Abstract

Spectroscopic characterization of Fe:ZnSe(Cr:ZnSe) crystals under visible excitation into the charge transfer bands of Transition Metal ions were studied. The excitation efficiencies of mid-IR photoluminescence between 5T2(5E) and 5E(5T2) states via direct relaxation to the upper laser levels and via metastable upper 3T1 were investigated. It was demonstrated that the latter route is the dominant process for Cr2+ ions and could provide sufficient pump rate for mid-IR lasing. The pump efficiencies via direct relaxation to the upper laser levels were estimated to be <2% for both ions under 532 nm excitation wavelength.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited]

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev
Opt. Mater. Express 1(5) 898-910 (2011)

Crystal field engineering of transition metal doped II-VI ternary and quaternary semiconductors for mid-IR tunable laser applications

A.D. Martinez, D.V. Martyshkin, R.P. Camata, V.V. Fedorov, and S.B. Mirov
Opt. Mater. Express 5(9) 2036-2046 (2015)

Electrical, spectroscopic, and laser characterization of γ-irradiated transition metal doped II-VI semiconductors

Tetyana Konak, Michael Tekavec, Vladimir V. Fedorov, and Sergey B. Mirov
Opt. Mater. Express 3(6) 777-786 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
    [Crossref]
  2. S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited],” Opt. Mater. Express 1(5), 898–910 (2011).
    [Crossref]
  3. S. Mirov, V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
    [Crossref]
  4. V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
    [Crossref]
  5. N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Mid-IR lasing of iron–cobalt co-doped ZnS(Se) crystals via Co–Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
    [Crossref]
  6. J. Peppers, N. Myoung, V. V. Fedorov, and S. B. Mirov, “Mid-IR laser oscillation via energy transfer in the Co:Fe:ZnS/Se co-doped crystals,” Proc. SPIE 8235, 823503 (2012).
    [Crossref]
  7. V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 125(1–2), 184–195 (2007).
    [Crossref]
  8. C. I. Rablau, “Photoluminescence and optical absorption spectroscopy of infrared materials Cr2+:Znse and ZnGeP2,” Ph.D. dissertation, West Virginia University, Morgantown, West Virginia (1999).
  9. M. Surma, A. J. Zakrzewski, and M. Godlewski, “Nonradiative recombination processes in nickel- and iron-doped ZnS and ZnSe studied by photoinduced electron-spin resonance,” Phys. Rev. B Condens. Matter 52(16), 11879–11883 (1995).
    [Crossref] [PubMed]
  10. V. Yu. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “Anti-Stokes luminescence in chromium-doped ZnSe,” Phys. Rev. B Condens. Matter 54(7), 4696–4701 (1996).
    [Crossref] [PubMed]
  11. M. Godlewski, “On the application of the photo-EPR technique to the studies of photoionization, DAP recombination, and non-radiative recombination processes,” Phys. Status Solidi A 90(1), 11–52 (1985).
    [Crossref]
  12. J. Kreissl and H.-J. Schulz, “Transition-metal impurities in II-VI semiconductors: characterization and switching of charge states,” J. Cryst. Growth 161(1–4), 239–249 (1996).
    [Crossref]
  13. M. Godlewski and M. Skowronski, “Effective deactivation of the ZnS visible photoluminescence by iron impurities,” Phys. Rev. B Condens. Matter 32(6), 4007–4013 (1985).
    [Crossref] [PubMed]
  14. V. V. Fedorov, T. Konak, J. Dashdorj, M. E. Zvanut, and S. B. Mirov, “Optical and EPR spectroscopy of Zn:Cr:ZnSe and Zn:Fe:ZnSe crystals,” Opt. Mater. 37, 262–266 (2014).
    [Crossref]
  15. N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
    [Crossref]
  16. A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
    [Crossref]
  17. M. Skowronski, Z. Liro, and W. Palosz, “Uniaxial stress effect on no-phonon lines of 3T1 to 5E transitions in ZnS:Fe,” J. Phys. Chem. 18(26), 5099–5110 (1985).
  18. K. P. O’Donnell, K. M. Lee, and G. D. Watkins, “An ODMR study of a luminescence excitation process in ZnSe:Fe,” J. Phys. Chem. 16(20), L723 (1983).
  19. A. Zakrzewski and M. Godlewski, “Direct evidence of three-center-Auger recombination processes in ZnS:Cu,Fe,” Phys. Rev. B Condens. Matter 34(12), 8993–8995 (1986).
    [Crossref] [PubMed]
  20. K. Swiatek, M. Godlewski, and T. P. Surkova, “Fe photoionization transitions in ZnSSe:Fe crystals – photo-ESR studies,” Phys. Status Solidi C 2(3), 1224–1227 (2005).
    [Crossref]
  21. F. Träger, Springer Handbook of Lasers and Optics, (Springer Science + Business Media, 2007).
  22. S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72(5), 515–562 (2001).
    [Crossref]
  23. C. I. Rablau, J. O. Ndap, X. Ma, A. Burger, and N. C. Giles, “Absorption and photoluminescence spectroscopy of diffusion-doped ZnSe:Cr2+,” J. Electron. Mater. 28(6), 678–682 (1999).
    [Crossref]
  24. M. U. Lehr, B. Litzenburger, J. Kreiss, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, “Identification of near-infrared Cr2+ luminescence in ZnSe,” J. Phys. Condens. Matter 9(3), 753–763 (1997).
    [Crossref]
  25. V. Yu. Ivanov, M. Godlewski, and T. Gregorkiewicz, “Two-colour spectroscopy of ZnSe:Cr,” Phys. Status Solidi B 244(5), 1618–1622 (2007).
    [Crossref]
  26. G. Grebe, G. Roussos, and H.-J. Schulz, “Cr2+ excitation levels in ZnSe and ZnS,” J. Phys. Chem. 9(24), 4511–4516 (1976).

2015 (1)

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

2014 (1)

V. V. Fedorov, T. Konak, J. Dashdorj, M. E. Zvanut, and S. B. Mirov, “Optical and EPR spectroscopy of Zn:Cr:ZnSe and Zn:Fe:ZnSe crystals,” Opt. Mater. 37, 262–266 (2014).
[Crossref]

2013 (1)

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Mid-IR lasing of iron–cobalt co-doped ZnS(Se) crystals via Co–Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

2012 (2)

J. Peppers, N. Myoung, V. V. Fedorov, and S. B. Mirov, “Mid-IR laser oscillation via energy transfer in the Co:Fe:ZnS/Se co-doped crystals,” Proc. SPIE 8235, 823503 (2012).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

2011 (1)

2010 (2)

S. Mirov, V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

2007 (2)

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 125(1–2), 184–195 (2007).
[Crossref]

V. Yu. Ivanov, M. Godlewski, and T. Gregorkiewicz, “Two-colour spectroscopy of ZnSe:Cr,” Phys. Status Solidi B 244(5), 1618–1622 (2007).
[Crossref]

2005 (1)

K. Swiatek, M. Godlewski, and T. P. Surkova, “Fe photoionization transitions in ZnSSe:Fe crystals – photo-ESR studies,” Phys. Status Solidi C 2(3), 1224–1227 (2005).
[Crossref]

2001 (2)

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72(5), 515–562 (2001).
[Crossref]

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

1999 (1)

C. I. Rablau, J. O. Ndap, X. Ma, A. Burger, and N. C. Giles, “Absorption and photoluminescence spectroscopy of diffusion-doped ZnSe:Cr2+,” J. Electron. Mater. 28(6), 678–682 (1999).
[Crossref]

1997 (1)

M. U. Lehr, B. Litzenburger, J. Kreiss, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, “Identification of near-infrared Cr2+ luminescence in ZnSe,” J. Phys. Condens. Matter 9(3), 753–763 (1997).
[Crossref]

1996 (2)

V. Yu. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “Anti-Stokes luminescence in chromium-doped ZnSe,” Phys. Rev. B Condens. Matter 54(7), 4696–4701 (1996).
[Crossref] [PubMed]

J. Kreissl and H.-J. Schulz, “Transition-metal impurities in II-VI semiconductors: characterization and switching of charge states,” J. Cryst. Growth 161(1–4), 239–249 (1996).
[Crossref]

1995 (1)

M. Surma, A. J. Zakrzewski, and M. Godlewski, “Nonradiative recombination processes in nickel- and iron-doped ZnS and ZnSe studied by photoinduced electron-spin resonance,” Phys. Rev. B Condens. Matter 52(16), 11879–11883 (1995).
[Crossref] [PubMed]

1986 (1)

A. Zakrzewski and M. Godlewski, “Direct evidence of three-center-Auger recombination processes in ZnS:Cu,Fe,” Phys. Rev. B Condens. Matter 34(12), 8993–8995 (1986).
[Crossref] [PubMed]

1985 (3)

M. Godlewski and M. Skowronski, “Effective deactivation of the ZnS visible photoluminescence by iron impurities,” Phys. Rev. B Condens. Matter 32(6), 4007–4013 (1985).
[Crossref] [PubMed]

M. Godlewski, “On the application of the photo-EPR technique to the studies of photoionization, DAP recombination, and non-radiative recombination processes,” Phys. Status Solidi A 90(1), 11–52 (1985).
[Crossref]

M. Skowronski, Z. Liro, and W. Palosz, “Uniaxial stress effect on no-phonon lines of 3T1 to 5E transitions in ZnS:Fe,” J. Phys. Chem. 18(26), 5099–5110 (1985).

1983 (1)

K. P. O’Donnell, K. M. Lee, and G. D. Watkins, “An ODMR study of a luminescence excitation process in ZnSe:Fe,” J. Phys. Chem. 16(20), L723 (1983).

1976 (1)

G. Grebe, G. Roussos, and H.-J. Schulz, “Cr2+ excitation levels in ZnSe and ZnS,” J. Phys. Chem. 9(24), 4511–4516 (1976).

Akimov, V. A.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Burger, A.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

C. I. Rablau, J. O. Ndap, X. Ma, A. Burger, and N. C. Giles, “Absorption and photoluminescence spectroscopy of diffusion-doped ZnSe:Cr2+,” J. Electron. Mater. 28(6), 678–682 (1999).
[Crossref]

Chattopadhyay, K.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

Dashdorj, J.

V. V. Fedorov, T. Konak, J. Dashdorj, M. E. Zvanut, and S. B. Mirov, “Optical and EPR spectroscopy of Zn:Cr:ZnSe and Zn:Fe:ZnSe crystals,” Opt. Mater. 37, 262–266 (2014).
[Crossref]

Fedorov, V.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

S. Mirov, V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Fedorov, V. V.

V. V. Fedorov, T. Konak, J. Dashdorj, M. E. Zvanut, and S. B. Mirov, “Optical and EPR spectroscopy of Zn:Cr:ZnSe and Zn:Fe:ZnSe crystals,” Opt. Mater. 37, 262–266 (2014).
[Crossref]

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Mid-IR lasing of iron–cobalt co-doped ZnS(Se) crystals via Co–Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

J. Peppers, N. Myoung, V. V. Fedorov, and S. B. Mirov, “Mid-IR laser oscillation via energy transfer in the Co:Fe:ZnS/Se co-doped crystals,” Proc. SPIE 8235, 823503 (2012).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited],” Opt. Mater. Express 1(5), 898–910 (2011).
[Crossref]

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 125(1–2), 184–195 (2007).
[Crossref]

Feth, S.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

Frolov, M. P.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Gallian, A.

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 125(1–2), 184–195 (2007).
[Crossref]

Gapontsev, V. P.

Giles, N. C.

C. I. Rablau, J. O. Ndap, X. Ma, A. Burger, and N. C. Giles, “Absorption and photoluminescence spectroscopy of diffusion-doped ZnSe:Cr2+,” J. Electron. Mater. 28(6), 678–682 (1999).
[Crossref]

Godlewski, M.

V. Yu. Ivanov, M. Godlewski, and T. Gregorkiewicz, “Two-colour spectroscopy of ZnSe:Cr,” Phys. Status Solidi B 244(5), 1618–1622 (2007).
[Crossref]

K. Swiatek, M. Godlewski, and T. P. Surkova, “Fe photoionization transitions in ZnSSe:Fe crystals – photo-ESR studies,” Phys. Status Solidi C 2(3), 1224–1227 (2005).
[Crossref]

V. Yu. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “Anti-Stokes luminescence in chromium-doped ZnSe,” Phys. Rev. B Condens. Matter 54(7), 4696–4701 (1996).
[Crossref] [PubMed]

M. Surma, A. J. Zakrzewski, and M. Godlewski, “Nonradiative recombination processes in nickel- and iron-doped ZnS and ZnSe studied by photoinduced electron-spin resonance,” Phys. Rev. B Condens. Matter 52(16), 11879–11883 (1995).
[Crossref] [PubMed]

A. Zakrzewski and M. Godlewski, “Direct evidence of three-center-Auger recombination processes in ZnS:Cu,Fe,” Phys. Rev. B Condens. Matter 34(12), 8993–8995 (1986).
[Crossref] [PubMed]

M. Godlewski, “On the application of the photo-EPR technique to the studies of photoionization, DAP recombination, and non-radiative recombination processes,” Phys. Status Solidi A 90(1), 11–52 (1985).
[Crossref]

M. Godlewski and M. Skowronski, “Effective deactivation of the ZnS visible photoluminescence by iron impurities,” Phys. Rev. B Condens. Matter 32(6), 4007–4013 (1985).
[Crossref] [PubMed]

Grebe, G.

G. Grebe, G. Roussos, and H.-J. Schulz, “Cr2+ excitation levels in ZnSe and ZnS,” J. Phys. Chem. 9(24), 4511–4516 (1976).

Gregorkiewicz, T.

V. Yu. Ivanov, M. Godlewski, and T. Gregorkiewicz, “Two-colour spectroscopy of ZnSe:Cr,” Phys. Status Solidi B 244(5), 1618–1622 (2007).
[Crossref]

Ivanov, V. Yu.

V. Yu. Ivanov, M. Godlewski, and T. Gregorkiewicz, “Two-colour spectroscopy of ZnSe:Cr,” Phys. Status Solidi B 244(5), 1618–1622 (2007).
[Crossref]

V. Yu. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “Anti-Stokes luminescence in chromium-doped ZnSe,” Phys. Rev. B Condens. Matter 54(7), 4696–4701 (1996).
[Crossref] [PubMed]

Kim, C.

S. Mirov, V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Klimakow, A.

M. U. Lehr, B. Litzenburger, J. Kreiss, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, “Identification of near-infrared Cr2+ luminescence in ZnSe,” J. Phys. Condens. Matter 9(3), 753–763 (1997).
[Crossref]

Konak, T.

V. V. Fedorov, T. Konak, J. Dashdorj, M. E. Zvanut, and S. B. Mirov, “Optical and EPR spectroscopy of Zn:Cr:ZnSe and Zn:Fe:ZnSe crystals,” Opt. Mater. 37, 262–266 (2014).
[Crossref]

Korostelin, Yu. V.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Kozlovsky, V. I.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Kreiss, J.

M. U. Lehr, B. Litzenburger, J. Kreiss, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, “Identification of near-infrared Cr2+ luminescence in ZnSe,” J. Phys. Condens. Matter 9(3), 753–763 (1997).
[Crossref]

Kreissl, J.

J. Kreissl and H.-J. Schulz, “Transition-metal impurities in II-VI semiconductors: characterization and switching of charge states,” J. Cryst. Growth 161(1–4), 239–249 (1996).
[Crossref]

Kück, S.

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72(5), 515–562 (2001).
[Crossref]

Landman, A. I.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Lee, K. M.

K. P. O’Donnell, K. M. Lee, and G. D. Watkins, “An ODMR study of a luminescence excitation process in ZnSe:Fe,” J. Phys. Chem. 16(20), L723 (1983).

Lehr, M. U.

M. U. Lehr, B. Litzenburger, J. Kreiss, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, “Identification of near-infrared Cr2+ luminescence in ZnSe,” J. Phys. Condens. Matter 9(3), 753–763 (1997).
[Crossref]

Liro, Z.

M. Skowronski, Z. Liro, and W. Palosz, “Uniaxial stress effect on no-phonon lines of 3T1 to 5E transitions in ZnS:Fe,” J. Phys. Chem. 18(26), 5099–5110 (1985).

Litzenburger, B.

M. U. Lehr, B. Litzenburger, J. Kreiss, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, “Identification of near-infrared Cr2+ luminescence in ZnSe,” J. Phys. Condens. Matter 9(3), 753–763 (1997).
[Crossref]

Ma, X.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

C. I. Rablau, J. O. Ndap, X. Ma, A. Burger, and N. C. Giles, “Absorption and photoluminescence spectroscopy of diffusion-doped ZnSe:Cr2+,” J. Electron. Mater. 28(6), 678–682 (1999).
[Crossref]

Martovitsky, V. P.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Martyshkin, D.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

S. Mirov, V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Martyshkin, D. V.

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Mid-IR lasing of iron–cobalt co-doped ZnS(Se) crystals via Co–Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited],” Opt. Mater. Express 1(5), 898–910 (2011).
[Crossref]

Mirov, M.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

Mirov, M. S.

Mirov, S.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

S. Mirov, V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Mirov, S. B.

V. V. Fedorov, T. Konak, J. Dashdorj, M. E. Zvanut, and S. B. Mirov, “Optical and EPR spectroscopy of Zn:Cr:ZnSe and Zn:Fe:ZnSe crystals,” Opt. Mater. 37, 262–266 (2014).
[Crossref]

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Mid-IR lasing of iron–cobalt co-doped ZnS(Se) crystals via Co–Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

J. Peppers, N. Myoung, V. V. Fedorov, and S. B. Mirov, “Mid-IR laser oscillation via energy transfer in the Co:Fe:ZnS/Se co-doped crystals,” Proc. SPIE 8235, 823503 (2012).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited],” Opt. Mater. Express 1(5), 898–910 (2011).
[Crossref]

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 125(1–2), 184–195 (2007).
[Crossref]

Mislavskii, V. V.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Morgan, S. H.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

Moskalev, I.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 125(1–2), 184–195 (2007).
[Crossref]

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited],” Opt. Mater. Express 1(5), 898–910 (2011).
[Crossref]

S. Mirov, V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Myoung, N.

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Mid-IR lasing of iron–cobalt co-doped ZnS(Se) crystals via Co–Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

J. Peppers, N. Myoung, V. V. Fedorov, and S. B. Mirov, “Mid-IR laser oscillation via energy transfer in the Co:Fe:ZnS/Se co-doped crystals,” Proc. SPIE 8235, 823503 (2012).
[Crossref]

Ndap, J. O.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

C. I. Rablau, J. O. Ndap, X. Ma, A. Burger, and N. C. Giles, “Absorption and photoluminescence spectroscopy of diffusion-doped ZnSe:Cr2+,” J. Electron. Mater. 28(6), 678–682 (1999).
[Crossref]

O’Donnell, K. P.

K. P. O’Donnell, K. M. Lee, and G. D. Watkins, “An ODMR study of a luminescence excitation process in ZnSe:Fe,” J. Phys. Chem. 16(20), L723 (1983).

Page, R. H.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

Palosz, W.

M. Skowronski, Z. Liro, and W. Palosz, “Uniaxial stress effect on no-phonon lines of 3T1 to 5E transitions in ZnS:Fe,” J. Phys. Chem. 18(26), 5099–5110 (1985).

Payne, S. A.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

Peppers, J.

J. Peppers, N. Myoung, V. V. Fedorov, and S. B. Mirov, “Mid-IR laser oscillation via energy transfer in the Co:Fe:ZnS/Se co-doped crystals,” Proc. SPIE 8235, 823503 (2012).
[Crossref]

Podmar’kov, Y. P.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Pohl, U. W.

M. U. Lehr, B. Litzenburger, J. Kreiss, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, “Identification of near-infrared Cr2+ luminescence in ZnSe,” J. Phys. Condens. Matter 9(3), 753–763 (1997).
[Crossref]

Rablau, C. I.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

C. I. Rablau, J. O. Ndap, X. Ma, A. Burger, and N. C. Giles, “Absorption and photoluminescence spectroscopy of diffusion-doped ZnSe:Cr2+,” J. Electron. Mater. 28(6), 678–682 (1999).
[Crossref]

Roussos, G.

G. Grebe, G. Roussos, and H.-J. Schulz, “Cr2+ excitation levels in ZnSe and ZnS,” J. Phys. Chem. 9(24), 4511–4516 (1976).

Schaffers, K. I.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

Schulz, H.-J.

M. U. Lehr, B. Litzenburger, J. Kreiss, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, “Identification of near-infrared Cr2+ luminescence in ZnSe,” J. Phys. Condens. Matter 9(3), 753–763 (1997).
[Crossref]

J. Kreissl and H.-J. Schulz, “Transition-metal impurities in II-VI semiconductors: characterization and switching of charge states,” J. Cryst. Growth 161(1–4), 239–249 (1996).
[Crossref]

G. Grebe, G. Roussos, and H.-J. Schulz, “Cr2+ excitation levels in ZnSe and ZnS,” J. Phys. Chem. 9(24), 4511–4516 (1976).

Selber, H. R.

M. U. Lehr, B. Litzenburger, J. Kreiss, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, “Identification of near-infrared Cr2+ luminescence in ZnSe,” J. Phys. Condens. Matter 9(3), 753–763 (1997).
[Crossref]

Semenov, Y. G.

V. Yu. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “Anti-Stokes luminescence in chromium-doped ZnSe,” Phys. Rev. B Condens. Matter 54(7), 4696–4701 (1996).
[Crossref] [PubMed]

Skasyrsky, Y. K.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Skowronski, M.

M. Godlewski and M. Skowronski, “Effective deactivation of the ZnS visible photoluminescence by iron impurities,” Phys. Rev. B Condens. Matter 32(6), 4007–4013 (1985).
[Crossref] [PubMed]

M. Skowronski, Z. Liro, and W. Palosz, “Uniaxial stress effect on no-phonon lines of 3T1 to 5E transitions in ZnS:Fe,” J. Phys. Chem. 18(26), 5099–5110 (1985).

Su, C. H.

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

Surkova, T. P.

K. Swiatek, M. Godlewski, and T. P. Surkova, “Fe photoionization transitions in ZnSSe:Fe crystals – photo-ESR studies,” Phys. Status Solidi C 2(3), 1224–1227 (2005).
[Crossref]

Surma, M.

V. Yu. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “Anti-Stokes luminescence in chromium-doped ZnSe,” Phys. Rev. B Condens. Matter 54(7), 4696–4701 (1996).
[Crossref] [PubMed]

M. Surma, A. J. Zakrzewski, and M. Godlewski, “Nonradiative recombination processes in nickel- and iron-doped ZnS and ZnSe studied by photoinduced electron-spin resonance,” Phys. Rev. B Condens. Matter 52(16), 11879–11883 (1995).
[Crossref] [PubMed]

Swiatek, K.

K. Swiatek, M. Godlewski, and T. P. Surkova, “Fe photoionization transitions in ZnSSe:Fe crystals – photo-ESR studies,” Phys. Status Solidi C 2(3), 1224–1227 (2005).
[Crossref]

Vasilyev, S.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

Voronov, A. A.

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

Watkins, G. D.

K. P. O’Donnell, K. M. Lee, and G. D. Watkins, “An ODMR study of a luminescence excitation process in ZnSe:Fe,” J. Phys. Chem. 16(20), L723 (1983).

Wenger, L. E.

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

Worschech, L.

M. U. Lehr, B. Litzenburger, J. Kreiss, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, “Identification of near-infrared Cr2+ luminescence in ZnSe,” J. Phys. Condens. Matter 9(3), 753–763 (1997).
[Crossref]

Zakrzewski, A.

A. Zakrzewski and M. Godlewski, “Direct evidence of three-center-Auger recombination processes in ZnS:Cu,Fe,” Phys. Rev. B Condens. Matter 34(12), 8993–8995 (1986).
[Crossref] [PubMed]

Zakrzewski, A. J.

M. Surma, A. J. Zakrzewski, and M. Godlewski, “Nonradiative recombination processes in nickel- and iron-doped ZnS and ZnSe studied by photoinduced electron-spin resonance,” Phys. Rev. B Condens. Matter 52(16), 11879–11883 (1995).
[Crossref] [PubMed]

Zvanut, M. E.

V. V. Fedorov, T. Konak, J. Dashdorj, M. E. Zvanut, and S. B. Mirov, “Optical and EPR spectroscopy of Zn:Cr:ZnSe and Zn:Fe:ZnSe crystals,” Opt. Mater. 37, 262–266 (2014).
[Crossref]

Appl. Phys. B (1)

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72(5), 515–562 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

J. Cryst. Growth (2)

J. Kreissl and H.-J. Schulz, “Transition-metal impurities in II-VI semiconductors: characterization and switching of charge states,” J. Cryst. Growth 161(1–4), 239–249 (1996).
[Crossref]

A. Burger, K. Chattopadhyay, J. O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C. H. Su, S. Feth, R. H. Page, K. I. Schaffers, and S. A. Payne, “Preparation conditions of chromium doped ZnSe and their infrared luminescence properties,” J. Cryst. Growth 225(2-4), 249–256 (2001).
[Crossref]

J. Electron. Mater. (1)

C. I. Rablau, J. O. Ndap, X. Ma, A. Burger, and N. C. Giles, “Absorption and photoluminescence spectroscopy of diffusion-doped ZnSe:Cr2+,” J. Electron. Mater. 28(6), 678–682 (1999).
[Crossref]

J. Lumin. (3)

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Mid-IR lasing of iron–cobalt co-doped ZnS(Se) crystals via Co–Fe energy transfer,” J. Lumin. 133, 257–261 (2013).
[Crossref]

V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 125(1–2), 184–195 (2007).
[Crossref]

J. Phys. Chem. (3)

M. Skowronski, Z. Liro, and W. Palosz, “Uniaxial stress effect on no-phonon lines of 3T1 to 5E transitions in ZnS:Fe,” J. Phys. Chem. 18(26), 5099–5110 (1985).

K. P. O’Donnell, K. M. Lee, and G. D. Watkins, “An ODMR study of a luminescence excitation process in ZnSe:Fe,” J. Phys. Chem. 16(20), L723 (1983).

G. Grebe, G. Roussos, and H.-J. Schulz, “Cr2+ excitation levels in ZnSe and ZnS,” J. Phys. Chem. 9(24), 4511–4516 (1976).

J. Phys. Condens. Matter (1)

M. U. Lehr, B. Litzenburger, J. Kreiss, U. W. Pohl, H. R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, “Identification of near-infrared Cr2+ luminescence in ZnSe,” J. Phys. Condens. Matter 9(3), 753–763 (1997).
[Crossref]

Laser Photonics Rev. (1)

S. Mirov, V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Opt. Mater. (1)

V. V. Fedorov, T. Konak, J. Dashdorj, M. E. Zvanut, and S. B. Mirov, “Optical and EPR spectroscopy of Zn:Cr:ZnSe and Zn:Fe:ZnSe crystals,” Opt. Mater. 37, 262–266 (2014).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (4)

A. Zakrzewski and M. Godlewski, “Direct evidence of three-center-Auger recombination processes in ZnS:Cu,Fe,” Phys. Rev. B Condens. Matter 34(12), 8993–8995 (1986).
[Crossref] [PubMed]

M. Godlewski and M. Skowronski, “Effective deactivation of the ZnS visible photoluminescence by iron impurities,” Phys. Rev. B Condens. Matter 32(6), 4007–4013 (1985).
[Crossref] [PubMed]

M. Surma, A. J. Zakrzewski, and M. Godlewski, “Nonradiative recombination processes in nickel- and iron-doped ZnS and ZnSe studied by photoinduced electron-spin resonance,” Phys. Rev. B Condens. Matter 52(16), 11879–11883 (1995).
[Crossref] [PubMed]

V. Yu. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “Anti-Stokes luminescence in chromium-doped ZnSe,” Phys. Rev. B Condens. Matter 54(7), 4696–4701 (1996).
[Crossref] [PubMed]

Phys. Status Solidi A (1)

M. Godlewski, “On the application of the photo-EPR technique to the studies of photoionization, DAP recombination, and non-radiative recombination processes,” Phys. Status Solidi A 90(1), 11–52 (1985).
[Crossref]

Phys. Status Solidi B (2)

V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B 247(6), 1553–1556 (2010).
[Crossref]

V. Yu. Ivanov, M. Godlewski, and T. Gregorkiewicz, “Two-colour spectroscopy of ZnSe:Cr,” Phys. Status Solidi B 244(5), 1618–1622 (2007).
[Crossref]

Phys. Status Solidi C (1)

K. Swiatek, M. Godlewski, and T. P. Surkova, “Fe photoionization transitions in ZnSSe:Fe crystals – photo-ESR studies,” Phys. Status Solidi C 2(3), 1224–1227 (2005).
[Crossref]

Proc. SPIE (1)

J. Peppers, N. Myoung, V. V. Fedorov, and S. B. Mirov, “Mid-IR laser oscillation via energy transfer in the Co:Fe:ZnS/Se co-doped crystals,” Proc. SPIE 8235, 823503 (2012).
[Crossref]

Other (2)

C. I. Rablau, “Photoluminescence and optical absorption spectroscopy of infrared materials Cr2+:Znse and ZnGeP2,” Ph.D. dissertation, West Virginia University, Morgantown, West Virginia (1999).

F. Träger, Springer Handbook of Lasers and Optics, (Springer Science + Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A. Energy levels of Fe2+ and energy transfer mechanisms. B. Cross-sections of near-IR and mid-IR transitions in Fe:ZnSe.

Fig. 2
Fig. 2

A. Absorption spectra of undoped (i), iron doped (ii), and chromium doped (iii) ZnSe (NFe = 1.4 × 1019 cm−3, NCr = 2.7 × 1018 cm−3) crystals near band-gap, B. Zoom-in to show absorption of Fe:ZnSe near 532 nm.

Fig. 3
Fig. 3

A. Short PL kinetics of Fe:ZnSe under i) 532nm excitation and ii) 2780nm excitation. B. Long PL kinetics of Fe:ZnSe showing iii) mid-IR kinetics under 532nm excitation and iv) near-IR PL at 950nm.

Fig. 4
Fig. 4

Dependence of PL signal on energy of excitation for i) Fe:ZnSe and ii) Cr:ZnSe.

Fig. 5
Fig. 5

A. Energy levels of Cr2+ and energy transfer mechanisms. B. Cross-sections of near-IR and mid-IR transitions in Cr:ZnSe

Fig. 6
Fig. 6

A. Normalized PL kinetics of Cr:ZnSe illustrating rise time under i) intra-shell excitation at 1560nm, ii) 532nm nanosecond scale excitation, iii) 532nm picosecond scale excitation, and iv) Cr:ZnSe PL kinetics at 960nm under 532nm ns scale excitation. B. Lasing of Cr:ZnSe under 532nm 10ns pulsed excitation showing three pulses under 9.1mJ pump energy, with insert showing the averaged signal under 6.7mJ pump energy.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ max = ln2 π A 4πc n 2 λ 0 4 Δλ
C r 2+ +ωC r + + h + followed by C r + +ω (C r 2+ ) * + e , or
C r 2+ +2ω (C r + ) * + ( h + ) *

Metrics