), pp. 33.8.1 - 33.8.3 (2012).
[Crossref]

T. Lamprecht, F. Horst, R. Dangel, R. Beyeler, N. Meier, L. Dellmann, M. Gmür, C. Berger, and B. J. Offrein, “Passive alignment of optical elements in a printed circuit board,” in Proceedings of 56th Electronic Components and Technology Conference, pp. 761−767 (2006).
[Crossref]

statista, The Statistics Portal (2014), “Global data center IP traffic from 2012 to 2017, by data center type,” http://www.statista.com/statistics/227268/global-data-center-ip-traffic-growth-by-data-center-type .

TOP500 supercomputer list of June 2014, http://s.top500.org/static/lists/2014/06/TOP500_201406_Poster.png .

A. Yariv, Quantum Electronics, Third Edition (Wiley, 1989), Chap. 22.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chaps. 19, 28.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Global data-center IP traffic development from 2012 to 2017 (split by data-center type) [1].

Fig. 2
Fig. 2

“Top500 list” showing performance develop-ment of the 500 most powerful supercomputers from 1993 to 2017 [2].

Fig. 3
Fig. 3

(a) Optical transmitter card of a 12 × 10 Gbit/s optical-link demonstrator containing 12 embedded multi-mode polymer waveguides [8]. (b) High-speed and low-power link demonstrator TERABUS (funded by Darpa) with 2 “Optochips” linked by 32 on-board high-density polymer waveguides (with 62.5 μm pitch) [9]. (c) Optical backplane of 192 channels with complex channel shuffling based on 8 stacked polymer waveguide flexes (after connectorization) [10].

Fig. 4
Fig. 4

Photonics integration: (a) In 2008: IBM’s former No. 1 supercomputer ROADRUNNER with optics (AOCs) at the board edge only. (b) In 2011: IBM’s HPC system POWER 775 with many optical transceivers assembled on carriers and a huge number of fibers connected with the board edge. (c) Current research: optical polymer waveguides connecting Si photonics chips assembled on carriers with the carrier edge, other carriers, and board edge.

Fig. 5
Fig. 5

Schematic illustrating current research work, i.e., the use of SM polymer waveguides to connect Si photonics chips with the system.

Fig. 6
Fig. 6

Generic schematic of a Si photonics link consisting of a multi-wavelength laser source, an integrated transmitter, a fiber-based interconnect, and an integrated receiver.

Fig. 7
Fig. 7

Examples of Si photonics components realized in IBM’s 90-nm CMOS-based Si photonics technology: (a) Mach–Zehnder-based electro-optical modulator [13], (b) waveguide-integrated Ge-on-Si photodetector [13], (c) stigmatic echelle grating for WDM (de)multi-plexing [14], and d) cascaded Mach–Zehnder wavelength filters for low-loss and flat pass-band WDM (de)multiplexing [15].

Fig. 8
Fig. 8

Schematic illustrating new fabrication process to realize SM polymer waveguides: (a) Deposition of bottom cladding by doctor-blading followed by UV-flood curing. (b) Doctor-blading of waveguide core layer. (c) Waveguide patterning by UV-laser direct-writing or proximity-mask lithography, followed by solvent-based development. (d) Deposition of top cladding by doctor-blading. (e) UV-flood curing (or optionally, for adiabatic coupling: UV patterning and solvent-based development of top cladding). Finally, thermal curing step.

Fig. 9
Fig. 9

Ultra-planar vacuum chuck with 600 tiny vacuum holes and an overall planarity of ± 1 μm to achieve ± 0.5 μm polymer layer thickness control.

Fig. 10
Fig. 10

(a) Front-view of doctor-blade having about 300 mm span and sub-micrometer overall planarity. Blade has two micrometer-screws for precise gap adjustment. (b) Schematical side-view of doctor-blading process used for polymer-layer deposition on PCB-compatible substrates

Fig. 11
Fig. 11

(a) Photograph of SM polymer waveguide flex fabricated (≈450 × 300 mm2). (b) Close-up of one array of 12 straight SM polymer waveguides. (c) Microscopical top-view of these SM waveguides with only 7 μm width and 50 μm pitch.

Fig. 12
Fig. 12

(a) Two SM waveguide patterns (each 120 × 120 mm2) realized on the same panel-size transparent flexible substrate are lifted from the vacuum chuck. (b) Before and (c) after a bake of 1 h at 200°C, the SM waveguide flexes exhibit virtually no curling.

Fig. 13
Fig. 13

Assembly for adiabatic optical coupling between Si photonics chip and SM polymer waveguide. (a) Locally tapered and un-cladded SOI waveguide on Si chip is brought into physical contact with locally un-cladded SM polymer waveguide on a carrier or interposer. (b) Situation after assembly.

Fig. 14
Fig. 14

Theoretical simulation results for adiabatic optical coupling at λ = 1550 nm: (a) light is completely confined in SOI waveguide, (b) light is confined in both waveguides, and (c) light is completely confined in SM polymer waveguide.

Fig. 15
Fig. 15

(a) Schematic of SOI and SM polymer waveguide layout to prove the concept of adiabatic optical coupling. To characterize the coupler performance, the optical transmission of the input-to-cross, input-to-bar, and reference path had to be measured. (b) Microscopical top-view of Si photonics chip flip-chip-bonded onto an array of un-cladded SM polymer waveguides.

Fig. 16
Fig. 16

(a) Schematic and (b) micrograph of cross-sectional side-view of adiabatic optical coupler built from Si photonics chip flip-chip-bonded onto polymer waveguides

Fig. 17
Fig. 17

Cross-sectional front-views showing (a) centered positioning of SOI waveguide core on polymer waveguide core, and (b) non-centered positioning with a lateral misalignment of Δx.

Fig. 18
Fig. 18

Loss per coupler versus lateral offset between SOI and polymer waveguides at the wavelength λ of (a) 1530 nm, (b) 1550 nm, and (c) 1570 nm and for the two polarizations TE and TM.

Fig. 19
Fig. 19

Normalized loss per coupler as a function of temperature. The data corresponds to wavelength λ = 1550 nm and TM polarization.

Tables (2)

Tables Icon

Table 1 Comparison between MM polymer, SM polymer, and SOI waveguides (WGs)

Tables Icon

Table 2 Lowest coupling losses and highest losses induced by SOI waveguide to polymer waveguide misalignment within an offset range of ± 2 µm

Metrics