Abstract

We propose high index contrast InGaP photonic wires as a platform for the integration of nonlinear optical functions in the telecom wavelength window. We characterize the linear and nonlinear properties of these waveguide structures. Waveguides with a linear loss of 12 dB/cm and which are coupled to a single mode fiber through gratings with a −7.5 dB coupling loss are realized. From four wave mixing experiments, we extract the real part of the nonlinear parameter γ to be 475 ± 50 W−1m−1 and from nonlinear transmission measurements we infer the absence of two-photon absorption and measure a three-photon absorption coefficient of (2.5 ± 0.5) x 10−2 cm3GW−2.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion engineering of suspended silicon photonic waveguides for broadband mid-infrared wavelength conversion

Xibin Li, Ping Zhou, Sailing He, and Shiming Gao
J. Opt. Soc. Am. B 31(10) 2295-2301 (2014)

Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires

R. M. Osgood, N. C. Panoiu, J. I. Dadap, Xiaoping Liu, Xiaogang Chen, I-Wei Hsieh, E. Dulkeith, W. M.J. Green, and Y. A. Vlasov
Adv. Opt. Photon. 1(1) 162-235 (2009)

Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L.K. Oxenløwe, G. Roelkens, and R. Baets
Opt. Express 19(26) B146-B153 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. K. Oxenlowe, M. Pu, Y. Ding, H. Hu, F. Da Ros, D. Vukovic, A. Sellerup Jensen, H. Ji, M. Galili, C. Peucheret, and K. Yvind, “All-optical signal processing using silicon devices,” European Conference on Optical Communication, ECOC’2014, Cannes, France, Sep. 2014.
    [Crossref]
  2. E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express 21(5), 6101–6108 (2013).
    [Crossref] [PubMed]
  3. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [Crossref]
  4. N. Ophir, R. K. W. Lau, M. Menard, X. Zhu, K. Padmaraju, Y. Okawachi, R. Salem, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength conversion and unicast of 10-Gb/s data spanning up to 700 nm using a silicon nanowaveguide,” Opt. Express 20(6), 6488–6495 (2012).
    [Crossref] [PubMed]
  5. A. Gajda, L. Zimmermann, M. Jazayerifar, G. Winzer, H. Tian, R. Elschner, T. Richter, C. Schubert, B. Tillack, and K. Petermann, “Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction,” Opt. Express 20(12), 13100–13107 (2012).
    [Crossref] [PubMed]
  6. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12(18), 4261–4268 (2004).
    [Crossref] [PubMed]
  7. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [Crossref] [PubMed]
  8. J. R. Ong, R. Kumar, and S. Mookherjea, “Silicon microring-based wavelength converter with integrated pump and signal suppression,” Opt. Lett. 39(15), 4439–4441 (2014).
    [Crossref] [PubMed]
  9. B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36(22), 4401–4403 (2011).
    [Crossref] [PubMed]
  10. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
    [Crossref] [PubMed]
  11. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
    [Crossref]
  12. M. J. R. Heck, B. R. Koch, D. Liang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
    [Crossref]
  13. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
    [Crossref]
  14. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
    [Crossref] [PubMed]
  15. J. J. Wathen, P. Apiratikul, C. J. K. Richardson, G. A. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides,” Opt. Lett. 39(11), 3161–3164 (2014).
    [Crossref] [PubMed]
  16. C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express 17(25), 22442–22451 (2009).
    [PubMed]
  17. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
    [Crossref]
  18. C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22(5), 5291–5298 (2014).
    [Crossref] [PubMed]
  19. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
    [Crossref] [PubMed]
  20. M. Savanier, C. Ozanam, L. Lanco, X. Lafosse, A. Andronico, I. Favero, S. Ducci, and G. Leo, “Near-infrared optical parametric oscillator in a III-V semiconductor waveguide,” Appl. Phys. Lett. 103(26), 261105 (2013).
    [Crossref]
  21. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35(9), 1440–1442 (2010).
    [Crossref] [PubMed]
  22. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
    [Crossref] [PubMed]
  23. J. Aitchison, D. Hutchings, J. Kang, G. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half bandgap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
    [Crossref]
  24. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008).
    [Crossref] [PubMed]

2014 (3)

2013 (2)

2012 (4)

2011 (3)

2010 (3)

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[Crossref]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35(9), 1440–1442 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (4)

2004 (1)

1997 (1)

J. Aitchison, D. Hutchings, J. Kang, G. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half bandgap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[Crossref]

Agrawal, G. P.

Aitchison, J.

J. Aitchison, D. Hutchings, J. Kang, G. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half bandgap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[Crossref]

Andronico, A.

M. Savanier, C. Ozanam, L. Lanco, X. Lafosse, A. Andronico, I. Favero, S. Ducci, and G. Leo, “Near-infrared optical parametric oscillator in a III-V semiconductor waveguide,” Appl. Phys. Lett. 103(26), 261105 (2013).
[Crossref]

Apiratikul, P.

Baets, R.

Bergman, K.

Bogaerts, W.

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[Crossref]

Bowers, J. E.

M. J. R. Heck, B. R. Koch, D. Liang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[Crossref]

Carter, G. M.

Cerutti, L.

Cestier, I.

Cohen, O.

Colman, P.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35(9), 1440–1442 (2010).
[Crossref] [PubMed]

Combrié, S.

Cristiani, I.

De Rossi, A.

de Valicourt, G.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Di Cioccio, L.

Duan, G. H.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Ducci, S.

M. Savanier, C. Ozanam, L. Lanco, X. Lafosse, A. Andronico, I. Favero, S. Ducci, and G. Leo, “Near-infrared optical parametric oscillator in a III-V semiconductor waveguide,” Appl. Phys. Lett. 103(26), 261105 (2013).
[Crossref]

Eckhouse, V.

Eisenstein, G.

Elschner, R.

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[Crossref]

Favero, I.

M. Savanier, C. Ozanam, L. Lanco, X. Lafosse, A. Andronico, I. Favero, S. Ducci, and G. Leo, “Near-infrared optical parametric oscillator in a III-V semiconductor waveguide,” Appl. Phys. Lett. 103(26), 261105 (2013).
[Crossref]

Fedeli, J.-M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
[Crossref] [PubMed]

Fong, K. Y.

Foster, M. A.

Gaeta, A. L.

Gajda, A.

Gassenq, A.

Green, W. M. J.

Hak, D.

Halir, R.

Hattasan, N.

Heck, M. J. R.

M. J. R. Heck, B. R. Koch, D. Liang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[Crossref]

Husko, C.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express 17(25), 22442–22451 (2009).
[PubMed]

Hutchings, D.

J. Aitchison, D. Hutchings, J. Kang, G. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half bandgap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[Crossref]

Jany, C.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Jazayerifar, M.

Johnson, T. J.

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[Crossref]

Kang, J.

J. Aitchison, D. Hutchings, J. Kang, G. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half bandgap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[Crossref]

Keyvaninia, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[Crossref]

Koch, B. R.

M. J. R. Heck, B. R. Koch, D. Liang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[Crossref]

Kumar, R.

Kuyken, B.

Lacava, C.

Lafosse, X.

M. Savanier, C. Ozanam, L. Lanco, X. Lafosse, A. Andronico, I. Favero, S. Ducci, and G. Leo, “Near-infrared optical parametric oscillator in a III-V semiconductor waveguide,” Appl. Phys. Lett. 103(26), 261105 (2013).
[Crossref]

Lagahe, C.

Lamponi, M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Lanco, L.

M. Savanier, C. Ozanam, L. Lanco, X. Lafosse, A. Andronico, I. Favero, S. Ducci, and G. Leo, “Near-infrared optical parametric oscillator in a III-V semiconductor waveguide,” Appl. Phys. Lett. 103(26), 261105 (2013).
[Crossref]

Lau, R. K. W.

Lelarge, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Leo, G.

M. Savanier, C. Ozanam, L. Lanco, X. Lafosse, A. Andronico, I. Favero, S. Ducci, and G. Leo, “Near-infrared optical parametric oscillator in a III-V semiconductor waveguide,” Appl. Phys. Lett. 103(26), 261105 (2013).
[Crossref]

Levy, J. S.

Liang, D.

M. J. R. Heck, B. R. Koch, D. Liang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[Crossref]

Lin, Q.

Lipson, M.

Liu, A.

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[Crossref]

Liu, X.

Menard, M.

Messaoudene, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Michael, C. P.

Minzioni, P.

Mookherjea, S.

Muneeb, M.

Murphy, T. E.

Okawachi, Y.

Ong, J. R.

Ophir, N.

Osgood, R. M.

Ozanam, C.

M. Savanier, C. Ozanam, L. Lanco, X. Lafosse, A. Andronico, I. Favero, S. Ducci, and G. Leo, “Near-infrared optical parametric oscillator in a III-V semiconductor waveguide,” Appl. Phys. Lett. 103(26), 261105 (2013).
[Crossref]

Padmaraju, K.

Painter, O. J.

Palacios, T.

Paniccia, M.

Pathak, S.

Perahia, R.

Pernice, W.

Petermann, K.

Poingt, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Porkolab, G. A.

Pusino, V.

Raineri, F.

Regreny, P.

Richardson, C. J. K.

Richter, T.

Rodriguez, J. B.

Roelkens, G.

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express 21(5), 6101–6108 (2013).
[Crossref] [PubMed]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36(22), 4401–4403 (2011).
[Crossref] [PubMed]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[Crossref]

Rojo Romeo, P.

Rong, H.

Ryckeboer, E.

Ryu, K. K.

Sagnes, I.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Salem, R.

Santagiustina, M.

Savanier, M.

M. Savanier, C. Ozanam, L. Lanco, X. Lafosse, A. Andronico, I. Favero, S. Ducci, and G. Leo, “Near-infrared optical parametric oscillator in a III-V semiconductor waveguide,” Appl. Phys. Lett. 103(26), 261105 (2013).
[Crossref]

Schubert, C.

Schuck, C.

Seassal, C.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Someda, C. G.

Sorel, M.

Stegeman, G.

J. Aitchison, D. Hutchings, J. Kang, G. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half bandgap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[Crossref]

Sysak, M. N.

M. J. R. Heck, B. R. Koch, D. Liang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[Crossref]

Tang, H. X.

Tian, H.

Tillack, B.

Tournié, E.

Tran, Q. V.

Turner, A. C.

Vadalà, G.

Van Campenhout, J.

Van Thourhout, D.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
[Crossref] [PubMed]

Verstuyft, S.

Villeneuve, A.

J. Aitchison, D. Hutchings, J. Kang, G. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half bandgap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[Crossref]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Wathen, J. J.

Winzer, G.

Wong, C. W.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express 17(25), 22442–22451 (2009).
[PubMed]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Xiong, C.

Zhu, X.

Zimmermann, L.

Appl. Phys. Lett. (1)

M. Savanier, C. Ozanam, L. Lanco, X. Lafosse, A. Andronico, I. Favero, S. Ducci, and G. Leo, “Near-infrared optical parametric oscillator in a III-V semiconductor waveguide,” Appl. Phys. Lett. 103(26), 261105 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Aitchison, D. Hutchings, J. Kang, G. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half bandgap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. R. Heck, B. R. Koch, D. Liang, M. N. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heteroogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Laser Photon. Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010).
[Crossref]

Nat. Photonics (2)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Opt. Express (11)

C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22(5), 5291–5298 (2014).
[Crossref] [PubMed]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[Crossref] [PubMed]

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
[Crossref] [PubMed]

N. Ophir, R. K. W. Lau, M. Menard, X. Zhu, K. Padmaraju, Y. Okawachi, R. Salem, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength conversion and unicast of 10-Gb/s data spanning up to 700 nm using a silicon nanowaveguide,” Opt. Express 20(6), 6488–6495 (2012).
[Crossref] [PubMed]

A. Gajda, L. Zimmermann, M. Jazayerifar, G. Winzer, H. Tian, R. Elschner, T. Richter, C. Schubert, B. Tillack, and K. Petermann, “Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction,” Opt. Express 20(12), 13100–13107 (2012).
[Crossref] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12(18), 4261–4268 (2004).
[Crossref] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express 21(5), 6101–6108 (2013).
[Crossref] [PubMed]

Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008).
[Crossref] [PubMed]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express 17(25), 22442–22451 (2009).
[PubMed]

Opt. Lett. (5)

Other (1)

L. K. Oxenlowe, M. Pu, Y. Ding, H. Hu, F. Da Ros, D. Vukovic, A. Sellerup Jensen, H. Ji, M. Galili, C. Peucheret, and K. Yvind, “All-optical signal processing using silicon devices,” European Conference on Optical Communication, ECOC’2014, Cannes, France, Sep. 2014.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) A 1 cm long InGaP waveguide with small footprint due to the high index contrast; (b) the SEM cross-section of the InGaP waveguide with measured dimensions of 630 nm x 250 nm; (c) the coupling efficiency of the shallow etched grating as a function of wavelength showing a maximum efficiency of −7.5 dB at 1540 nm (TE polarization).
Fig. 2
Fig. 2 The simulated dispersion for waveguides of height 250 nm and widths ranging from 500 to 800 nm shows that dispersion engineering in this high index contrast platform allows access to the anomalous dispersion regime.
Fig. 3
Fig. 3 The measured output peak power as a function of the input peak power (circles) and the best-fit using Eq. (2) which gives a α3 value of 2.5x10−2 cm3/ GW2.
Fig. 4
Fig. 4 (a) The reciprocal transmission is not a linear function of input peak power while, (b) the reciprocal transmission squared increases linearly with the input peak power squared clearly showing that there is no two-photon absorption in these waveguides due to the large bandgap of InGaP.
Fig. 5
Fig. 5 (a) The measured output spectrum of the pump, signal and idler showing a conversion efficiency of −31 dB and (b) the simulated evolution of the pump, signal and idler power (taking into account −7.5 dB outcoupling efficiency) along the waveguide for γ = 475 W−1m−1.
Fig. 6
Fig. 6 The measured conversion efficiency (circles) as a function of the pump power and the theoretical (dashed line) and simulated (solid line) fits for γ = 475 W−1m−1.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

γ= k 0 n 2 A eff +i β TPA 2 A eff
T= 1 2 t 0 e αL sech 2 ( t t 0 ) [ 1+ α 3 α I 0 2 sech 4 ( t t 0 )( 1 e 2αL ) ] 1 2 dt
η= P idl (L) P sig (L) = ( γ P pump (0) L eff ) 2
d A s dz =iγ ω s ω p [ ( | A s | 2 +2 | A i | 2 +2 | A p | 2 ) A s + A i * A p A p e iΔkz ] α lin 2 A s
d A i dz =iγ ω i ω p [ ( | A i | 2 +2 | A s | 2 +2 | A p | 2 ) A i + A s * A p A p e iΔkz ] α lin 2 A i
d A p dz =iγ[ ( | A p | 2 +2 | A i | 2 +2 | A s | 2 ) A p +2 A p * A s A i e iΔkz ] α lin 2 A p

Metrics