Abstract

A multi-pass pumping scheme for thin disk lasers consisting of dual parabolic mirrors with conjugated relationship is presented. The anti-disturbance ability of pumping is analyzed by ray tracing method under different kinds of disturbances. Both theoretical and experiment results show that disturbances in this system won’t lead to a misalignment of each pumping spot, but only the position of superposed pumping spot on disk crystal will be changed. Compared with the multi-pass pumping scheme consisting of parabolic mirror and folding prisms, this pumping scheme has a better anti-disturbance ability.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin-disk laser pump schemes for large number of passes and moderate pump source quality

Karsten Schuhmann, Theodor W. Hänsch, Klaus Kirch, Andreas Knecht, Franz Kottmann, Francois Nez, Randolf Pohl, David Taqqu, and Aldo Antognini
Appl. Opt. 54(32) 9400-9408 (2015)

Matrix multi-pass scheme disk amplifier

Evgeny Perevezentsev, Ivan Kuznetsov, Ivan Mukhin, and Oleg V. Palashov
Appl. Opt. 56(30) 8471-8476 (2017)

High brightness continuous wave ceramic Yb:LuAG thin-disk laser

Yuan Han Peng, James Cheng, Yan Ying Cheah, Kin Seng Lai, Ernest Lau, and Seok Khim Ang
Opt. Express 23(15) 19618-19623 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  2. A. Voss, U. Brauch, K. Wittig, and A. Giesen, “Efficient high-power diode-pumped thin-disk Yb:YAG-laser,” Proc. SPIE 2426, 501–508 (1995).
    [Crossref]
  3. S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in ASSL(OSA, Boston, Massachusetts, OSA Trends in Optics and Photonics26, 38–44 (1999).
  4. S. Erhard, M. Karszewski, C. Stewen, A. Giesen, K. Contag, and A. Voss, “Pumping schemes for multi-kW thin disk lasers,” in ASSL(OSA, Davos, Switzerland, OSA TOPS 34, 78–84 (2000).
  5. S. Erhard, A. Giesen, and C. Stewen, “Laser amplifier system,” US 6891874 B2, May.10, 2005.
  6. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
    [Crossref]
  7. T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, “Recent disk laser development at TRUMPF,” Proc. SPIE 8547, 85470C (2012).
    [Crossref]
  8. T. Gottwald, V. Kuhn, S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
    [Crossref]
  9. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
    [Crossref]
  10. J. Negel, S. Piehler, B. Weichelt, K. Wentsch, A. Loescher, B. Dannecker, M. Eckerle, M. Rumpel, J. Wolter, A. Voss, T. Graf, and M. A. Ahmed, “Recent progress in thin-disk lasers based on various Yb-doped materials,” in ASSL, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM2A.1.
  11. K. S. Wentsch, L. Zheng, J. Xu, M. A. Ahmed, and T. Graf, “Passively mode-locked Yb3+:Sc2SiO5 thin-disk laser,” Opt. Lett. 37(22), 4750–4752 (2012).
    [Crossref] [PubMed]
  12. B. Dannecker, X. Délen, K. S. Wentsch, B. Weichelt, C. Hönninger, A. Voss, M. A. Ahmed, and T. Graf, “Passively mode-locked Yb:CaF2 thin-disk laser,” Opt. Express 22(19), 22278–22284 (2014).
    [Crossref] [PubMed]
  13. S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett. 37(19), 3984–3986 (2012).
    [Crossref] [PubMed]
  14. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
    [Crossref]
  15. R. W. Stites, G. Cook, P. A. Berry, and K. L. Schepler, “Power scaling a Cr:ZnSe thin disk laser by increasing pump diameter,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.124.
  16. D. Havrilla and M. Holzer, “High power disk lasers - advances & applications,” Proc. SPIE 7912, 79120F (2011).
    [Crossref]
  17. M. D. Nixon and M. C. Cates, “High energy high brightness thin disk laser,” Proc. SPIE 8547, 85470D (2012).
    [Crossref]
  18. S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37(24), 5033–5035 (2012).
    [Crossref] [PubMed]
  19. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
    [Crossref] [PubMed]
  20. J. P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
    [Crossref] [PubMed]
  21. Xiao Zhu, Guangzhi Zhu, Changhong Zhu, Lijun Qi, Jianli Shang, Xingyun Duan and Peng Chen, “Solid state thin disk laser,” US 8755416 B2, June 17, 2014.

2014 (3)

2013 (2)

J. P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

T. Gottwald, V. Kuhn, S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

2012 (5)

2011 (1)

D. Havrilla and M. Holzer, “High power disk lasers - advances & applications,” Proc. SPIE 7912, 79120F (2011).
[Crossref]

2005 (1)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

2000 (2)

S. Erhard, M. Karszewski, C. Stewen, A. Giesen, K. Contag, and A. Voss, “Pumping schemes for multi-kW thin disk lasers,” in ASSL(OSA, Davos, Switzerland, OSA TOPS 34, 78–84 (2000).

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

1995 (1)

A. Voss, U. Brauch, K. Wittig, and A. Giesen, “Efficient high-power diode-pumped thin-disk Yb:YAG-laser,” Proc. SPIE 2426, 501–508 (1995).
[Crossref]

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Abdou Ahmed, M.

Abdou-Ahmed, M.

Ahmed, M. A.

Bauer, D.

J. P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, “Recent disk laser development at TRUMPF,” Proc. SPIE 8547, 85470C (2012).
[Crossref]

Berry, P. A.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Brauch, U.

A. Voss, U. Brauch, K. Wittig, and A. Giesen, “Efficient high-power diode-pumped thin-disk Yb:YAG-laser,” Proc. SPIE 2426, 501–508 (1995).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Cates, M. C.

M. D. Nixon and M. C. Cates, “High energy high brightness thin disk laser,” Proc. SPIE 8547, 85470D (2012).
[Crossref]

Contag, K.

S. Erhard, M. Karszewski, C. Stewen, A. Giesen, K. Contag, and A. Voss, “Pumping schemes for multi-kW thin disk lasers,” in ASSL(OSA, Davos, Switzerland, OSA TOPS 34, 78–84 (2000).

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in ASSL(OSA, Boston, Massachusetts, OSA Trends in Optics and Photonics26, 38–44 (1999).

Dannecker, B.

Délen, X.

Druon, F.

Emaury, F.

Erhard, S.

S. Erhard, M. Karszewski, C. Stewen, A. Giesen, K. Contag, and A. Voss, “Pumping schemes for multi-kW thin disk lasers,” in ASSL(OSA, Davos, Switzerland, OSA TOPS 34, 78–84 (2000).

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in ASSL(OSA, Boston, Massachusetts, OSA Trends in Optics and Photonics26, 38–44 (1999).

Georges, P.

Giesen, A.

S. Erhard, M. Karszewski, C. Stewen, A. Giesen, K. Contag, and A. Voss, “Pumping schemes for multi-kW thin disk lasers,” in ASSL(OSA, Davos, Switzerland, OSA TOPS 34, 78–84 (2000).

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

A. Voss, U. Brauch, K. Wittig, and A. Giesen, “Efficient high-power diode-pumped thin-disk Yb:YAG-laser,” Proc. SPIE 2426, 501–508 (1995).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in ASSL(OSA, Boston, Massachusetts, OSA Trends in Optics and Photonics26, 38–44 (1999).

Golling, M.

Gottwald, T.

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

T. Gottwald, V. Kuhn, S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, “Recent disk laser development at TRUMPF,” Proc. SPIE 8547, 85470C (2012).
[Crossref]

Graf, T.

Havrilla, D.

D. Havrilla and M. Holzer, “High power disk lasers - advances & applications,” Proc. SPIE 7912, 79120F (2011).
[Crossref]

Hoffmann, M.

Holzer, M.

D. Havrilla and M. Holzer, “High power disk lasers - advances & applications,” Proc. SPIE 7912, 79120F (2011).
[Crossref]

Hönninger, C.

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Jaffres, A.

Johannsen, I.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in ASSL(OSA, Boston, Massachusetts, OSA Trends in Optics and Photonics26, 38–44 (1999).

Karszewski, M.

S. Erhard, M. Karszewski, C. Stewen, A. Giesen, K. Contag, and A. Voss, “Pumping schemes for multi-kW thin disk lasers,” in ASSL(OSA, Davos, Switzerland, OSA TOPS 34, 78–84 (2000).

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in ASSL(OSA, Boston, Massachusetts, OSA Trends in Optics and Photonics26, 38–44 (1999).

Keller, U.

Killi, A.

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

T. Gottwald, V. Kuhn, S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

J. P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, “Recent disk laser development at TRUMPF,” Proc. SPIE 8547, 85470C (2012).
[Crossref]

Kleinbauer, J.

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, “Recent disk laser development at TRUMPF,” Proc. SPIE 8547, 85470C (2012).
[Crossref]

Kuhn, V.

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

T. Gottwald, V. Kuhn, S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, “Recent disk laser development at TRUMPF,” Proc. SPIE 8547, 85470C (2012).
[Crossref]

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Loiseau, P.

McKay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Metzger, T.

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, “Recent disk laser development at TRUMPF,” Proc. SPIE 8547, 85470C (2012).
[Crossref]

Mottay, E.

Negel, J. P.

Negoita, V.

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Nixon, M. D.

M. D. Nixon and M. C. Cates, “High energy high brightness thin disk laser,” Proc. SPIE 8547, 85470D (2012).
[Crossref]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Piehler, S.

Ricaud, S.

Rupp, T.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in ASSL(OSA, Boston, Massachusetts, OSA Trends in Optics and Photonics26, 38–44 (1999).

Rytz, D.

Saraceno, C. J.

Schad, S.

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

T. Gottwald, V. Kuhn, S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, “Recent disk laser development at TRUMPF,” Proc. SPIE 8547, 85470C (2012).
[Crossref]

Schepler, K. L.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Schriber, C.

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

S. Erhard, M. Karszewski, C. Stewen, A. Giesen, K. Contag, and A. Voss, “Pumping schemes for multi-kW thin disk lasers,” in ASSL(OSA, Davos, Switzerland, OSA TOPS 34, 78–84 (2000).

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in ASSL(OSA, Boston, Massachusetts, OSA Trends in Optics and Photonics26, 38–44 (1999).

Stolzenburg, C.

T. Gottwald, V. Kuhn, S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, “Recent disk laser development at TRUMPF,” Proc. SPIE 8547, 85470C (2012).
[Crossref]

Südmeyer, T.

Suganuma, A.

Sutter, D.

J. P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, “Recent disk laser development at TRUMPF,” Proc. SPIE 8547, 85470C (2012).
[Crossref]

Viana, B.

Voss, A.

B. Dannecker, X. Délen, K. S. Wentsch, B. Weichelt, C. Hönninger, A. Voss, M. A. Ahmed, and T. Graf, “Passively mode-locked Yb:CaF2 thin-disk laser,” Opt. Express 22(19), 22278–22284 (2014).
[Crossref] [PubMed]

J. P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37(24), 5033–5035 (2012).
[Crossref] [PubMed]

S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett. 37(19), 3984–3986 (2012).
[Crossref] [PubMed]

S. Erhard, M. Karszewski, C. Stewen, A. Giesen, K. Contag, and A. Voss, “Pumping schemes for multi-kW thin disk lasers,” in ASSL(OSA, Davos, Switzerland, OSA TOPS 34, 78–84 (2000).

A. Voss, U. Brauch, K. Wittig, and A. Giesen, “Efficient high-power diode-pumped thin-disk Yb:YAG-laser,” Proc. SPIE 2426, 501–508 (1995).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Wallmeroth, K.

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Weichelt, B.

Wentsch, K.

Wentsch, K. S.

Wittig, K.

A. Voss, U. Brauch, K. Wittig, and A. Giesen, “Efficient high-power diode-pumped thin-disk Yb:YAG-laser,” Proc. SPIE 2426, 501–508 (1995).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Xu, J.

Zheng, L.

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

in ASSL(OSA, Davos, Switzerland, OSA TOPS (1)

S. Erhard, M. Karszewski, C. Stewen, A. Giesen, K. Contag, and A. Voss, “Pumping schemes for multi-kW thin disk lasers,” in ASSL(OSA, Davos, Switzerland, OSA TOPS 34, 78–84 (2000).

Opt. Express (1)

Opt. Lett. (5)

Proc. SPIE (6)

D. Havrilla and M. Holzer, “High power disk lasers - advances & applications,” Proc. SPIE 7912, 79120F (2011).
[Crossref]

M. D. Nixon and M. C. Cates, “High energy high brightness thin disk laser,” Proc. SPIE 8547, 85470D (2012).
[Crossref]

A. Voss, U. Brauch, K. Wittig, and A. Giesen, “Efficient high-power diode-pumped thin-disk Yb:YAG-laser,” Proc. SPIE 2426, 501–508 (1995).
[Crossref]

T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, and A. Killi, “Recent disk laser development at TRUMPF,” Proc. SPIE 8547, 85470C (2012).
[Crossref]

T. Gottwald, V. Kuhn, S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Other (5)

J. Negel, S. Piehler, B. Weichelt, K. Wentsch, A. Loescher, B. Dannecker, M. Eckerle, M. Rumpel, J. Wolter, A. Voss, T. Graf, and M. A. Ahmed, “Recent progress in thin-disk lasers based on various Yb-doped materials,” in ASSL, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM2A.1.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, and K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in ASSL(OSA, Boston, Massachusetts, OSA Trends in Optics and Photonics26, 38–44 (1999).

S. Erhard, A. Giesen, and C. Stewen, “Laser amplifier system,” US 6891874 B2, May.10, 2005.

Xiao Zhu, Guangzhi Zhu, Changhong Zhu, Lijun Qi, Jianli Shang, Xingyun Duan and Peng Chen, “Solid state thin disk laser,” US 8755416 B2, June 17, 2014.

R. W. Stites, G. Cook, P. A. Berry, and K. L. Schepler, “Power scaling a Cr:ZnSe thin disk laser by increasing pump diameter,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.124.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A multi-pass pumping scheme for thin disk lasers consisting of dual parabolic mirrors with conjugated relationship. (a) Schematic diagram. (b) Side view in YZ-plane. (c) Side view in XZ-plane. (d) Side view in XY-plane.
Fig. 2
Fig. 2 A multi-pass pumping scheme for thin disk lasers consisting of dual parabolic mirrors with conjugated relationship with two pumping beams injected simultaneously. (a) Schematic diagram. (b) Position of each pumping spot on two parabolic mirrors and their moving directions during multi-pass pumping process.
Fig. 3
Fig. 3 Characteristics of the pumping spot under the deflection of parabolic mirror II. (a) Schematic diagram in YZ-plane. (b) Deviation of each pumping spot on disk crystal and adjusting mirror to the center as a function of pumping number with different α. (c) Simulated superposed pumping spots on disk crystal and adjusting mirror with α = 6mrad.
Fig. 4
Fig. 4 Characteristics of the pumping spot under the other three disturbances. (a) Under the deflection of parabolic mirror I. (b) Under the displacement of parabolic mirror II. (c) Under the deflection of incident collimating pumping beam.
Fig. 5
Fig. 5 Characteristics of the pumping spot under the angle deviation of folding prism I. (a) Schematic diagram of the multi-pass pumping scheme consisting of one parabolic mirror and a pair of folding prisms. (b) Side view in the vertical plane of the ridge of folding prism I. (c) Deviation of each pumping spot to disk crystal center as a function of pumping number with different Δθ/2. (d) Simulated superposed pumping spot on disk crystal with different Δθ/2.
Fig. 6
Fig. 6 Experiment on the anti-disturbance ability of pumping. (a) Experiment setup of the multi-pass pumping thin disk lasers based on dual parabolic mirrors with conjugated relationship. (b) Superposed pumping spot on disk crystal after the multi-pass pumping system is well adjusted. (c) Superposed pumping spot on disk crystal under a deflection about 3.5mrad of parabolic mirror II.

Tables (1)

Tables Icon

Table 1 Incident angle of each pumping beam when the angle of folding prism I and II are 90° + Δθ/2 and 90° respectively

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β 1 2 D x f 2 + y 2
{ h 1 αf h 2 α f 2 + y 2
h i θ i f 2 + r 2

Metrics