Abstract

This paper presents a polarization microscope using an infrared (IR) full-Stokes imaging polarimeter. The IR polarimeter utilizes an optimized interference-based micropolarizer design, and provides full-Stokes images with resolution of 1608 × 1208 at 35 frames/second. The device fabrication, instrument calibration, performance evaluation, and measurement results are presented. The measurement error of the imaging polarimeter is less than 3.5%, and the standard deviations are less than 2%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full-Stokes imaging polarimeter using an array of elliptical polarizer

Wei-Liang Hsu, Graham Myhre, Kaushik Balakrishnan, Neal Brock, Mohammed Ibn-Elhaj, and Stanley Pau
Opt. Express 22(3) 3063-3074 (2014)

Liquid crystal polymer full-stokes division of focal plane polarimeter

Graham Myhre, Wei-Liang Hsu, Alba Peinado, Charles LaCasse, Neal Brock, Russell A. Chipman, and Stanley Pau
Opt. Express 20(25) 27393-27409 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Oldenbourg, Biomedical optical phase microscopy and nanoscopy (Elsevier, 2013), 311–338.
  2. A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
    [Crossref] [PubMed]
  3. G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express 3(1), 1–15 (2012).
    [PubMed]
  4. V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
    [Crossref] [PubMed]
  5. Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
    [Crossref] [PubMed]
  6. R. Oldenbourg, “Polarization microscopy with the LC-PolScope,” https://darchive.mblwhoilibrary.org/handle/1912/6277 (2003).
  7. C. R. Carey, T. LeBel, D. Crisostomo, J. Giblin, M. Kuno, and G. V. Hartland, “Imaging and absolute extinction cross-section measurements of nanorods and nanowires through polarization modulation microscopy,” J. Phys. Chem. C 114(38), 16029–16036 (2010).
    [Crossref]
  8. G. Myhre, W.-L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
    [Crossref] [PubMed]
  9. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
    [Crossref] [PubMed]
  10. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  11. M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
    [Crossref] [PubMed]
  12. TruesenseImaging, KAI-2020 image sensor device performance specification (TruesenseImaging, 2012), 17–17.
  13. W.-L. Hsu, K. Balakrishnan, M. Ibn-Elhaj, and S. Pau, “Infrared liquid crystal polymer micropolarizer,” Appl. Opt. 53(23), 5252–5258 (2014).
    [Crossref] [PubMed]
  14. W.-L. Hsu, J. Ma, G. Myhre, K. Balakrishnan, and S. Pau, “Patterned cholesteric liquid crystal polymer film,” J. Opt. Soc. Am. A 30(2), 252–258 (2013).
    [Crossref] [PubMed]
  15. G. Myhre, A. Sayyad, and S. Pau, “Patterned color liquid crystal polymer polarizers,” Opt. Express 18(26), 27777–27786 (2010).
    [Crossref] [PubMed]
  16. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41(4), 619–630 (2002).
    [Crossref] [PubMed]
  17. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
    [Crossref] [PubMed]
  18. J. L. Pezzaniti and R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558 (1995).
    [Crossref]
  19. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106 (1996).
    [Crossref]
  20. R. Chipman, “Polarimetry,” in OSA Handbook of Optics (McGraw-Hill, 1995).
  21. C. F. LaCasse, R. A. Chipman, and J. S. Tyo, “Band limited data reconstruction in modulated polarimeters,” Opt. Express 19(16), 14976–14989 (2011).
    [PubMed]
  22. D. H. Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt. 45(30), 7944–7950 (2006).
    [Crossref] [PubMed]
  23. H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
    [Crossref]
  24. S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19(27), 26161–26173 (2011).
    [Crossref] [PubMed]
  25. S. Gao and V. Gruev, “Gradient-based interpolation method for division-of-focal-plane polarimeters,” Opt. Express 21(1), 1137–1151 (2013).
    [Crossref] [PubMed]
  26. D. A. LeMaster and S. C. Cain, “Multichannel blind deconvolution of polarimetric imagery,” J. Opt. Soc. Am. A 25(9), 2170–2176 (2008).
    [Crossref] [PubMed]
  27. X. Zhao, X. Pan, X. Fan, P. Xu, A. Bermak, and V. G. Chigrinov, “Patterned dual-layer achromatic micro-quarter-wave-retarder array for active polarization imaging,” Opt. Express 22(7), 8024–8034 (2014).
    [Crossref] [PubMed]

2014 (2)

2013 (2)

2012 (4)

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express 3(1), 1–15 (2012).
[PubMed]

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

G. Myhre, W.-L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
[Crossref] [PubMed]

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

2011 (3)

S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19(27), 26161–26173 (2011).
[Crossref] [PubMed]

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

C. F. LaCasse, R. A. Chipman, and J. S. Tyo, “Band limited data reconstruction in modulated polarimeters,” Opt. Express 19(16), 14976–14989 (2011).
[PubMed]

2010 (3)

G. Myhre, A. Sayyad, and S. Pau, “Patterned color liquid crystal polymer polarizers,” Opt. Express 18(26), 27777–27786 (2010).
[Crossref] [PubMed]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

C. R. Carey, T. LeBel, D. Crisostomo, J. Giblin, M. Kuno, and G. V. Hartland, “Imaging and absolute extinction cross-section measurements of nanorods and nanowires through polarization modulation microscopy,” J. Phys. Chem. C 114(38), 16029–16036 (2010).
[Crossref]

2008 (1)

2006 (2)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

D. H. Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt. 45(30), 7944–7950 (2006).
[Crossref] [PubMed]

2004 (1)

M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
[Crossref] [PubMed]

2003 (1)

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[Crossref] [PubMed]

2002 (1)

2000 (1)

1996 (1)

1995 (1)

J. L. Pezzaniti and R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558 (1995).
[Crossref]

Arwin, H.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Balakrishnan, K.

Barzda, V.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Beresna, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Bermak, A.

Brock, N.

Bücheler, M. M.

M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
[Crossref] [PubMed]

Cain, S. C.

Carey, C. R.

C. R. Carey, T. LeBel, D. Crisostomo, J. Giblin, M. Kuno, and G. V. Hartland, “Imaging and absolute extinction cross-section measurements of nanorods and nanowires through polarization modulation microscopy,” J. Phys. Chem. C 114(38), 16029–16036 (2010).
[Crossref]

Chigrinov, V. G.

Chipman, R.

J. L. Pezzaniti and R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558 (1995).
[Crossref]

Chipman, R. A.

Cisek, R.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Comelli, D.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[Crossref] [PubMed]

Crisostomo, D.

C. R. Carey, T. LeBel, D. Crisostomo, J. Giblin, M. Kuno, and G. V. Hartland, “Imaging and absolute extinction cross-section measurements of nanorods and nanowires through polarization modulation microscopy,” J. Phys. Chem. C 114(38), 16029–16036 (2010).
[Crossref]

Cubeddu, R.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[Crossref] [PubMed]

Dereniak, E. L.

Descour, M. R.

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Faenza, W. J.

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Fan, X.

Gao, S.

Giblin, J.

C. R. Carey, T. LeBel, D. Crisostomo, J. Giblin, M. Kuno, and G. V. Hartland, “Imaging and absolute extinction cross-section measurements of nanorods and nanowires through polarization modulation microscopy,” J. Phys. Chem. C 114(38), 16029–16036 (2010).
[Crossref]

Goldstein, D. H.

Gruev, V.

Gusachenko, I.

Hartland, G. V.

C. R. Carey, T. LeBel, D. Crisostomo, J. Giblin, M. Kuno, and G. V. Hartland, “Imaging and absolute extinction cross-section measurements of nanorods and nanowires through polarization modulation microscopy,” J. Phys. Chem. C 114(38), 16029–16036 (2010).
[Crossref]

Hejazi, S.

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Hsu, W.-L.

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Ibn-Elhaj, M.

Järrendahl, K.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Kazansky, P. G.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Kemme, S. A.

Kowalczuk, L.

Krouglov, S.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Kuno, M.

C. R. Carey, T. LeBel, D. Crisostomo, J. Giblin, M. Kuno, and G. V. Hartland, “Imaging and absolute extinction cross-section measurements of nanorods and nanowires through polarization modulation microscopy,” J. Phys. Chem. C 114(38), 16029–16036 (2010).
[Crossref]

LaCasse, C.

LaCasse, C. F.

Lamarre, I.

Landin, J.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Latour, G.

LeBel, T.

C. R. Carey, T. LeBel, D. Crisostomo, J. Giblin, M. Kuno, and G. V. Hartland, “Imaging and absolute extinction cross-section measurements of nanorods and nanowires through polarization modulation microscopy,” J. Phys. Chem. C 114(38), 16029–16036 (2010).
[Crossref]

LeMaster, D. A.

Lohmann, G.

M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
[Crossref] [PubMed]

Lu, S.-Y.

Ma, J.

Magnusson, R.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Miura, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Müller, K.

M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
[Crossref] [PubMed]

Myhre, G.

Obrig, H.

M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
[Crossref] [PubMed]

Pan, X.

Pansare, V. J.

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Pau, S.

Peinado, A.

Pezzaniti, J. L.

J. L. Pezzaniti and R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558 (1995).
[Crossref]

Phipps, G. S.

Pifferi, A.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[Crossref] [PubMed]

Prent, N.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Prud’homme, R. K.

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Qiu, J.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Sabatke, D. S.

Sakakura, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Sandkuijl, D.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Sayyad, A.

Schanne-Klein, M.-C.

Schroeter, M. L.

M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
[Crossref] [PubMed]

Shimotsuma, Y.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Sweatt, W. C.

Taroni, P.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[Crossref] [PubMed]

Tittgemeyer, M.

M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
[Crossref] [PubMed]

Torricelli, A.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[Crossref] [PubMed]

Tuer, A. E.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Tyo, J. S.

Uludag, K.

M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
[Crossref] [PubMed]

Villringer, A.

M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
[Crossref] [PubMed]

von Cramon, D. Y.

M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
[Crossref] [PubMed]

Wilson, B. C.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Xu, P.

Yasufuku, K.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Zhao, X.

Adv. Mater. (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Chem. Mater. (1)

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

J. Phys. Chem. B (1)

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

C. R. Carey, T. LeBel, D. Crisostomo, J. Giblin, M. Kuno, and G. V. Hartland, “Imaging and absolute extinction cross-section measurements of nanorods and nanowires through polarization modulation microscopy,” J. Phys. Chem. C 114(38), 16029–16036 (2010).
[Crossref]

Neuroimage (1)

M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004).
[Crossref] [PubMed]

Opt. Eng. (1)

J. L. Pezzaniti and R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558 (1995).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Philos. Mag. (1)

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Photochem. Photobiol. Sci. (1)

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[Crossref] [PubMed]

Other (4)

R. Oldenbourg, “Polarization microscopy with the LC-PolScope,” https://darchive.mblwhoilibrary.org/handle/1912/6277 (2003).

R. Oldenbourg, Biomedical optical phase microscopy and nanoscopy (Elsevier, 2013), 311–338.

R. Chipman, “Polarimetry,” in OSA Handbook of Optics (McGraw-Hill, 1995).

TruesenseImaging, KAI-2020 image sensor device performance specification (TruesenseImaging, 2012), 17–17.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The absorption spectra of female breast and human forearm and quantum efficiency of the Truesense KAI-2020 monochromatic CCD (microlens version) [9,12].
Fig. 2
Fig. 2 (a) The FPA of the polarimeter is comprised of a substrate, a microretarder, a uniform retarder, three isolation layers, and two uniform Ch-LCP polarizers on top of a sensor. (b) Two uniform right circular polarizers, a uniform quarter wave plate, and a pixelated retarder with a retardance of 132° and fast axis angles of ± 15.1° (A, B) and ± 51.7° (C, D) are shown. Dotted lines denote that the micropolarizers are repeated across the sensor array. (c) Each resultant elliptical micropolarizer transmits a different elliptical polarization state and the transmitted intensity is measured by individual pixelated sensor. (d) The four elliptical micropolarizers are utilized to achieve the optimized DoFP full-Stokes polarimeter.
Fig. 3
Fig. 3 Fabrication processes of the interference-based elliptical micropolarizer. Note that the dimensions are not drawn to scale.
Fig. 4
Fig. 4 Horizontal cut lines are shown for linear diattenuation, linear diattenuation orientation, and circular diattenuation taken at 760 nm. The measured results of elliptical micropolarizers A and C are represented by the blue solid line while those of elliptical micropolarizers B and D are represented by the red dashed lines.
Fig. 5
Fig. 5 (a) A 760 nm collimated light source with a linear polarizer and a quarter wave retarder is utilized for the polarimeter calibration. (b) The DOLP and DOCP are measured as a function of the fast axis orientation of a 90° linear retarder at 760 nm. (c) The measurement errors of DOLP and DOCP are less than 3.5%. (d) The standard deviations of DOLP and DOCP are less than 2%.
Fig. 6
Fig. 6 (a) The 760 nm elliptical micropolarizer and the CCD. (b) The camera with the aligned and affixed micropolarizer over the CCD. (c) A Mitutoyo microscope with the 760 nm polarimeter.
Fig. 7
Fig. 7 The DOLP and DOCP are also measured as a function of the fast axis orientation of the retarder for 2x, 20x, 50x, and 80x microscope objectives. The measurement error of (a) DOLP and (b) DOCP are less than 5.2%, 6.2%, 10.5%, and 6.5, respectively. The standard deviation of (c) DOLP and (d) DOCP are less than 3.6%, 3.7%, 5%, and 5.2%, respectively.
Fig. 8
Fig. 8 (a) The Plusiotis batesi and its microscope image under the 2x microscope objective. (b) The Stokes images of the beetle.
Fig. 9
Fig. 9 (a) The polarization image of the methyl violet sample under the 20x microscope objective. (b) The Stokes images of the methyl violet sample.
Fig. 10
Fig. 10 (a) The polarization image of Desmidiales under the 80x microscope objective. (b) The Stokes images of Desmidiales.
Fig. 11
Fig. 11 (a) The polarization image of the tartaric acid sample under the 20x microscope objective. (b) The Stokes images of the tartaric acid sample.
Fig. 12
Fig. 12 (a) The polarization image of the citric acid sample under the 20x microscope objective. (b) The Stokes images of the citric acid sample.
Fig. 13
Fig. 13 (a) The polarization image of Desmidiales under the 80x microscope objective. (b) The Stokes images of Desmidiales.

Metrics