Abstract

We present a high power ultra-narrowband pulsed fiber amplifier at 2 μm. A single frequency fiber laser was modulated by a phase modulator and an intensity modulator to serve as the ultra-narrowband pulsed seed laser with a bandwidth of 307 MHz. The pulsed seed laser was amplified by a monolithic Tm-doped fiber master oscillator power amplifier (MOPA). The average output power reaches 105 W with a slope efficiency of 0.41. The output pulse train has a repetition rate of 1 MHz and a pulse width of 66 ns. The output power is limited by the onset of stimulated Brillouin scattering. Higher output power can be achieved by further broadening the linewidth or narrowing the pulse width to several nanoseconds. To the best of our knowledge, this is the first demonstration on a monolithic ultra-narrowband nanosecond pulsed MOPA at 2 μm with an average power exceeding 100 W.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
102 W monolithic single frequency Tm-doped fiber MOPA

Xiong Wang, Pu Zhou, Xiaolin Wang, Hu Xiao, and Lei Si
Opt. Express 21(26) 32386-32392 (2013)

High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier

Xiong Wang, Xiaoxi Jin, Pu Zhou, Xiaolin Wang, Hu Xiao, and Zejin Liu
Opt. Express 23(3) 3382-3389 (2015)

Gain-switched monolithic fiber laser with ultra-wide tuning range at 2 μm

Xi Cheng, Zhihong Li, Jing Hou, and Zejin Liu
Opt. Express 24(25) 29126-29137 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, Q. Wang, and S. Jiang, “2μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409(2011).
    [Crossref]
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  3. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [Crossref]
  4. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
    [Crossref] [PubMed]
  5. Z. Li, A. M. Heidt, P. S. Teh, M. Berendt, J. K. Sahu, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “High-energy diode-seeded nanosecond 2 μm fiber MOPA systems incorporating active pulse shaping,” Opt. Lett. 39(6), 1569–1572 (2014).
    [Crossref] [PubMed]
  6. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 um laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009).
    [Crossref] [PubMed]
  7. S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34(5), 779–789 (1998).
    [Crossref]
  8. X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 μm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
    [Crossref]
  9. X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation,” Opt. Express 22(5), 6147–6153 (2014).
    [Crossref] [PubMed]
  10. F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality,” Opt. Lett. 38(2), 97–99 (2013).
    [Crossref] [PubMed]
  11. B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
    [Crossref]
  12. A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38(10), 1615–1617 (2013).
    [Crossref] [PubMed]
  13. G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
    [Crossref] [PubMed]
  14. J. Xu, L. Xu, and Y. Tang, “High-power narrow-band pulsed Tm-doped silica fiber lasers,” CLEO 2010, OSA Technical digest, JTuD67 (2010).
    [Crossref]
  15. J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
    [Crossref] [PubMed]
  16. R. A. Sims, P. Kadwani, A. S. L. Shah, and M. Richardson, “1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system,” Opt. Lett. 38(2), 121–123 (2013).
    [Crossref] [PubMed]
  17. P. Wan, L. M. Yang, and J. Liu, “High pulse energy 2 µm femtosecond fiber laser,” Opt. Express 21(2), 1798–1803 (2013).
    [Crossref] [PubMed]
  18. P. Wan, L. M. Yang, and J. Liu, “High power 2 µm femtosecond fiber laser,” Opt. Express 21(18), 21374–21379 (2013).
    [Crossref] [PubMed]
  19. Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).
  20. J. Geng, Q. Wang, Z. Jiang, T. Luo, S. Jiang, and G. Czarnecki, “Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2 μm,” Opt. Lett. 36(12), 2293–2295 (2011).
    [Crossref] [PubMed]
  21. W. Shi, E. B. Petersen, D. T. Nguyen, Z. Yao, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “220 μJ monolithic single-frequency Q-switched fiber laser at 2 μm by using highly Tm-doped germanate fibers,” Opt. Lett. 36(18), 3575–3577 (2011).
    [Crossref] [PubMed]
  22. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
    [Crossref]
  23. J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett. 34(22), 3493–3495 (2009).
    [Crossref] [PubMed]
  24. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010).
    [Crossref] [PubMed]
  25. M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 µm,” Opt. Lett. 32(8), 897–899 (2007).
    [Crossref] [PubMed]
  26. G. P. Agrawal, Nonlinear Fiber Optics (Fourth Edition) (Academic Press, Rochester, New York, 2007).
  27. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  28. G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
    [Crossref]
  29. G. L. Keaton, M. J. Leonardo, M. W. Byer, and D. J. Richard, “Stimulated Brillouin scattering of pulses in optical fibers,” Opt. Express 22(11), 13351–13365 (2014).
    [Crossref] [PubMed]
  30. G. C. Valley, “A review of stimulated Brillouin scattering excited with a broad-band pump laser,” IEEE J. Quantum Electron. 22(5), 704–712 (1986).
    [Crossref]
  31. P. Narum, M. D. Skeldon, and R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” IEEE J. Quantum Electron. 22(11), 2161–2167 (1986).
    [Crossref]
  32. R. Su, P. Zhou, H. Lü, X. Wang, C. Luo, and X. Xu, “Numerical analysis on impact of temporal characteristics on stimulated Brillouin scattering threshold for nanosecond laser in an optical fiber,” Opt. Commun. 316, 86–90 (2014).
    [Crossref]
  33. R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
    [Crossref]

2014 (7)

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 μm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

R. Su, P. Zhou, H. Lü, X. Wang, C. Luo, and X. Xu, “Numerical analysis on impact of temporal characteristics on stimulated Brillouin scattering threshold for nanosecond laser in an optical fiber,” Opt. Commun. 316, 86–90 (2014).
[Crossref]

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation,” Opt. Express 22(5), 6147–6153 (2014).
[Crossref] [PubMed]

Z. Li, A. M. Heidt, P. S. Teh, M. Berendt, J. K. Sahu, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “High-energy diode-seeded nanosecond 2 μm fiber MOPA systems incorporating active pulse shaping,” Opt. Lett. 39(6), 1569–1572 (2014).
[Crossref] [PubMed]

G. L. Keaton, M. J. Leonardo, M. W. Byer, and D. J. Richard, “Stimulated Brillouin scattering of pulses in optical fibers,” Opt. Express 22(11), 13351–13365 (2014).
[Crossref] [PubMed]

2013 (6)

2012 (2)

2011 (4)

2010 (1)

2009 (4)

2008 (1)

2007 (1)

2005 (1)

2000 (1)

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[Crossref]

1998 (1)

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34(5), 779–789 (1998).
[Crossref]

1986 (2)

G. C. Valley, “A review of stimulated Brillouin scattering excited with a broad-band pump laser,” IEEE J. Quantum Electron. 22(5), 704–712 (1986).
[Crossref]

P. Narum, M. D. Skeldon, and R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” IEEE J. Quantum Electron. 22(11), 2161–2167 (1986).
[Crossref]

Alam, S. U.

Amzajerdian, F.

Barty, C. P. J.

Beach, R. J.

Becker, M.

Berendt, M.

Book, L. D.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
[Crossref] [PubMed]

Boyd, R. W.

P. Narum, M. D. Skeldon, and R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” IEEE J. Quantum Electron. 22(11), 2161–2167 (1986).
[Crossref]

Byer, M. W.

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Chavez-Pirson, A.

Czarnecki, G.

Dawson, J. W.

Dickinson, B. C.

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[Crossref]

Fang, Q.

Fermann, M. E.

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Geng, J.

Goodno, G. D.

Heebner, J. E.

Heidt, A. M.

Ibsen, M.

Imeshev, G.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[Crossref]

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34(5), 779–789 (1998).
[Crossref]

Jansen, F.

Jauregui, C.

Jiang, S.

Jiang, Z.

Kadwani, P.

Keaton, G. L.

Kelly, B.

Kieu, K.

King, T. A.

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[Crossref]

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34(5), 779–789 (1998).
[Crossref]

Leigh, M.

Leonardo, M. J.

Li, X.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Li, Z.

Limpert, J.

Liu, J.

Liu, K.

Liu, Z.

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 μm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation,” Opt. Express 22(5), 6147–6153 (2014).
[Crossref] [PubMed]

Lü, H.

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

R. Su, P. Zhou, H. Lü, X. Wang, C. Luo, and X. Xu, “Numerical analysis on impact of temporal characteristics on stimulated Brillouin scattering threshold for nanosecond laser in an optical fiber,” Opt. Commun. 316, 86–90 (2014).
[Crossref]

Luo, C.

R. Su, P. Zhou, H. Lü, X. Wang, C. Luo, and X. Xu, “Numerical analysis on impact of temporal characteristics on stimulated Brillouin scattering threshold for nanosecond laser in an optical fiber,” Opt. Commun. 316, 86–90 (2014).
[Crossref]

Luo, T.

McComb, T. S.

McNaught, S. J.

Messerly, M. J.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Narum, P.

P. Narum, M. D. Skeldon, and R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” IEEE J. Quantum Electron. 22(11), 2161–2167 (1986).
[Crossref]

Nguyen, D. T.

Pax, P. H.

Petersen, E.

Petersen, E. B.

Peyghambarian, N.

Phelan, R.

Richard, D. J.

Richardson, D. J.

Richardson, M.

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Rothenberg, J. E.

Rothhardt, M.

Sahu, J.

Sahu, J. K.

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Shah, A. S. L.

Shardlow, P. C.

Shi, W.

Shverdin, M. Y.

Siders, C. W.

Sims, R. A.

Skeldon, M. D.

P. Narum, M. D. Skeldon, and R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” IEEE J. Quantum Electron. 22(11), 2161–2167 (1986).
[Crossref]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Sridharan, A. K.

Stappaerts, E. A.

Stutzki, F.

Su, R.

R. Su, P. Zhou, H. Lü, X. Wang, C. Luo, and X. Xu, “Numerical analysis on impact of temporal characteristics on stimulated Brillouin scattering threshold for nanosecond laser in an optical fiber,” Opt. Commun. 316, 86–90 (2014).
[Crossref]

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

Tan, F.

Tang, Y.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Teh, P. S.

Thielen, P. A.

Tünnermann, A.

Valley, G. C.

G. C. Valley, “A review of stimulated Brillouin scattering excited with a broad-band pump laser,” IEEE J. Quantum Electron. 22(5), 704–712 (1986).
[Crossref]

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Wan, P.

Wang, J.

Wang, P.

Wang, Q.

Wang, Q. J.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Wang, X.

R. Su, P. Zhou, H. Lü, X. Wang, C. Luo, and X. Xu, “Numerical analysis on impact of temporal characteristics on stimulated Brillouin scattering threshold for nanosecond laser in an optical fiber,” Opt. Commun. 316, 86–90 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 μm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 μm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation,” Opt. Express 22(5), 6147–6153 (2014).
[Crossref] [PubMed]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation,” Opt. Express 22(5), 6147–6153 (2014).
[Crossref] [PubMed]

Weber, M. E.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010).
[Crossref] [PubMed]

Weiss, S. B.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

Wickham, M. G.

Xiao, H.

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 μm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation,” Opt. Express 22(5), 6147–6153 (2014).
[Crossref] [PubMed]

Xu, J.

Xu, X.

R. Su, P. Zhou, H. Lü, X. Wang, C. Luo, and X. Xu, “Numerical analysis on impact of temporal characteristics on stimulated Brillouin scattering threshold for nanosecond laser in an optical fiber,” Opt. Commun. 316, 86–90 (2014).
[Crossref]

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

Yan, Z.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Yang, L. M.

Yao, Z.

Yu, J.

Yu, X.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Zhang, Y.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Zhou, P.

R. Su, P. Zhou, H. Lü, X. Wang, C. Luo, and X. Xu, “Numerical analysis on impact of temporal characteristics on stimulated Brillouin scattering threshold for nanosecond laser in an optical fiber,” Opt. Commun. 316, 86–90 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 μm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation,” Opt. Express 22(5), 6147–6153 (2014).
[Crossref] [PubMed]

Zong, J.

Appl. Phys. Express (1)

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 μm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

IEEE J. Quantum Electron. (3)

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34(5), 779–789 (1998).
[Crossref]

G. C. Valley, “A review of stimulated Brillouin scattering excited with a broad-band pump laser,” IEEE J. Quantum Electron. 22(5), 704–712 (1986).
[Crossref]

P. Narum, M. D. Skeldon, and R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” IEEE J. Quantum Electron. 22(11), 2161–2167 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Commun. (2)

B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000).
[Crossref]

R. Su, P. Zhou, H. Lü, X. Wang, C. Luo, and X. Xu, “Numerical analysis on impact of temporal characteristics on stimulated Brillouin scattering threshold for nanosecond laser in an optical fiber,” Opt. Commun. 316, 86–90 (2014).
[Crossref]

Opt. Eng. (1)

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

Opt. Express (7)

G. L. Keaton, M. J. Leonardo, M. W. Byer, and D. J. Richard, “Stimulated Brillouin scattering of pulses in optical fibers,” Opt. Express 22(11), 13351–13365 (2014).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
[Crossref]

G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
[Crossref] [PubMed]

P. Wan, L. M. Yang, and J. Liu, “High pulse energy 2 µm femtosecond fiber laser,” Opt. Express 21(2), 1798–1803 (2013).
[Crossref] [PubMed]

P. Wan, L. M. Yang, and J. Liu, “High power 2 µm femtosecond fiber laser,” Opt. Express 21(18), 21374–21379 (2013).
[Crossref] [PubMed]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation,” Opt. Express 22(5), 6147–6153 (2014).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

Opt. Lett. (12)

J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett. 34(22), 3493–3495 (2009).
[Crossref] [PubMed]

G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010).
[Crossref] [PubMed]

M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 µm,” Opt. Lett. 32(8), 897–899 (2007).
[Crossref] [PubMed]

J. Geng, Q. Wang, Z. Jiang, T. Luo, S. Jiang, and G. Czarnecki, “Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2 μm,” Opt. Lett. 36(12), 2293–2295 (2011).
[Crossref] [PubMed]

W. Shi, E. B. Petersen, D. T. Nguyen, Z. Yao, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “220 μJ monolithic single-frequency Q-switched fiber laser at 2 μm by using highly Tm-doped germanate fibers,” Opt. Lett. 36(18), 3575–3577 (2011).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality,” Opt. Lett. 38(2), 97–99 (2013).
[Crossref] [PubMed]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
[Crossref] [PubMed]

Z. Li, A. M. Heidt, P. S. Teh, M. Berendt, J. K. Sahu, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “High-energy diode-seeded nanosecond 2 μm fiber MOPA systems incorporating active pulse shaping,” Opt. Lett. 39(6), 1569–1572 (2014).
[Crossref] [PubMed]

Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 um laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009).
[Crossref] [PubMed]

J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
[Crossref] [PubMed]

R. A. Sims, P. Kadwani, A. S. L. Shah, and M. Richardson, “1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system,” Opt. Lett. 38(2), 121–123 (2013).
[Crossref] [PubMed]

A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38(10), 1615–1617 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Geng, Q. Wang, and S. Jiang, “2μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409(2011).
[Crossref]

Other (2)

J. Xu, L. Xu, and Y. Tang, “High-power narrow-band pulsed Tm-doped silica fiber lasers,” CLEO 2010, OSA Technical digest, JTuD67 (2010).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Fourth Edition) (Academic Press, Rochester, New York, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic sketch of the ultra-narrowband pulsed seed. ISO: isolator; PM: phase modulator; WDM: wavelength division multiplexer; TDF: Tm-doped fiber; IM: intensity modulator.
Fig. 2
Fig. 2 Schematic sketch of the pre-amplifier. Pump laser: 1550 nm fiber laser; WDM: wavelength division multiplexer; TDF: Tm-doped fiber; ISO: isolator; BPF: band pass filter; LD: laser diode; DC TDF: double cladding Tm-doped fiber.
Fig. 3
Fig. 3 Schematic sketch of the main amplifier.
Fig. 4
Fig. 4 Output power of the SF pulsed MOPA.
Fig. 5
Fig. 5 Backward power of the SF pulsed MOPA. Inset: backward spectrum.
Fig. 6
Fig. 6 Spectral linewidth data measured by a SFPI. Top: no phase modulation signals; Bottom: phase modulation signals are on.
Fig. 7
Fig. 7 Spectral linewidth data measured by a SFPI. PM: phase modulation.
Fig. 8
Fig. 8 Output power of the ultra-narrowband pulsed MOPA.
Fig. 9
Fig. 9 Backward power of the ultra-narrowband pulsed MOPA.
Fig. 10
Fig. 10 Spectra of the ultra-narrowband pulsed MOPA.
Fig. 11
Fig. 11 Pulse train of the ultra-narrowband pulsed MOPA.
Fig. 12
Fig. 12 Pulse shapes of the ultra-narrowband pulsed MOPA.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P th SBS 21 A eff K L g B Δ υ P +Δ υ B Δ υ B ln(G)

Metrics