Abstract

Anodizing of aluminum generates a porous alumina layer comprising cylindrical nanopores (300 nm diameter) extending essentially perpendicular to the substrate. The pore distribution over the surface exhibits a short-distance order close to hexagonal arrangement. On the contrary, long-distance order cannot be defined: the arrangement is not periodic. Visual observation of such nanoporous layers shows a reddish specular reflectance consistent with reflectance spectrum measurements. This work is a parametric study aiming at demonstrating that color effects are caused by the presence of disorder illustrated by the deviations from periodicity in terms of nanopore location and nanopore radius. Using the method of Rigorous Coupled Wave Analysis (RCWA), the reflectance spectrum has been simulated. Although our calculations were done using a simple one-dimensional (1D) model, a fair fit with experimental results is found.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Color filters based on a nanoporous Al-AAO resonator featuring structure tolerant color saturation

Wenjing Yue, Yang Li, Cong Wang, Zhao Yao, Sang-Shin Lee, and Nam-Young Kim
Opt. Express 23(21) 27474-27483 (2015)

Enhanced fluorescence in a nanoporous waveguide and its quantitative analysis

Yong Fan, Kazuhiro Hotta, Akira Yamaguchi, and Norio Teramae
Opt. Express 20(12) 12850-12859 (2012)

Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells

Tianshu Yang, Xiaodong Wang, Wen Liu, Yanpeng Shi, and Fuhua Yang
Opt. Express 21(15) 18207-18215 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
    [Crossref]
  2. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
    [PubMed]
  3. C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci Rep 2, 681 (2012).
    [Crossref] [PubMed]
  4. F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
    [Crossref]
  5. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
    [Crossref] [PubMed]
  6. C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
    [Crossref]
  7. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
    [Crossref] [PubMed]
  8. L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, “Disorder-enhanced transport in photonic quasicrystals,” Science 332(6037), 1541–1544 (2011).
    [Crossref] [PubMed]
  9. D. Molinari and A. Fratalocchi, “Route to strong localization of light: the role of disorder,” Opt. Express 20(16), 18156–18164 (2012).
    [Crossref] [PubMed]
  10. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103(6), 063903 (2009).
    [Crossref] [PubMed]
  11. S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18(14), 14654–14663 (2010).
    [PubMed]
  12. J. P. Vigneron, V. Lousse, L. P. Biró, Z. Vértesy, and Z. Bálint, “Reflectance of topologically disordered photonic-crystal films,” Proc. SPIE 5733, 308–315 (2005).
    [Crossref]
  13. D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol. 214(23), 3960–3967 (2011).
    [Crossref] [PubMed]
  14. H. Noh, S. F. Liew, V. Saranathan, S. G. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. 22(26-27), 2871–2880 (2010).
    [Crossref] [PubMed]
  15. A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
    [Crossref] [PubMed]
  16. C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,” Opt. Express 19(12), 11355–11364 (2011).
    [PubMed]
  17. J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69(3), 365–405 (1969).
    [Crossref]
  18. Q. Xu, H. Y. Sun, Y. H. Yang, L. H. Liu, and Z. Y. Li, “Optical properties and color generation mechanism of porous anodic alumina films,” Appl. Surf. Sci. 258(5), 1826–1830 (2011).
    [Crossref]
  19. X. H. Wang, T. Akahane, H. Orikasa, T. Kyotani, and Y. Y. Fu, “Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films,” Appl. Phys. Lett. 91(1), 011908 (2007).
    [Crossref]
  20. X. L. Zhao, G. W. Meng, Q. L. Xu, F. M. Han, and Q. Huang, “Color fine-tuning of CNTs@AAO composite thin films via isotropically etching porous AAO before CNT growth and color modification by water infusion,” Adv. Mater. 22(24), 2637–2641 (2010).
    [Crossref] [PubMed]
  21. X. Wang, D. Zhang, H. Zhang, Y. Ma, and J. Z. Jiang, “Tuning color by pore depth of metal-coated porous alumina,” Nanotechnology 22(30), 305306 (2011).
    [Crossref] [PubMed]
  22. C. Y. Yang, W. D. Shen, Y. G. Zhang, Z. J. Ye, X. Zhang, K. Li, X. Fang, and X. Liu, “Color-tuning method by filling porous alumina membrane using atomic layer deposition based on metal-dielectric-metal structure,” Appl. Opt. 53(4), A142–A147 (2014).
    [Crossref] [PubMed]
  23. I. Maksymov, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “Photonic stop bands in quasi-random nanoporous anodic alumina structures,” Photonics and Nanostructures: Fundamentals and Applications 10, 459–462 (2012).
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  25. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [Crossref]
  26. J. P. Hugonin and P. Lalanne, Reticolo software for grating analysis, see www.lp2n.institutoptique.fr
  27. N. Matsapey, “Rendu visual de surfaces nanostructurées: effet de l’ordre à courte distance,” thèse de doctorat en sciences, École Nationale Supérieure des Mines de Saint-Étienne (2013).
  28. N. Matsapey, J. Faucheu, M. Flury, and D. Delafosse, “Design of a gonio-spectro-photometer for optical characterization of gonio-apparent materials,” Meas. Sci. Technol. 24(6), 065901 (2013).
    [Crossref]
  29. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Sect. A 3, 385–420 (1904).
  30. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  31. J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express 20(3), 3015–3033 (2012).
    [Crossref] [PubMed]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

2014 (1)

2013 (1)

N. Matsapey, J. Faucheu, M. Flury, and D. Delafosse, “Design of a gonio-spectro-photometer for optical characterization of gonio-apparent materials,” Meas. Sci. Technol. 24(6), 065901 (2013).
[Crossref]

2012 (6)

I. Maksymov, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “Photonic stop bands in quasi-random nanoporous anodic alumina structures,” Photonics and Nanostructures: Fundamentals and Applications 10, 459–462 (2012).

J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express 20(3), 3015–3033 (2012).
[Crossref] [PubMed]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci Rep 2, 681 (2012).
[Crossref] [PubMed]

D. Molinari and A. Fratalocchi, “Route to strong localization of light: the role of disorder,” Opt. Express 20(16), 18156–18164 (2012).
[Crossref] [PubMed]

2011 (5)

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol. 214(23), 3960–3967 (2011).
[Crossref] [PubMed]

C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,” Opt. Express 19(12), 11355–11364 (2011).
[PubMed]

Q. Xu, H. Y. Sun, Y. H. Yang, L. H. Liu, and Z. Y. Li, “Optical properties and color generation mechanism of porous anodic alumina films,” Appl. Surf. Sci. 258(5), 1826–1830 (2011).
[Crossref]

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, “Disorder-enhanced transport in photonic quasicrystals,” Science 332(6037), 1541–1544 (2011).
[Crossref] [PubMed]

X. Wang, D. Zhang, H. Zhang, Y. Ma, and J. Z. Jiang, “Tuning color by pore depth of metal-coated porous alumina,” Nanotechnology 22(30), 305306 (2011).
[Crossref] [PubMed]

2010 (3)

X. L. Zhao, G. W. Meng, Q. L. Xu, F. M. Han, and Q. Huang, “Color fine-tuning of CNTs@AAO composite thin films via isotropically etching porous AAO before CNT growth and color modification by water infusion,” Adv. Mater. 22(24), 2637–2641 (2010).
[Crossref] [PubMed]

H. Noh, S. F. Liew, V. Saranathan, S. G. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. 22(26-27), 2871–2880 (2010).
[Crossref] [PubMed]

S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18(14), 14654–14663 (2010).
[PubMed]

2009 (2)

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103(6), 063903 (2009).
[Crossref] [PubMed]

2007 (4)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

X. H. Wang, T. Akahane, H. Orikasa, T. Kyotani, and Y. Y. Fu, “Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films,” Appl. Phys. Lett. 91(1), 011908 (2007).
[Crossref]

2006 (1)

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

2005 (1)

J. P. Vigneron, V. Lousse, L. P. Biró, Z. Vértesy, and Z. Bálint, “Reflectance of topologically disordered photonic-crystal films,” Proc. SPIE 5733, 308–315 (2005).
[Crossref]

1998 (1)

1996 (1)

1995 (1)

1969 (1)

J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69(3), 365–405 (1969).
[Crossref]

1904 (1)

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Sect. A 3, 385–420 (1904).

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Akahane, T.

X. H. Wang, T. Akahane, H. Orikasa, T. Kyotani, and Y. Y. Fu, “Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films,” Appl. Phys. Lett. 91(1), 011908 (2007).
[Crossref]

Bálint, Z.

J. P. Vigneron, V. Lousse, L. P. Biró, Z. Vértesy, and Z. Bálint, “Reflectance of topologically disordered photonic-crystal films,” Proc. SPIE 5733, 308–315 (2005).
[Crossref]

Bartal, G.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Bauer, C.

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci Rep 2, 681 (2012).
[Crossref] [PubMed]

Beggs, D. M.

Biró, L. P.

J. P. Vigneron, V. Lousse, L. P. Biró, Z. Vértesy, and Z. Bálint, “Reflectance of topologically disordered photonic-crystal films,” Proc. SPIE 5733, 308–315 (2005).
[Crossref]

Brady, P.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

Burresi, M.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Cao, H.

J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express 20(3), 3015–3033 (2012).
[Crossref] [PubMed]

H. Noh, S. F. Liew, V. Saranathan, S. G. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. 22(26-27), 2871–2880 (2010).
[Crossref] [PubMed]

Dal Negro, L.

Delafosse, D.

N. Matsapey, J. Faucheu, M. Flury, and D. Delafosse, “Design of a gonio-spectro-photometer for optical characterization of gonio-apparent materials,” Meas. Sci. Technol. 24(6), 065901 (2013).
[Crossref]

Diggle, J. W.

J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69(3), 365–405 (1969).
[Crossref]

Djurišic, A. B.

Downie, T. C.

J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69(3), 365–405 (1969).
[Crossref]

Dufresne, E. R.

H. Noh, S. F. Liew, V. Saranathan, S. G. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. 22(26-27), 2871–2880 (2010).
[Crossref] [PubMed]

Ebbesen, T. W.

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

Elazar, J. M.

Fang, X.

Faucheu, J.

N. Matsapey, J. Faucheu, M. Flury, and D. Delafosse, “Design of a gonio-spectro-photometer for optical characterization of gonio-apparent materials,” Meas. Sci. Technol. 24(6), 065901 (2013).
[Crossref]

Favuzzi, P. A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Ferré-Borrull, J.

I. Maksymov, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “Photonic stop bands in quasi-random nanoporous anodic alumina structures,” Photonics and Nanostructures: Fundamentals and Applications 10, 459–462 (2012).

Fishman, S.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Flury, M.

N. Matsapey, J. Faucheu, M. Flury, and D. Delafosse, “Design of a gonio-spectro-photometer for optical characterization of gonio-apparent materials,” Meas. Sci. Technol. 24(6), 065901 (2013).
[Crossref]

Fratalocchi, A.

Freedman, B.

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, “Disorder-enhanced transport in photonic quasicrystals,” Science 332(6037), 1541–1544 (2011).
[Crossref] [PubMed]

Fu, Y. Y.

X. H. Wang, T. Akahane, H. Orikasa, T. Kyotani, and Y. Y. Fu, “Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films,” Appl. Phys. Lett. 91(1), 011908 (2007).
[Crossref]

Gaylord, T. K.

Genet, C.

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

Giessen, H.

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci Rep 2, 681 (2012).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

Goulding, C. W.

J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69(3), 365–405 (1969).
[Crossref]

Grann, E. B.

Han, F. M.

X. L. Zhao, G. W. Meng, Q. L. Xu, F. M. Han, and Q. Huang, “Color fine-tuning of CNTs@AAO composite thin films via isotropically etching porous AAO before CNT growth and color modification by water infusion,” Adv. Mater. 22(24), 2637–2641 (2010).
[Crossref] [PubMed]

Huang, Q.

X. L. Zhao, G. W. Meng, Q. L. Xu, F. M. Han, and Q. Huang, “Color fine-tuning of CNTs@AAO composite thin films via isotropically etching porous AAO before CNT growth and color modification by water infusion,” Adv. Mater. 22(24), 2637–2641 (2010).
[Crossref] [PubMed]

Hugonin, J. P.

Jiang, J. Z.

X. Wang, D. Zhang, H. Zhang, Y. Ma, and J. Z. Jiang, “Tuning color by pore depth of metal-coated porous alumina,” Nanotechnology 22(30), 305306 (2011).
[Crossref] [PubMed]

Kawakami, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Kobiela, G.

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci Rep 2, 681 (2012).
[Crossref] [PubMed]

Krauss, T. F.

Kuipers, L.

Kyotani, T.

X. H. Wang, T. Akahane, H. Orikasa, T. Kyotani, and Y. Y. Fu, “Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films,” Appl. Phys. Lett. 91(1), 011908 (2007).
[Crossref]

Lalanne, P.

Lederer, F.

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

Leertouwer, H. L.

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol. 214(23), 3960–3967 (2011).
[Crossref] [PubMed]

Levi, L.

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, “Disorder-enhanced transport in photonic quasicrystals,” Science 332(6037), 1541–1544 (2011).
[Crossref] [PubMed]

Li, K.

Li, Z. Y.

Q. Xu, H. Y. Sun, Y. H. Yang, L. H. Liu, and Z. Y. Li, “Optical properties and color generation mechanism of porous anodic alumina films,” Appl. Surf. Sci. 258(5), 1826–1830 (2011).
[Crossref]

Liew, S. F.

J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express 20(3), 3015–3033 (2012).
[Crossref] [PubMed]

H. Noh, S. F. Liew, V. Saranathan, S. G. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. 22(26-27), 2871–2880 (2010).
[Crossref] [PubMed]

Liu, L. H.

Q. Xu, H. Y. Sun, Y. H. Yang, L. H. Liu, and Z. Y. Li, “Optical properties and color generation mechanism of porous anodic alumina films,” Appl. Surf. Sci. 258(5), 1826–1830 (2011).
[Crossref]

Liu, X.

Lousse, V.

J. P. Vigneron, V. Lousse, L. P. Biró, Z. Vértesy, and Z. Bálint, “Reflectance of topologically disordered photonic-crystal films,” Proc. SPIE 5733, 308–315 (2005).
[Crossref]

Ma, Y.

X. Wang, D. Zhang, H. Zhang, Y. Ma, and J. Z. Jiang, “Tuning color by pore depth of metal-coated porous alumina,” Nanotechnology 22(30), 305306 (2011).
[Crossref] [PubMed]

Majewski, M. L.

Maksymov, I.

I. Maksymov, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “Photonic stop bands in quasi-random nanoporous anodic alumina structures,” Photonics and Nanostructures: Fundamentals and Applications 10, 459–462 (2012).

Manela, O.

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, “Disorder-enhanced transport in photonic quasicrystals,” Science 332(6037), 1541–1544 (2011).
[Crossref] [PubMed]

Marsal, L. F.

I. Maksymov, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “Photonic stop bands in quasi-random nanoporous anodic alumina structures,” Photonics and Nanostructures: Fundamentals and Applications 10, 459–462 (2012).

Matsapey, N.

N. Matsapey, J. Faucheu, M. Flury, and D. Delafosse, “Design of a gonio-spectro-photometer for optical characterization of gonio-apparent materials,” Meas. Sci. Technol. 24(6), 065901 (2013).
[Crossref]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Sect. A 3, 385–420 (1904).

Mazoyer, S.

Meng, G. W.

X. L. Zhao, G. W. Meng, Q. L. Xu, F. M. Han, and Q. Huang, “Color fine-tuning of CNTs@AAO composite thin films via isotropically etching porous AAO before CNT growth and color modification by water infusion,” Adv. Mater. 22(24), 2637–2641 (2010).
[Crossref] [PubMed]

Mochrie, S. G.

H. Noh, S. F. Liew, V. Saranathan, S. G. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. 22(26-27), 2871–2880 (2010).
[Crossref] [PubMed]

Moharam, M. G.

Molinari, D.

Morris, G. M.

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Noda, S.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Noh, H.

J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express 20(3), 3015–3033 (2012).
[Crossref] [PubMed]

H. Noh, S. F. Liew, V. Saranathan, S. G. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. 22(26-27), 2871–2880 (2010).
[Crossref] [PubMed]

Orikasa, H.

X. H. Wang, T. Akahane, H. Orikasa, T. Kyotani, and Y. Y. Fu, “Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films,” Appl. Phys. Lett. 91(1), 011908 (2007).
[Crossref]

Oskooi, A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Pallarès, J.

I. Maksymov, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “Photonic stop bands in quasi-random nanoporous anodic alumina structures,” Photonics and Nanostructures: Fundamentals and Applications 10, 459–462 (2012).

Pommet, D. A.

Pouya, C.

Prum, R. O.

H. Noh, S. F. Liew, V. Saranathan, S. G. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. 22(26-27), 2871–2880 (2010).
[Crossref] [PubMed]

Przybilla, F.

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

Rakic, A. D.

Rechtsman, M.

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, “Disorder-enhanced transport in photonic quasicrystals,” Science 332(6037), 1541–1544 (2011).
[Crossref] [PubMed]

Riboli, F.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Rockstuhl, C.

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

Rodier, J. C.

Saranathan, V.

H. Noh, S. F. Liew, V. Saranathan, S. G. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. 22(26-27), 2871–2880 (2010).
[Crossref] [PubMed]

Schultz, T. D.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

Schwartz, T.

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, “Disorder-enhanced transport in photonic quasicrystals,” Science 332(6037), 1541–1544 (2011).
[Crossref] [PubMed]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Seago, A. E.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

Segev, M.

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, “Disorder-enhanced transport in photonic quasicrystals,” Science 332(6037), 1541–1544 (2011).
[Crossref] [PubMed]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Shen, W. D.

Shigeta, H.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Spasenovic, M.

Stavenga, D. G.

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol. 214(23), 3960–3967 (2011).
[Crossref] [PubMed]

C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,” Opt. Express 19(12), 11355–11364 (2011).
[PubMed]

Sun, H. Y.

Q. Xu, H. Y. Sun, Y. H. Yang, L. H. Liu, and Z. Y. Li, “Optical properties and color generation mechanism of porous anodic alumina films,” Appl. Surf. Sci. 258(5), 1826–1830 (2011).
[Crossref]

Tanaka, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Tinbergen, J.

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol. 214(23), 3960–3967 (2011).
[Crossref] [PubMed]

Trevino, J.

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Vértesy, Z.

J. P. Vigneron, V. Lousse, L. P. Biró, Z. Vértesy, and Z. Bálint, “Reflectance of topologically disordered photonic-crystal films,” Proc. SPIE 5733, 308–315 (2005).
[Crossref]

Vigneron, J. P.

J. P. Vigneron, V. Lousse, L. P. Biró, Z. Vértesy, and Z. Bálint, “Reflectance of topologically disordered photonic-crystal films,” Proc. SPIE 5733, 308–315 (2005).
[Crossref]

Vigneron, J.-P.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

Vukusic, P.

Vynck, K.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Wang, X.

X. Wang, D. Zhang, H. Zhang, Y. Ma, and J. Z. Jiang, “Tuning color by pore depth of metal-coated porous alumina,” Nanotechnology 22(30), 305306 (2011).
[Crossref] [PubMed]

Wang, X. H.

X. H. Wang, T. Akahane, H. Orikasa, T. Kyotani, and Y. Y. Fu, “Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films,” Appl. Phys. Lett. 91(1), 011908 (2007).
[Crossref]

Wiersma, D. S.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Wilts, B. D.

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol. 214(23), 3960–3967 (2011).
[Crossref] [PubMed]

Xu, Q.

Q. Xu, H. Y. Sun, Y. H. Yang, L. H. Liu, and Z. Y. Li, “Optical properties and color generation mechanism of porous anodic alumina films,” Appl. Surf. Sci. 258(5), 1826–1830 (2011).
[Crossref]

Xu, Q. L.

X. L. Zhao, G. W. Meng, Q. L. Xu, F. M. Han, and Q. Huang, “Color fine-tuning of CNTs@AAO composite thin films via isotropically etching porous AAO before CNT growth and color modification by water infusion,” Adv. Mater. 22(24), 2637–2641 (2010).
[Crossref] [PubMed]

Yang, C. Y.

Yang, Y. H.

Q. Xu, H. Y. Sun, Y. H. Yang, L. H. Liu, and Z. Y. Li, “Optical properties and color generation mechanism of porous anodic alumina films,” Appl. Surf. Sci. 258(5), 1826–1830 (2011).
[Crossref]

Ye, Z. J.

Zentgraf, T.

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

Zhang, D.

X. Wang, D. Zhang, H. Zhang, Y. Ma, and J. Z. Jiang, “Tuning color by pore depth of metal-coated porous alumina,” Nanotechnology 22(30), 305306 (2011).
[Crossref] [PubMed]

Zhang, H.

X. Wang, D. Zhang, H. Zhang, Y. Ma, and J. Z. Jiang, “Tuning color by pore depth of metal-coated porous alumina,” Nanotechnology 22(30), 305306 (2011).
[Crossref] [PubMed]

Zhang, X.

Zhang, Y. G.

Zhao, X. L.

X. L. Zhao, G. W. Meng, Q. L. Xu, F. M. Han, and Q. Huang, “Color fine-tuning of CNTs@AAO composite thin films via isotropically etching porous AAO before CNT growth and color modification by water infusion,” Adv. Mater. 22(24), 2637–2641 (2010).
[Crossref] [PubMed]

Adv. Mater. (2)

H. Noh, S. F. Liew, V. Saranathan, S. G. Mochrie, R. O. Prum, E. R. Dufresne, and H. Cao, “How noniridescent colors are generated by quasi-ordered structures of bird feathers,” Adv. Mater. 22(26-27), 2871–2880 (2010).
[Crossref] [PubMed]

X. L. Zhao, G. W. Meng, Q. L. Xu, F. M. Han, and Q. Huang, “Color fine-tuning of CNTs@AAO composite thin films via isotropically etching porous AAO before CNT growth and color modification by water infusion,” Adv. Mater. 22(24), 2637–2641 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

X. H. Wang, T. Akahane, H. Orikasa, T. Kyotani, and Y. Y. Fu, “Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films,” Appl. Phys. Lett. 91(1), 011908 (2007).
[Crossref]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

Appl. Surf. Sci. (1)

Q. Xu, H. Y. Sun, Y. H. Yang, L. H. Liu, and Z. Y. Li, “Optical properties and color generation mechanism of porous anodic alumina films,” Appl. Surf. Sci. 258(5), 1826–1830 (2011).
[Crossref]

Chem. Rev. (1)

J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem. Rev. 69(3), 365–405 (1969).
[Crossref]

J. Exp. Biol. (1)

D. G. Stavenga, J. Tinbergen, H. L. Leertouwer, and B. D. Wilts, “Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films,” J. Exp. Biol. 214(23), 3960–3967 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. R. Soc. Interface (1)

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6(Suppl 2), S165–S184 (2009).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

N. Matsapey, J. Faucheu, M. Flury, and D. Delafosse, “Design of a gonio-spectro-photometer for optical characterization of gonio-apparent materials,” Meas. Sci. Technol. 24(6), 065901 (2013).
[Crossref]

Nanotechnology (1)

X. Wang, D. Zhang, H. Zhang, Y. Ma, and J. Z. Jiang, “Tuning color by pore depth of metal-coated porous alumina,” Nanotechnology 22(30), 305306 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Nature (2)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref] [PubMed]

Opt. Express (4)

Philos. Trans. R. Soc. London, Sect. A (1)

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Sect. A 3, 385–420 (1904).

Photonics and Nanostructures: Fundamentals and Applications (1)

I. Maksymov, J. Ferré-Borrull, J. Pallarès, and L. F. Marsal, “Photonic stop bands in quasi-random nanoporous anodic alumina structures,” Photonics and Nanostructures: Fundamentals and Applications 10, 459–462 (2012).

Phys. Rev. Lett. (1)

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103(6), 063903 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

J. P. Vigneron, V. Lousse, L. P. Biró, Z. Vértesy, and Z. Bálint, “Reflectance of topologically disordered photonic-crystal films,” Proc. SPIE 5733, 308–315 (2005).
[Crossref]

Sci Rep (1)

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci Rep 2, 681 (2012).
[Crossref] [PubMed]

Science (1)

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, “Disorder-enhanced transport in photonic quasicrystals,” Science 332(6037), 1541–1544 (2011).
[Crossref] [PubMed]

Other (3)

J. P. Hugonin and P. Lalanne, Reticolo software for grating analysis, see www.lp2n.institutoptique.fr

N. Matsapey, “Rendu visual de surfaces nanostructurées: effet de l’ordre à courte distance,” thèse de doctorat en sciences, École Nationale Supérieure des Mines de Saint-Étienne (2013).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Top view of SEM measurement results of our fabricated partially ordered nanoporous alumina film on aluminum substrate, (b) side view of a fractured part of the same sample and (c) 3D-scheme of the porous morphology.
Fig. 2
Fig. 2 Experimental specular reflectance of the here studied sample for an incidence angle equal to 45° (dashed red curve) and calculated specular reflectance considering the Maxwell-Garnett homogenization model (MGHM, solid blue curve) for porous alumina film.
Fig. 3
Fig. 3 (a) An elementary RCWA cell in the case of a perfectly hexagonal structure and (b) an elementary RCWA cell in the case of a disturbed structure. The small white dotted lines are guides for the eyes to show the displacing of the pores from the hexagonal structure.
Fig. 4
Fig. 4 (All solid curves) Simulated reflectance spectra for a RCWA elementary cell consisting of N = 25 nanopores, with the standard deviation σ cl' increasing from 0 nm to 50 nm in steps of 10 nm. Each spectrum is calculated for P = 30 random drawings of the elementary cell, for TE and TM polarizations and with a number of Fourier harmonics Nharm = 4N respectively, and finally averaged. The dotted red curve corresponds to the experimental data.
Fig. 5
Fig. 5 (All solid curves) Simulated reflectance spectra for a RCWA elementary cell consisting of N = 25 nanopores, with the standard deviation σ r' of the nanopores radius increasing from 0 nm to 25 nm in steps of 5 nm. Each spectrum is calculated for P = 30 random drawings of the elementary cell, for TE and TM polarizations and with a number of Fourier harmonics Nharm = 4N respectively, and finally averaged. The dotted red curve corresponds to the experimental data.
Fig. 6
Fig. 6 (Blue solid curve) Simulated reflectance spectrum for an elementary cell consisting of N = 25 nanopores, with a standard deviation σ = 26.4 nm corresponding to the standard deviation of the left and right side walls of the alumina nanopores. Each spectrum is calculated for P = 30 random drawings of the RCWA elementary cell, for TE and TM polarizations and with a number of Fourier harmonics Nharm = 4N respectively, and finally averaged. The dotted red curve corresponds to the experimental data.
Fig. 7
Fig. 7 (All solid curves) Simulated reflectance spectra for an elementary cell consisting of N = 25 big nanopores with a standard deviation σ = 26.4 nm corresponding to the standard deviation of the left and right side walls of the alumina nanopores. We also introduced in the model small nanopores with a radius rs’ = 22.7nm between each pair of neighboring big nanopores. Each spectrum is calculated for P = 30 random drawings of the RCWA elementary cell, for TE (black curve) and TM (brown curve) polarizations and with a number of Fourier harmonics Nharm = 4N respectively, and finally averaged over the random drawings. The blue curve corresponds to the additional average over polarization. The dotted red curve corresponds to the experimental data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eqv 2 n Al2O3 2 n eqv 2 +2 n Al2O3 2 = f s n air 2 n Al2O3 2 n air 2 +2 n Al2O3 2 .

Metrics