Abstract

We analyze the dynamics of mode-locked pumped solid-state lasers focusing on the transition between mode-locked and CW behavior. Where the ratio of the pump and laser cavity lengths is a rational number, ‘rational-harmonic mode-locking’ is obtained. When the cavity length is detuned away from such resonances, modulated continuous output is generated. The transition from mode-locked to modulated CW operation is explored experimentally for a Ce:LiCAF laser operating at 290 nm and pumped by a 78.75 MHz mode-locked frequency quadrupled Nd:YVO4 laser. Both CW output and mode-locked output with pulse repetition rates up to 1.1 GHz were achieved. A rate equation model is developed to predict optimum cavity lengths for achieving CW output with minimized modulation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Exploiting concave-convex linear resonators to design end-pumped solid-state lasers with flexible cavity lengths: Application for exploring the self-mode-locked operation

P. H. Tuan, C. C. Chang, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen
Opt. Express 24(23) 26024-26034 (2016)

Low-cost, broadly tunable (375–433 nm & 746–887 nm) Cr:LiCAF laser pumped by one single-spatial-mode diode

Umit Demirbas, Reinhard Uecker, Detlef Klimm, and Jing Wang
Appl. Opt. 51(35) 8440-8448 (2012)

Improvement of coupled-cavity mode locking of continuous-wave solid-state lasers by a resonant nonlinearity

V. L. Kalashnikov, V. P. Kalosha, and V. P. Mikhailov
J. Opt. Soc. Am. B 11(8) 1445-1450 (1994)

References

  • View by:
  • |
  • |
  • |

  1. Q. Fu, G. Mak, and H. M. van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser,” Opt. Lett. 17(14), 1006–1008 (1992).
    [Crossref] [PubMed]
  2. H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B 60(5), 411–420 (1995).
    [Crossref]
  3. G. A. Mourou and T. Sizer, “Generation of pulses shorter than 70 fs with a synchronously-pumped cw dye laser,” Opt. Commun. 41(1), 47–48 (1982).
    [Crossref]
  4. C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
    [Crossref]
  5. C. D. Marshall, J. A. Speth, S. A. Payne, W. F. Krupke, G. J. Quarles, V. Castillo, and B. H. Chai, “Ultraviolet laser emission properties of Ce3+-doped LiSrAlF6 and LiCaAlF6,” J. Opt. Soc. Am. B 11(10), 2054–2065 (1994).
    [Crossref]
  6. N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
    [Crossref]
  7. D. Alderighi, G. Toci, M. Vannini, D. Parisi, S. Bigotta, and M. Tonelli, “High efficiency UV solid state lasers based on Ce: LiCaAlF6 crystals,” Appl. Phys. B 83(1), 51–54 (2006).
    [Crossref]
  8. D. J. Spence, H. Liu, and D. W. Coutts, “Low-threshold miniature Ce:LiCAF lasers,” Opt. Commun. 262(2), 238–240 (2006).
    [Crossref]
  9. D. W. Coutts and A. J. McGonigle, “Cerium-doped fluoride lasers,” IEEE J. Quantum Electron. 40(10), 1430–1440 (2004).
    [Crossref]
  10. Z. Liu, K. Shimamura, T. Fukuda, T. Kozeki, Y. Suzuki, and N. Sarukura, “High-energy pulse generation from solid-state ultraviolet lasers using large Ce: fluoride crystals,” Opt. Mater. 19(1), 123–128 (2002).
    [Crossref]
  11. S. Ono, Y. Suzuki, T. Kozeki, H. Murakami, H. Ohtake, N. Sarukura, H. Sato, S. Machida, K. Shimamura, and T. Fukuda, “High-energy, all-solid-state, ultraviolet laser power-amplifier module design and its output-energy scaling principle,” Appl. Opt. 41(36), 7556–7560 (2002).
    [Crossref] [PubMed]
  12. V. A. Fromzel and C. R. Prasad, “A tunable, narrow linewidth, 1 kHz Ce: LiCAF laser with 46% efficiency,” In 2003OSA Topical Meeting on Advanced Solid-State Photonics (ASSP) (Trends in Optics and Photonics Series) p. 203. (Optical Society of America, February 2003, San Antonio, Tex.).
  13. E. Granados, D. W. Coutts, and D. J. Spence, “Mode-locked deep ultraviolet Ce:LiCAF laser,” Opt. Lett. 34(11), 1660–1662 (2009).
    [Crossref] [PubMed]
  14. B. Wellmann, D. J. Spence, and D. W. Coutts, “Tunable continuous-wave deep-ultraviolet laser based on Ce:LiCAF,” Opt. Lett. 39(5), 1306–1309 (2014).
    [Crossref] [PubMed]
  15. J. Farey, “LXXIX. On a curious property of vulgar fractions,” Philos. Mag. 47(217), 385–386 (1816).
  16. A. Zavadilová, V. Kubeček, and J. Šulc, “Pulse repetition rate multiplication in an intracavity synchronously pumped ring optical parametrical oscillator,” Laser Phys. Lett. 10(11), 115401 (2013).
    [Crossref]
  17. J. P. Zheng, U. Sen, D. M. Benenson, and H. S. Kwok, “Observation of periodicity multiplication in a synchronously pumped dye laser,” Opt. Lett. 11(10), 632–634 (1986).
    [Crossref] [PubMed]
  18. H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
    [Crossref]
  19. J. Lee and J. H. Lee, “Experimental investigation of the cavity modulation frequency detuning effect in an active harmonically mode-locked fiber laser,” J. Opt. Soc. Am. B 30(6), 1479–1485 (2013).

2014 (1)

2013 (2)

J. Lee and J. H. Lee, “Experimental investigation of the cavity modulation frequency detuning effect in an active harmonically mode-locked fiber laser,” J. Opt. Soc. Am. B 30(6), 1479–1485 (2013).

A. Zavadilová, V. Kubeček, and J. Šulc, “Pulse repetition rate multiplication in an intracavity synchronously pumped ring optical parametrical oscillator,” Laser Phys. Lett. 10(11), 115401 (2013).
[Crossref]

2009 (1)

2006 (2)

D. Alderighi, G. Toci, M. Vannini, D. Parisi, S. Bigotta, and M. Tonelli, “High efficiency UV solid state lasers based on Ce: LiCaAlF6 crystals,” Appl. Phys. B 83(1), 51–54 (2006).
[Crossref]

D. J. Spence, H. Liu, and D. W. Coutts, “Low-threshold miniature Ce:LiCAF lasers,” Opt. Commun. 262(2), 238–240 (2006).
[Crossref]

2004 (1)

D. W. Coutts and A. J. McGonigle, “Cerium-doped fluoride lasers,” IEEE J. Quantum Electron. 40(10), 1430–1440 (2004).
[Crossref]

2002 (2)

Z. Liu, K. Shimamura, T. Fukuda, T. Kozeki, Y. Suzuki, and N. Sarukura, “High-energy pulse generation from solid-state ultraviolet lasers using large Ce: fluoride crystals,” Opt. Mater. 19(1), 123–128 (2002).
[Crossref]

S. Ono, Y. Suzuki, T. Kozeki, H. Murakami, H. Ohtake, N. Sarukura, H. Sato, S. Machida, K. Shimamura, and T. Fukuda, “High-energy, all-solid-state, ultraviolet laser power-amplifier module design and its output-energy scaling principle,” Appl. Opt. 41(36), 7556–7560 (2002).
[Crossref] [PubMed]

2000 (1)

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[Crossref]

1995 (2)

H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B 60(5), 411–420 (1995).
[Crossref]

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

1994 (1)

1992 (1)

1986 (1)

1982 (1)

G. A. Mourou and T. Sizer, “Generation of pulses shorter than 70 fs with a synchronously-pumped cw dye laser,” Opt. Commun. 41(1), 47–48 (1982).
[Crossref]

1972 (1)

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

1816 (1)

J. Farey, “LXXIX. On a curious property of vulgar fractions,” Philos. Mag. 47(217), 385–386 (1816).

Abdulsabirov, R. Y.

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

Alderighi, D.

D. Alderighi, G. Toci, M. Vannini, D. Parisi, S. Bigotta, and M. Tonelli, “High efficiency UV solid state lasers based on Ce: LiCaAlF6 crystals,” Appl. Phys. B 83(1), 51–54 (2006).
[Crossref]

Benenson, D. M.

Bigotta, S.

D. Alderighi, G. Toci, M. Vannini, D. Parisi, S. Bigotta, and M. Tonelli, “High efficiency UV solid state lasers based on Ce: LiCaAlF6 crystals,” Appl. Phys. B 83(1), 51–54 (2006).
[Crossref]

Castillo, V.

Chai, B. H.

Coutts, D. W.

B. Wellmann, D. J. Spence, and D. W. Coutts, “Tunable continuous-wave deep-ultraviolet laser based on Ce:LiCAF,” Opt. Lett. 39(5), 1306–1309 (2014).
[Crossref] [PubMed]

E. Granados, D. W. Coutts, and D. J. Spence, “Mode-locked deep ultraviolet Ce:LiCAF laser,” Opt. Lett. 34(11), 1660–1662 (2009).
[Crossref] [PubMed]

D. J. Spence, H. Liu, and D. W. Coutts, “Low-threshold miniature Ce:LiCAF lasers,” Opt. Commun. 262(2), 238–240 (2006).
[Crossref]

D. W. Coutts and A. J. McGonigle, “Cerium-doped fluoride lasers,” IEEE J. Quantum Electron. 40(10), 1430–1440 (2004).
[Crossref]

Dienes, A.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

Dubinskii, M. A.

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

Dutta, N. K.

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[Crossref]

Edamatsu, K.

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

Farey, J.

J. Farey, “LXXIX. On a curious property of vulgar fractions,” Philos. Mag. 47(217), 385–386 (1816).

Fu, Q.

Fukuda, T.

S. Ono, Y. Suzuki, T. Kozeki, H. Murakami, H. Ohtake, N. Sarukura, H. Sato, S. Machida, K. Shimamura, and T. Fukuda, “High-energy, all-solid-state, ultraviolet laser power-amplifier module design and its output-energy scaling principle,” Appl. Opt. 41(36), 7556–7560 (2002).
[Crossref] [PubMed]

Z. Liu, K. Shimamura, T. Fukuda, T. Kozeki, Y. Suzuki, and N. Sarukura, “High-energy pulse generation from solid-state ultraviolet lasers using large Ce: fluoride crystals,” Opt. Mater. 19(1), 123–128 (2002).
[Crossref]

Granados, E.

Ippen, E. P.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

Itoh, T.

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

Kogelnik, H.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

Korableva, S. L.

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

Kozeki, T.

Z. Liu, K. Shimamura, T. Fukuda, T. Kozeki, Y. Suzuki, and N. Sarukura, “High-energy pulse generation from solid-state ultraviolet lasers using large Ce: fluoride crystals,” Opt. Mater. 19(1), 123–128 (2002).
[Crossref]

S. Ono, Y. Suzuki, T. Kozeki, H. Murakami, H. Ohtake, N. Sarukura, H. Sato, S. Machida, K. Shimamura, and T. Fukuda, “High-energy, all-solid-state, ultraviolet laser power-amplifier module design and its output-energy scaling principle,” Appl. Opt. 41(36), 7556–7560 (2002).
[Crossref] [PubMed]

Krupke, W. F.

Kubecek, V.

A. Zavadilová, V. Kubeček, and J. Šulc, “Pulse repetition rate multiplication in an intracavity synchronously pumped ring optical parametrical oscillator,” Laser Phys. Lett. 10(11), 115401 (2013).
[Crossref]

Kwok, H. S.

Lee, J.

Lee, J. H.

Liu, H.

D. J. Spence, H. Liu, and D. W. Coutts, “Low-threshold miniature Ce:LiCAF lasers,” Opt. Commun. 262(2), 238–240 (2006).
[Crossref]

Liu, Z.

Z. Liu, K. Shimamura, T. Fukuda, T. Kozeki, Y. Suzuki, and N. Sarukura, “High-energy pulse generation from solid-state ultraviolet lasers using large Ce: fluoride crystals,” Opt. Mater. 19(1), 123–128 (2002).
[Crossref]

Machida, S.

Mak, G.

Marshall, C. D.

McGonigle, A. J.

D. W. Coutts and A. J. McGonigle, “Cerium-doped fluoride lasers,” IEEE J. Quantum Electron. 40(10), 1430–1440 (2004).
[Crossref]

Mourou, G. A.

G. A. Mourou and T. Sizer, “Generation of pulses shorter than 70 fs with a synchronously-pumped cw dye laser,” Opt. Commun. 41(1), 47–48 (1982).
[Crossref]

Murakami, H.

Naumov, A. K.

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

Ohtake, H.

Ono, S.

Parisi, D.

D. Alderighi, G. Toci, M. Vannini, D. Parisi, S. Bigotta, and M. Tonelli, “High efficiency UV solid state lasers based on Ce: LiCaAlF6 crystals,” Appl. Phys. B 83(1), 51–54 (2006).
[Crossref]

Payne, S. A.

Quarles, G. J.

Sarukura, N.

S. Ono, Y. Suzuki, T. Kozeki, H. Murakami, H. Ohtake, N. Sarukura, H. Sato, S. Machida, K. Shimamura, and T. Fukuda, “High-energy, all-solid-state, ultraviolet laser power-amplifier module design and its output-energy scaling principle,” Appl. Opt. 41(36), 7556–7560 (2002).
[Crossref] [PubMed]

Z. Liu, K. Shimamura, T. Fukuda, T. Kozeki, Y. Suzuki, and N. Sarukura, “High-energy pulse generation from solid-state ultraviolet lasers using large Ce: fluoride crystals,” Opt. Mater. 19(1), 123–128 (2002).
[Crossref]

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

Sato, H.

Segawa, Y.

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

Semashko, V. V.

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

Sen, U.

Shank, C. V.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

Shimamura, K.

S. Ono, Y. Suzuki, T. Kozeki, H. Murakami, H. Ohtake, N. Sarukura, H. Sato, S. Machida, K. Shimamura, and T. Fukuda, “High-energy, all-solid-state, ultraviolet laser power-amplifier module design and its output-energy scaling principle,” Appl. Opt. 41(36), 7556–7560 (2002).
[Crossref] [PubMed]

Z. Liu, K. Shimamura, T. Fukuda, T. Kozeki, Y. Suzuki, and N. Sarukura, “High-energy pulse generation from solid-state ultraviolet lasers using large Ce: fluoride crystals,” Opt. Mater. 19(1), 123–128 (2002).
[Crossref]

Sizer, T.

G. A. Mourou and T. Sizer, “Generation of pulses shorter than 70 fs with a synchronously-pumped cw dye laser,” Opt. Commun. 41(1), 47–48 (1982).
[Crossref]

Spence, D. J.

Speth, J. A.

Šulc, J.

A. Zavadilová, V. Kubeček, and J. Šulc, “Pulse repetition rate multiplication in an intracavity synchronously pumped ring optical parametrical oscillator,” Laser Phys. Lett. 10(11), 115401 (2013).
[Crossref]

Suzuki, Y.

Z. Liu, K. Shimamura, T. Fukuda, T. Kozeki, Y. Suzuki, and N. Sarukura, “High-energy pulse generation from solid-state ultraviolet lasers using large Ce: fluoride crystals,” Opt. Mater. 19(1), 123–128 (2002).
[Crossref]

S. Ono, Y. Suzuki, T. Kozeki, H. Murakami, H. Ohtake, N. Sarukura, H. Sato, S. Machida, K. Shimamura, and T. Fukuda, “High-energy, all-solid-state, ultraviolet laser power-amplifier module design and its output-energy scaling principle,” Appl. Opt. 41(36), 7556–7560 (2002).
[Crossref] [PubMed]

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

Toci, G.

D. Alderighi, G. Toci, M. Vannini, D. Parisi, S. Bigotta, and M. Tonelli, “High efficiency UV solid state lasers based on Ce: LiCaAlF6 crystals,” Appl. Phys. B 83(1), 51–54 (2006).
[Crossref]

Tonelli, M.

D. Alderighi, G. Toci, M. Vannini, D. Parisi, S. Bigotta, and M. Tonelli, “High efficiency UV solid state lasers based on Ce: LiCaAlF6 crystals,” Appl. Phys. B 83(1), 51–54 (2006).
[Crossref]

van Driel, H. M.

Vannini, M.

D. Alderighi, G. Toci, M. Vannini, D. Parisi, S. Bigotta, and M. Tonelli, “High efficiency UV solid state lasers based on Ce: LiCaAlF6 crystals,” Appl. Phys. B 83(1), 51–54 (2006).
[Crossref]

Wellmann, B.

Wu, C.

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[Crossref]

Zavadilová, A.

A. Zavadilová, V. Kubeček, and J. Šulc, “Pulse repetition rate multiplication in an intracavity synchronously pumped ring optical parametrical oscillator,” Laser Phys. Lett. 10(11), 115401 (2013).
[Crossref]

Zheng, J. P.

Zhenlin, L.

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B 60(5), 411–420 (1995).
[Crossref]

D. Alderighi, G. Toci, M. Vannini, D. Parisi, S. Bigotta, and M. Tonelli, “High efficiency UV solid state lasers based on Ce: LiCaAlF6 crystals,” Appl. Phys. B 83(1), 51–54 (2006).
[Crossref]

IEEE J. Quantum Electron. (3)

D. W. Coutts and A. J. McGonigle, “Cerium-doped fluoride lasers,” IEEE J. Quantum Electron. 40(10), 1430–1440 (2004).
[Crossref]

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[Crossref]

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Sarukura, M. A. Dubinskii, L. Zhenlin, V. V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1(3), 792–804 (1995).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

A. Zavadilová, V. Kubeček, and J. Šulc, “Pulse repetition rate multiplication in an intracavity synchronously pumped ring optical parametrical oscillator,” Laser Phys. Lett. 10(11), 115401 (2013).
[Crossref]

Opt. Commun. (2)

G. A. Mourou and T. Sizer, “Generation of pulses shorter than 70 fs with a synchronously-pumped cw dye laser,” Opt. Commun. 41(1), 47–48 (1982).
[Crossref]

D. J. Spence, H. Liu, and D. W. Coutts, “Low-threshold miniature Ce:LiCAF lasers,” Opt. Commun. 262(2), 238–240 (2006).
[Crossref]

Opt. Lett. (4)

Opt. Mater. (1)

Z. Liu, K. Shimamura, T. Fukuda, T. Kozeki, Y. Suzuki, and N. Sarukura, “High-energy pulse generation from solid-state ultraviolet lasers using large Ce: fluoride crystals,” Opt. Mater. 19(1), 123–128 (2002).
[Crossref]

Philos. Mag. (1)

J. Farey, “LXXIX. On a curious property of vulgar fractions,” Philos. Mag. 47(217), 385–386 (1816).

Other (1)

V. A. Fromzel and C. R. Prasad, “A tunable, narrow linewidth, 1 kHz Ce: LiCAF laser with 46% efficiency,” In 2003OSA Topical Meeting on Advanced Solid-State Photonics (ASSP) (Trends in Optics and Photonics Series) p. 203. (Optical Society of America, February 2003, San Antonio, Tex.).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Comparison of pulse timing for different cavity lengths. (a) The pump pulse train arriving at the laser crystal. The green line represents the gain curve. (b) The laser pulse train of the 3rd harmonic of the pump. There is one pulse in the cavity which is synchronized with a pump pulse every 3rd round-trip. (c) The laser pulse train for the ‘5/2 harmonic’. There are two pulses in the cavity (represented by the black and red arrows, arbitrarily drawn with different heights to distinguish them), each synchronous with a pump pulse every 5th round-trip.
Fig. 2
Fig. 2 A visualization of harmonics as a function of the normalized cavity length (l / lpump y/x). The vertical axis is the normalized laser repetition rate R/Rpump = x. The plot includes all harmonics for which x ≤ 100, and y/x ≤ 0.5. The solid lines connect harmonics with the same y thus having the same number of intracavity pulses. Harmonic points marked are explored in detail later in this paper.
Fig. 3
Fig. 3 Schematic of the Ce:LiCAF laser cavity. CM1: dichroic input coupling cavity mirror with a radius of curvature (ROC) = 5 cm; CM2: high reflective (HR) cavity mirror with ROC = 10 cm; OPC: output coupler; CM3: HR plane cavity mirror.
Fig. 4
Fig. 4 Measured and simulated slope efficiencies, for a cavity length of 0.754 m (120 mm mismatched from the 3rd harmonic), where CW laser output with a modulation of just ± 1% for frequencies below 1 GHz was obtained.
Fig. 5
Fig. 5 Time domain measurement of a selection of rational harmonics, showing full modulation of the cerium laser cavity field overlapped with the schematic diagram showing the pulse timing for the pump laser and the harmonics. For each harmonic, each of the distinct pulses within the laser cavity is marked with a different color, with one arbitrarily marked taller to assist the reader.
Fig. 6
Fig. 6 Modulation depth of the laser output from numerical simulation as a function of cavity length mismatch Δl, showing a set of higher harmonics interspersed by regions of lower modulation. The location of harmonics with x < 390 are indicated near the x-axis. The harmonic labels marked with a square correspond to the points marked with a square in Fig. 2.
Fig. 7
Fig. 7 Measured and simulated laser output fluctuation as a function of the cavity length mismatch. These points cover normalized cavity lengths from 0.3333 to 0.3964.
Fig. 8
Fig. 8 Measured and simulated laser output for a cavity length Δl of 120 mm, for a Ce:LiCAF laser - the modulation is of the order of 1% for frequencies below 1 GHz and 4% on faster timescales.

Tables (1)

Tables Icon

Table 1 Input variables for the numerical model used for simulating the Ce:LiCAF laser.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dN dt = P P abs (t) e p σ em N( I L + + I L ) e l N τ
d I L ± = σ eff N I L ± An ,
d I L opc =( T opc +L) I L opc .
P L = T opc I L opc An.
ΔG= 1 2 r( T opc +L) 1 R pump τ

Metrics