Abstract

We demonstrated an achromatic wave plate based on parallel metal plate waveguides in the high THz frequency region. The metal plates have periodic rough structures on the surface, which allow slow transverse magnetic wave propagation and fast transverse electric wave propagation. A numerical simulation showed that the height of the periodic roughness is important for optimizing the birefringence. We fabricated stacked metal plates containing two types of structures by chemical etching. An array of small pillars on the metal plates allows higher frequency optimization. We experimentally demonstrated an achromatic quarter-wave plate in the frequency region from 2.0 to 3.1 THz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Achromatic THz wave plate composed of stacked parallel metal plates

Masaya Nagai, Noriyuki Mukai, Yosuke Minowa, Masaaki Ashida, Jun Takayanagi, and Hideyuki Ohtake
Opt. Lett. 39(1) 146-149 (2014)

Investigation of spectral properties and lateral confinement of THz waves on a metal-rod-array-based photonic crystal waveguide

Borwen You, Dejun Liu, Toshiaki Hattori, Tze-An Liu, and Ja-Yu Lu
Opt. Express 26(12) 15570-15584 (2018)

Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate

Cho-Fan Hsieh, Chan-Shan Yang, Fang-Cih Shih, Ru-Pin Pan, and Ci-Ling Pan
Opt. Express 27(7) 9933-9940 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).
  2. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [Crossref]
  3. J. Shan, J. I. Dadap, and T. F. Heinz, “Circularly polarized light in the single-cycle limit: the nature of highly polychromatic radiation of defined polarization,” Opt. Express 17(9), 7431–7439 (2009).
    [Crossref] [PubMed]
  4. Y. Kawada, T. Yasuda, A. Nakanishi, K. Akiyama, K. Hakamata, and H. Takahashi, “Achromatic prism-type wave plate for broadband terahertz pulses,” Opt. Lett. 39(9), 2794–2797 (2014).
    [PubMed]
  5. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5(8), 163–168 (1999).
    [Crossref] [PubMed]
  6. M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
    [Crossref] [PubMed]
  7. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
    [Crossref] [PubMed]
  8. T. Notake, B. Zhang, Y. Gong, and H. Minamide, “Development of a Stokes polarimeter system for high terahertz frequency region,” Jpn. J. Appl. Phys. 53(9), 092601 (2014).
    [Crossref]
  9. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
    [Crossref] [PubMed]
  10. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  11. V. Torres, N. Sánchez, D. Etayo, R. Ortuño, M. Navarro-Cía, A. Martinez, and M. Beruete, “Compact dual-band terahertz quarter-wave plate metasurface,” IEEE Photon. Technol. Lett. 26(16), 1679–1682 (2014).
    [Crossref]
  12. M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates,” Opt. Lett. 39(1), 146–149 (2014).
    [Crossref] [PubMed]
  13. D. Pozar, Microwave Engineering (John Wiley & Sons, 1998).
  14. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17(17), 14839–14850 (2009).
    [Crossref] [PubMed]
  15. L. Brillouin, “Wave guides for slow waves,” J. Appl. Phys. 19(11), 1023–1041 (1948).
    [Crossref]
  16. A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett. 33(4), 348–350 (2008).
    [Crossref] [PubMed]
  17. M. A. Kats, D. Woolf, R. Blanchard, N. Yu, and F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19(16), 14860–14870 (2011).
    [Crossref] [PubMed]
  18. J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, “THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands,” Opt. Express 20(16), 17271–17280 (2012).
    [Crossref] [PubMed]
  19. E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Opt. Express 20(6), 6116–6123 (2012).
    [Crossref] [PubMed]
  20. T. B. A. Senior and J. L. Volakis, Approximate boundary conditions in electromagnetics, (Institution of Electrical Engineering, 1996).
  21. D. Woolf, M. A. Kats, and F. Capasso, “Spoof surface plasmon waveguide forces,” Opt. Lett. 39(3), 517–520 (2014).
    [Crossref] [PubMed]
  22. A. L. Bingham, Propagation through terahertz waveguides with photonic crystal boundaries, PhD thesis, (Oklahoma State University, 2007).
  23. M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a sub-picosecond Yb-doped fiber laser system,” IEEE Trans. THz Sci. Tech. 4(4), 440–446 (2014).
    [Crossref]
  24. N. Mukai, M. Nagai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates with a pillar array,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz),2014, (IEEE, 2014), paper T4/D-19.10.
    [Crossref]
  25. Y. Minowa, T. Fujii, M. Nagai, T. Ochiai, K. Sakoda, K. Hirao, and K. Tanaka, “Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy,” Opt. Express 16(7), 4785–4796 (2008).
    [Crossref] [PubMed]

2014 (6)

Y. Kawada, T. Yasuda, A. Nakanishi, K. Akiyama, K. Hakamata, and H. Takahashi, “Achromatic prism-type wave plate for broadband terahertz pulses,” Opt. Lett. 39(9), 2794–2797 (2014).
[PubMed]

T. Notake, B. Zhang, Y. Gong, and H. Minamide, “Development of a Stokes polarimeter system for high terahertz frequency region,” Jpn. J. Appl. Phys. 53(9), 092601 (2014).
[Crossref]

V. Torres, N. Sánchez, D. Etayo, R. Ortuño, M. Navarro-Cía, A. Martinez, and M. Beruete, “Compact dual-band terahertz quarter-wave plate metasurface,” IEEE Photon. Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates,” Opt. Lett. 39(1), 146–149 (2014).
[Crossref] [PubMed]

D. Woolf, M. A. Kats, and F. Capasso, “Spoof surface plasmon waveguide forces,” Opt. Lett. 39(3), 517–520 (2014).
[Crossref] [PubMed]

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a sub-picosecond Yb-doped fiber laser system,” IEEE Trans. THz Sci. Tech. 4(4), 440–446 (2014).
[Crossref]

2013 (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

2010 (1)

2009 (2)

2008 (2)

2006 (1)

1999 (1)

1990 (1)

1948 (1)

L. Brillouin, “Wave guides for slow waves,” J. Appl. Phys. 19(11), 1023–1041 (1948).
[Crossref]

Akiyama, K.

Armand, D.

Ashida, M.

M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates,” Opt. Lett. 39(1), 146–149 (2014).
[Crossref] [PubMed]

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a sub-picosecond Yb-doped fiber laser system,” IEEE Trans. THz Sci. Tech. 4(4), 440–446 (2014).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Beruete, M.

V. Torres, N. Sánchez, D. Etayo, R. Ortuño, M. Navarro-Cía, A. Martinez, and M. Beruete, “Compact dual-band terahertz quarter-wave plate metasurface,” IEEE Photon. Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Bingham, A. L.

Blanchard, R.

Brillouin, L.

L. Brillouin, “Wave guides for slow waves,” J. Appl. Phys. 19(11), 1023–1041 (1948).
[Crossref]

Capasso, F.

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cundiff, S. T.

Dadap, J. I.

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Deguzman, P. C.

Etayo, D.

V. Torres, N. Sánchez, D. Etayo, R. Ortuño, M. Navarro-Cía, A. Martinez, and M. Beruete, “Compact dual-band terahertz quarter-wave plate metasurface,” IEEE Photon. Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Exter, M.

Fattinger, C.

Fujii, T.

Gallot, G.

Gong, Y.

T. Notake, B. Zhang, Y. Gong, and H. Minamide, “Development of a Stokes polarimeter system for high terahertz frequency region,” Jpn. J. Appl. Phys. 53(9), 092601 (2014).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Grischkowsky, D.

Hakamata, K.

Heinz, T. F.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hirao, K.

Jeon, T.-I.

Jördens, C.

Kadoya, Y.

Kats, M. A.

Kawada, Y.

Kee, C.-S.

Keiding, S.

Kim, D.

Kitagawa, J.

Koch, M.

Kodama, M.

Koya, S.

Lee, E. S.

Martinez, A.

V. Torres, N. Sánchez, D. Etayo, R. Ortuño, M. Navarro-Cía, A. Martinez, and M. Beruete, “Compact dual-band terahertz quarter-wave plate metasurface,” IEEE Photon. Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Masson, J. B.

Matsubara, E.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a sub-picosecond Yb-doped fiber laser system,” IEEE Trans. THz Sci. Tech. 4(4), 440–446 (2014).
[Crossref]

Mendis, R.

Minamide, H.

T. Notake, B. Zhang, Y. Gong, and H. Minamide, “Development of a Stokes polarimeter system for high terahertz frequency region,” Jpn. J. Appl. Phys. 53(9), 092601 (2014).
[Crossref]

Minowa, Y.

Mittleman, D. M.

Mukai, N.

Nagai, M.

Nakanishi, A.

Navarro-Cía, M.

V. Torres, N. Sánchez, D. Etayo, R. Ortuño, M. Navarro-Cía, A. Martinez, and M. Beruete, “Compact dual-band terahertz quarter-wave plate metasurface,” IEEE Photon. Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Nishifuji, Y.

Nordin, G. P.

Notake, T.

T. Notake, B. Zhang, Y. Gong, and H. Minamide, “Development of a Stokes polarimeter system for high terahertz frequency region,” Jpn. J. Appl. Phys. 53(9), 092601 (2014).
[Crossref]

Ochiai, T.

Ohtake, H.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a sub-picosecond Yb-doped fiber laser system,” IEEE Trans. THz Sci. Tech. 4(4), 440–446 (2014).
[Crossref]

M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates,” Opt. Lett. 39(1), 146–149 (2014).
[Crossref] [PubMed]

Ortuño, R.

V. Torres, N. Sánchez, D. Etayo, R. Ortuño, M. Navarro-Cía, A. Martinez, and M. Beruete, “Compact dual-band terahertz quarter-wave plate metasurface,” IEEE Photon. Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Park, G.-S.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Sakoda, K.

Sánchez, N.

V. Torres, N. Sánchez, D. Etayo, R. Ortuño, M. Navarro-Cía, A. Martinez, and M. Beruete, “Compact dual-band terahertz quarter-wave plate metasurface,” IEEE Photon. Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Scheller, M.

Scherger, B.

Shan, J.

So, J.-K.

Takahashi, H.

Takayanagi, J.

M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates,” Opt. Lett. 39(1), 146–149 (2014).
[Crossref] [PubMed]

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a sub-picosecond Yb-doped fiber laser system,” IEEE Trans. THz Sci. Tech. 4(4), 440–446 (2014).
[Crossref]

Tanaka, K.

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Torres, V.

V. Torres, N. Sánchez, D. Etayo, R. Ortuño, M. Navarro-Cía, A. Martinez, and M. Beruete, “Compact dual-band terahertz quarter-wave plate metasurface,” IEEE Photon. Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Vieweg, N.

Woolf, D.

Yasuda, T.

Yu, N.

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, B.

T. Notake, B. Zhang, Y. Gong, and H. Minamide, “Development of a Stokes polarimeter system for high terahertz frequency region,” Jpn. J. Appl. Phys. 53(9), 092601 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

V. Torres, N. Sánchez, D. Etayo, R. Ortuño, M. Navarro-Cía, A. Martinez, and M. Beruete, “Compact dual-band terahertz quarter-wave plate metasurface,” IEEE Photon. Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

IEEE Trans. THz Sci. Tech. (1)

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a sub-picosecond Yb-doped fiber laser system,” IEEE Trans. THz Sci. Tech. 4(4), 440–446 (2014).
[Crossref]

J. Appl. Phys. (1)

L. Brillouin, “Wave guides for slow waves,” J. Appl. Phys. 19(11), 1023–1041 (1948).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Notake, B. Zhang, Y. Gong, and H. Minamide, “Development of a Stokes polarimeter system for high terahertz frequency region,” Jpn. J. Appl. Phys. 53(9), 092601 (2014).
[Crossref]

Opt. Express (9)

Y. Minowa, T. Fujii, M. Nagai, T. Ochiai, K. Sakoda, K. Hirao, and K. Tanaka, “Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy,” Opt. Express 16(7), 4785–4796 (2008).
[Crossref] [PubMed]

J. Shan, J. I. Dadap, and T. F. Heinz, “Circularly polarized light in the single-cycle limit: the nature of highly polychromatic radiation of defined polarization,” Opt. Express 17(9), 7431–7439 (2009).
[Crossref] [PubMed]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17(17), 14839–14850 (2009).
[Crossref] [PubMed]

M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
[Crossref] [PubMed]

M. A. Kats, D. Woolf, R. Blanchard, N. Yu, and F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19(16), 14860–14870 (2011).
[Crossref] [PubMed]

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
[Crossref] [PubMed]

E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Opt. Express 20(6), 6116–6123 (2012).
[Crossref] [PubMed]

J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, “THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands,” Opt. Express 20(16), 17271–17280 (2012).
[Crossref] [PubMed]

G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5(8), 163–168 (1999).
[Crossref] [PubMed]

Opt. Lett. (5)

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Other (5)

D. Pozar, Microwave Engineering (John Wiley & Sons, 1998).

A. L. Bingham, Propagation through terahertz waveguides with photonic crystal boundaries, PhD thesis, (Oklahoma State University, 2007).

N. Mukai, M. Nagai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates with a pillar array,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz),2014, (IEEE, 2014), paper T4/D-19.10.
[Crossref]

T. B. A. Senior and J. L. Volakis, Approximate boundary conditions in electromagnetics, (Institution of Electrical Engineering, 1996).

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the PPWGs used in our FDTD simulations. The wave source is denoted by the blue line, and the 20 observable points are denoted by the green circles.
Fig. 2
Fig. 2 Spatial distribution of the field for (a) TE and (b) TM pulses traveling in the + z direction. The parameters of the periodic grooves are a = 20 μm, b = 43 μm, and d = 4 μm. In this plot, the line source is at z = 0. (c) Time profiles of the TE and TM waves evaluated at the position x = 450 (red curves) and 950 μm (blue curves). Gray curves show the time profile of the TEM wave propagating in the free space.
Fig. 3
Fig. 3 (a) Phase shift, ϕ, of the TE (dashed curves) and TM (solid curves) waveguide modes with a fixed top width of a = 20 μm and a groove depth of d = 0, 2, 4, 6, and 8 μm. The inset shows ϕ for the TM waveguide mode at 2.0 THz as a function of d. (b) Phase shift of the TE (dashed curves) and TM (solid curves) waveguide mode at a fixed groove depth of d = 4 μm and top widths of a = 20, 10, and 8 μm.
Fig. 4
Fig. 4 (a) Photograph of the pillars on one metal plate in one artificial medium assembly. (b) Profile of the pillars on one metal plate. (c) Photograph of one metal plate. (d) Assembly of the wave plate based on the PPWGs.
Fig. 5
Fig. 5 Complex transmittances, Te, of the artificial medium for the angle between the metal plates and the polarization of the incident THz pulse of θ = 0° (dashed curves) and 90° (solid curves). The phase difference, Δϕ, is shown in the lower panel. The height of the pillars is h = 3.7 μm, and the gap distances are g = 0.9 mm. (b,c) Phase differences, Δϕ, of artificial media with different gap distances, g. The heights of the pillar are (b) h = 3.7 μm and (c) h = 8.5 μm. In these graphs, we plot the phase difference at the frequency where the ratio of the transmittances is T90/T0 > 0.85.
Fig. 6
Fig. 6 (a) Time profile of the THz pulse after passing through the wire-grid polarizer, (b) corresponding power spectrum, (c,d) temporal profiles of the THz pulses after passing through the achromatic wave plate (g = 0.9 mm and h = 3.7 μm) with a configuration of (c) θ = −45° and (d) θ = 45°.

Metrics