Abstract

Passive mode-locking of a Tm,Ho:KLu(WO4)2 laser operating at 2060 nm using different designs of InGaAsSb quantum-well based semiconductor saturable absorber mirrors (SESAMs) is demonstrated. The self-starting mode-locked laser delivers pulse durations between 4 and 8 ps at a repetition rate of 93 MHz with maximum average output power of 155 mW. Mode-locking performance of a Tm,Ho:KLu(WO4)2 laser is compared for usage of a SESAM to a single-walled carbon nanotube saturable absorber.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tm,Ho:KLu(WO4)2 laser mode-locked near 2 μm by single-walled carbon nanotubes

Veselin Aleksandrov, Alexander Gluth, Valentin Petrov, Ivan Buchvarov, Sun Young Choi, Mi Hye Kim, Fabian Rotermund, Xavier Mateos, Francesc Díaz, and Uwe Griebner
Opt. Express 22(22) 26872-26877 (2014)

Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs

Kejian Yang, Dirk Heinecke, Jonna Paajaste, Christoph Kölbl, Thomas Dekorsy, Soile Suomalainen, and Mircea Guina
Opt. Express 21(4) 4311-4318 (2013)

GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm

Alexander Gluth, Yicheng Wang, Valentin Petrov, Jonna Paajaste, Soile Suomalainen, Antti Härkönen, Mircea Guina, Günter Steinmeyer, Xavier Mateos, Stefano Veronesi, Mauro Tonelli, Jiang Li, Yubai Pan, Jingkun Guo, and Uwe Griebner
Opt. Express 23(2) 1361-1369 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, 2004).
  2. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient midinfrared laser using 1.9-µm pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
    [Crossref]
  3. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008).
  4. N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
    [Crossref]
  5. A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm,” Opt. Express 19(10), 9995–10000 (2011).
    [Crossref] [PubMed]
  6. A. Gluth, X. Mateos, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, V. Petrov, and U. Griebner, “Passively mode-locked Tm:YAG ceramic laser at 2 μm,” in Advanced Solid State Lasers, (Optical Society of America, 2013), paper AF1A.2.
  7. A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 μm,” Opt. Lett. 35(2), 172–174 (2010).
    [Crossref] [PubMed]
  8. A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, “Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm,” Opt. Lett. 35(18), 3027–3029 (2010).
    [Crossref] [PubMed]
  9. K. J. Yang, D. C. Heinecke, C. Kölbl, T. Dekorsy, S. Z. Zhao, L. H. Zheng, J. Xu, and G. J. Zhao, “Mode-locked Tm,Ho:YAP laser around 2.1 μm,” Opt. Express 21(2), 1574–1580 (2013).
    [Crossref] [PubMed]
  10. K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
    [Crossref] [PubMed]
  11. N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
    [Crossref] [PubMed]
  12. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 μm using a carbon nanotube saturable absorber,” Opt. Express 17(13), 11007–11012 (2009).
    [Crossref] [PubMed]
  13. J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
    [Crossref]
  14. A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
    [Crossref]
  15. J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
    [PubMed]
  16. A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
    [Crossref]
  17. V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, S. Y. Choi, M. H. Kim, F. Rotermund, X. Mateos, F. Díaz, and U. Griebner, “Tm,Ho:KLu(WO₄)₂ laser mode-locked near 2 μm by single-walled carbon nanotubes,” Opt. Express 22(22), 26872–26877 (2014).
    [Crossref] [PubMed]
  18. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  19. S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C. A. Wang, J. M. Borrego, and G. Nichols, “Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminiscence,” Appl. Phys. Lett. 83(16), 3317–3319 (2003).
    [Crossref]
  20. G. Benz and R. Conradt, “Auger recombination in GaAs and GaSb,” Phys. Rev. B 16(2), 843–855 (1977).
    [Crossref]
  21. J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Stat. Solidi C 9(2), 294–297 (2012).
    [Crossref]
  22. J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D 47(6), 065102 (2014).
    [Crossref]
  23. V. Jambunathan, A. Schmidt, X. Mateos, M. C. Pujol, U. Griebner, V. Petrov, C. Zaldo, M. Aguiló, and F. Diaz, “Crystal growth, optical spectroscopy and continuous-wave laser operation of co-doped (Ho,Tm):KLu(WO4)2 crystals,” J. Opt. Soc. Am. B 31(7), 1415–1421 (2014).
    [Crossref]
  24. M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant saturable absorber mirrors for dispersion control in ultrafast lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
    [Crossref]

2014 (4)

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, S. Y. Choi, M. H. Kim, F. Rotermund, X. Mateos, F. Díaz, and U. Griebner, “Tm,Ho:KLu(WO₄)₂ laser mode-locked near 2 μm by single-walled carbon nanotubes,” Opt. Express 22(22), 26872–26877 (2014).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D 47(6), 065102 (2014).
[Crossref]

V. Jambunathan, A. Schmidt, X. Mateos, M. C. Pujol, U. Griebner, V. Petrov, C. Zaldo, M. Aguiló, and F. Diaz, “Crystal growth, optical spectroscopy and continuous-wave laser operation of co-doped (Ho,Tm):KLu(WO4)2 crystals,” J. Opt. Soc. Am. B 31(7), 1415–1421 (2014).
[Crossref]

2013 (3)

2012 (3)

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Stat. Solidi C 9(2), 294–297 (2012).
[Crossref]

2011 (2)

2010 (3)

2009 (1)

2007 (1)

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant saturable absorber mirrors for dispersion control in ultrafast lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

2003 (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C. A. Wang, J. M. Borrego, and G. Nichols, “Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminiscence,” Appl. Phys. Lett. 83(16), 3317–3319 (2003).
[Crossref]

2000 (1)

1977 (1)

G. Benz and R. Conradt, “Auger recombination in GaAs and GaSb,” Phys. Rev. B 16(2), 843–855 (1977).
[Crossref]

Aguiló, M.

Ahn, J. H.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Aleksandrov, V.

Anikeev, S.

S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C. A. Wang, J. M. Borrego, and G. Nichols, “Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminiscence,” Appl. Phys. Lett. 83(16), 3317–3319 (2003).
[Crossref]

Antipov, O. L.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Belenky, G.

S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C. A. Wang, J. M. Borrego, and G. Nichols, “Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminiscence,” Appl. Phys. Lett. 83(16), 3317–3319 (2003).
[Crossref]

Benz, G.

G. Benz and R. Conradt, “Auger recombination in GaAs and GaSb,” Phys. Rev. B 16(2), 843–855 (1977).
[Crossref]

Borrego, J. M.

S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C. A. Wang, J. M. Borrego, and G. Nichols, “Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminiscence,” Appl. Phys. Lett. 83(16), 3317–3319 (2003).
[Crossref]

Brown, C. T. A.

Buchvarov, I.

Budni, P. A.

Calvez, S.

Carvajal, J. J.

Cascales, C.

Chicklis, E. P.

Cho, W. B.

Choi, S. Y.

Coluccelli, N.

N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Conradt, R.

G. Benz and R. Conradt, “Auger recombination in GaAs and GaSb,” Phys. Rev. B 16(2), 843–855 (1977).
[Crossref]

Dawson, M. D.

Dekorsy, T.

Di Lieto, A.

N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Diaz, F.

Díaz, F.

Donetsky, D.

S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C. A. Wang, J. M. Borrego, and G. Nichols, “Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminiscence,” Appl. Phys. Lett. 83(16), 3317–3319 (2003).
[Crossref]

Fan, X.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Ferrari, A. C.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Fusari, F.

Galzerano, G.

N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Gao, W.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Gatti, D.

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Gluth, A.

Griebner, U.

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, S. Y. Choi, M. H. Kim, F. Rotermund, X. Mateos, F. Díaz, and U. Griebner, “Tm,Ho:KLu(WO₄)₂ laser mode-locked near 2 μm by single-walled carbon nanotubes,” Opt. Express 22(22), 26872–26877 (2014).
[Crossref] [PubMed]

V. Jambunathan, A. Schmidt, X. Mateos, M. C. Pujol, U. Griebner, V. Petrov, C. Zaldo, M. Aguiló, and F. Diaz, “Crystal growth, optical spectroscopy and continuous-wave laser operation of co-doped (Ho,Tm):KLu(WO4)2 crystals,” J. Opt. Soc. Am. B 31(7), 1415–1421 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D 47(6), 065102 (2014).
[Crossref]

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 μm using a carbon nanotube saturable absorber,” Opt. Express 17(13), 11007–11012 (2009).
[Crossref] [PubMed]

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant saturable absorber mirrors for dispersion control in ultrafast lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

Guina, M.

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D 47(6), 065102 (2014).
[Crossref]

K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Stat. Solidi C 9(2), 294–297 (2012).
[Crossref]

Gupta, J. A.

Han, X.

Härkönen, A.

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D 47(6), 065102 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Stat. Solidi C 9(2), 294–297 (2012).
[Crossref]

Heinecke, D.

Heinecke, D. C.

Jambunathan, V.

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Kim, M. H.

Kisel, V. E.

Kölbl, C.

Koskinen, R.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Stat. Solidi C 9(2), 294–297 (2012).
[Crossref]

Kuleshov, N. V.

Kulmala, T. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Kurilchik, S. V.

Lagatsky, A.

Lagatsky, A. A.

Laporta, P.

N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Lee, S.

Lee, Y.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Lemons, M. L.

Liu, J.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Luryi, S.

S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C. A. Wang, J. M. Borrego, and G. Nichols, “Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminiscence,” Appl. Phys. Lett. 83(16), 3317–3319 (2003).
[Crossref]

Lv, P.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Ma, J.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Mateos, X.

Milana, S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Miller, C. A.

Moenster, M.

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant saturable absorber mirrors for dispersion control in ultrafast lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

Mosto, J. R.

Nichols, G.

S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C. A. Wang, J. M. Borrego, and G. Nichols, “Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminiscence,” Appl. Phys. Lett. 83(16), 3317–3319 (2003).
[Crossref]

Paajaste, J.

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D 47(6), 065102 (2014).
[Crossref]

K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Stat. Solidi C 9(2), 294–297 (2012).
[Crossref]

Petrov, V.

Pomeranz, L. A.

Pujol, M. C.

Qian, L.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Qu, Z.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Richter, W.

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant saturable absorber mirrors for dispersion control in ultrafast lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

Rotermund, F.

Schmidt, A.

Segura, M.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Serrano, M. D.

Sibbett, W.

Steinmeyer, G.

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D 47(6), 065102 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Stat. Solidi C 9(2), 294–297 (2012).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 μm using a carbon nanotube saturable absorber,” Opt. Express 17(13), 11007–11012 (2009).
[Crossref] [PubMed]

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant saturable absorber mirrors for dispersion control in ultrafast lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

Sun, Z.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Sundaram, R. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Suomalainen, S.

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D 47(6), 065102 (2014).
[Crossref]

K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Stat. Solidi C 9(2), 294–297 (2012).
[Crossref]

Tonelli, M.

N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Torrisi, F.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Wang, C. A.

S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C. A. Wang, J. M. Borrego, and G. Nichols, “Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminiscence,” Appl. Phys. Lett. 83(16), 3317–3319 (2003).
[Crossref]

Wang, J.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Wang, Y.

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Xie, G.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Xu, J.

Yang, K.

Yang, K. J.

Yeom, D.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Yim, J. H.

Yu, H.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Yuan, P.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Zaldo, C.

Zhang, H.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Zhao, G. J.

Zhao, S. Z.

Zheng, L. H.

Appl. Phys. B (1)

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Appl. Phys. Express (1)

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Appl. Phys. Lett. (2)

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C. A. Wang, J. M. Borrego, and G. Nichols, “Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminiscence,” Appl. Phys. Lett. 83(16), 3317–3319 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant saturable absorber mirrors for dispersion control in ultrafast lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D 47(6), 065102 (2014).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Laser Technol. (1)

J. Liu, Y. Wang, Z. Qu, and X. Fan, “2μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber,” Opt. Laser Technol. 44(4), 960–962 (2012).
[Crossref]

Opt. Lett. (3)

Phys. Rev. B (1)

G. Benz and R. Conradt, “Auger recombination in GaAs and GaSb,” Phys. Rev. B 16(2), 843–855 (1977).
[Crossref]

Phys. Stat. Solidi C (1)

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Stat. Solidi C 9(2), 294–297 (2012).
[Crossref]

Sci. Rep. (1)

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Other (3)

F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, 2004).

A. Gluth, X. Mateos, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, V. Petrov, and U. Griebner, “Passively mode-locked Tm:YAG ceramic laser at 2 μm,” in Advanced Solid State Lasers, (Optical Society of America, 2013), paper AF1A.2.

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Layout of the Tm,Ho:KLuW laser. AM: active medium; L: focusing lens; M1: concave mirror (radius of curvature RoC = 50 mm); M2, M3 and M4: concave mirrors (RoC = 100 mm); M1, M2, M3: highly reflective at 2060 nm and highly transmitting at 800 nm; M4: highly reflective at 800 nm; P1 and P2: CaF2-prisms; OC: output coupler.
Fig. 2
Fig. 2 SESAM mode-locked Tm,Ho:KLuW laser (Toc = 3%, SESAM No.2): (a) output vs. input characteristics (dots) and linear fit in the mode-locked (CW-ML) regime (red line); (b) autocorrelation curve (black dots), fit assuming sech2 pulse shape (red line) and optical spectrum (inset).
Fig. 3
Fig. 3 Radio frequency spectra of the SESAM mode-locked Tm,Ho:KLuW laser (TOC = 3%, SESAM No.2): (a) fundamental beat note, (b) 1 GHz wide-span; RBW: resolution bandwidth.
Fig. 4
Fig. 4 InGaSb-based SESAM (No.3); measured and calculated reflectivity and calculated group delay dispersion. The reflectivity measurement has an error margin of 2%. Dispersion calculation is based on assumption of a near-ideal two-layer dielectric coating that is perfectly matched to the index of the top layer semiconductor.

Tables (1)

Tables Icon

Table 1 Parameters of the SESAMs under investigation and obtained experimental results with mode-locking of Tm,Ho:KLuW laser (TOC = 3%, τ2: SESAM relaxation time, τp: mode-locked pulse duration).

Metrics