Abstract

We demonstrate a photonic structure, composed of a dielectric quarter-wavelength stack topped with a transmission phase grating, designed to exhibit a significant asymmetry in the near infrared light transmission for waves propagating in opposite directions. The asymmetry, defined as the difference between the intensity transmission coefficients, reaches 0.72 ± 0.06 for a single wavelength and exceeds 0.2 over a spectral range spanning from 700 to 850 nm for one incident polarization and 750-800 nm for both polarizations. The experimental results are consistent with the numerical model of light propagation in the structure.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Azimuthally polarized laser mode generation by multilayer mirror with wideband grating-induced TM leakage in the TE stopband

Thomas Kämpfe, Svetlen Tonchev, Alexandre V. Tishchenko, Deyan Gergov, and Olivier Parriaux
Opt. Express 20(5) 5392-5401 (2012)

One-way transmission of linearly polarized light in plasmonic subwavelength metallic grating cascaded with dielectric grating

Z. H. Zhu, K. Liu, W. Xu, Z. Luo, C. C. Guo, B. Yang, T. Ma, X. D. Yuan, and W. M. Ye
Opt. Lett. 37(19) 4008-4010 (2012)

High rejection bandpass optical filters based on sub-wavelength metal patch arrays

J. Le Perchec, R. Espiau de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti
Opt. Express 19(17) 15720-15731 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science 289(5479), 604–606 (2000).
    [Crossref] [PubMed]
  2. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
    [Crossref] [PubMed]
  3. J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” Photon. Technol. Lett. 12(7), 807–809 (2000).
    [Crossref]
  4. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25(11), 790–792 (2000).
    [Crossref] [PubMed]
  5. P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  6. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-Dimensional Invisibility Cloak at Optical Wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref] [PubMed]
  7. L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [Crossref]
  8. W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  9. M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
    [Crossref] [PubMed]
  10. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
    [Crossref] [PubMed]
  11. E. Plum, V. Fedotov, and N. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
    [Crossref]
  12. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike Asymmetric Transmission of Linearly Polarized Waves Using Magnetoelectric Coupling and Electromagnetic Wave Tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
    [Crossref] [PubMed]
  13. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  14. Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D Appl. Phys. 47(7), 075107 (2014).
    [Crossref]
  15. T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat Commun 5, 4141 (2014).
    [Crossref] [PubMed]
  16. M. Stolarek, D. Yavorskiy, R. Kotyński, C. J. Zapata Rodríguez, J. Łusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38(6), 839–841 (2013).
    [Crossref] [PubMed]
  17. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
    [Crossref] [PubMed]
  18. J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y. X. Fan, and H. T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36(10), 1905–1907 (2011).
    [Crossref] [PubMed]
  19. Z. H. Zhu, K. Liu, W. Xu, Z. Luo, C. C. Guo, B. Yang, T. Ma, X. D. Yuan, and W. M. Ye, “One-way transmission of linearly polarized light in plasmonic subwavelength metallic grating cascaded with dielectric grating,” Opt. Lett. 37(19), 4008–4010 (2012).
    [Crossref] [PubMed]
  20. P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
    [Crossref]
  21. A. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
    [Crossref]
  22. A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, “Unidirectional transmission in photonic-crystal gratings at beam-type illumination,” Opt. Express 18(21), 22283–22298 (2010).
    [Crossref] [PubMed]
  23. A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, “Multichannel optical diode with unidirectional diffraction relevant total transmission,” Opt. Express 20(14), 14980–14990 (2012).
    [Crossref] [PubMed]
  24. A. Serebryannikov, K. Alici, T. Magath, A. Cakmak, and E. Ozbay, “Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling,” Phys. Rev. A 86(5), 053835 (2012).
    [Crossref]
  25. C. Wang, X. L. Zhong, and Z. Y. Li, “Linear and passive silicon optical isolator,” Sci Rep 2, 674 (2012).
    [PubMed]
  26. A. Cicek, M. B. Yucel, O. A. Kaya, and B. Ulug, “Refraction-based photonic crystal diode,” Opt. Lett. 37(14), 2937–2939 (2012).
    [Crossref] [PubMed]
  27. A. Mandatori, M. Bertolotti, and C. Sibilia, “Asymmetric transmission of some two-dimensional photonic crystals,” J. Opt. Soc. Am. B 24(3), 685–690 (2007).
    [Crossref]
  28. A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
  29. M. S. Rill, Three-Dimensional Photonic Metamaterials by Direct Laser Writing and Advanced Metallization Techniques (2010), Chap. 3.

2014 (2)

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D Appl. Phys. 47(7), 075107 (2014).
[Crossref]

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat Commun 5, 4141 (2014).
[Crossref] [PubMed]

2013 (2)

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

M. Stolarek, D. Yavorskiy, R. Kotyński, C. J. Zapata Rodríguez, J. Łusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38(6), 839–841 (2013).
[Crossref] [PubMed]

2012 (6)

A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, “Multichannel optical diode with unidirectional diffraction relevant total transmission,” Opt. Express 20(14), 14980–14990 (2012).
[Crossref] [PubMed]

A. Cicek, M. B. Yucel, O. A. Kaya, and B. Ulug, “Refraction-based photonic crystal diode,” Opt. Lett. 37(14), 2937–2939 (2012).
[Crossref] [PubMed]

Z. H. Zhu, K. Liu, W. Xu, Z. Luo, C. C. Guo, B. Yang, T. Ma, X. D. Yuan, and W. M. Ye, “One-way transmission of linearly polarized light in plasmonic subwavelength metallic grating cascaded with dielectric grating,” Opt. Lett. 37(19), 4008–4010 (2012).
[Crossref] [PubMed]

A. Serebryannikov, K. Alici, T. Magath, A. Cakmak, and E. Ozbay, “Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling,” Phys. Rev. A 86(5), 053835 (2012).
[Crossref]

C. Wang, X. L. Zhong, and Z. Y. Li, “Linear and passive silicon optical isolator,” Sci Rep 2, 674 (2012).
[PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike Asymmetric Transmission of Linearly Polarized Waves Using Magnetoelectric Coupling and Electromagnetic Wave Tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (5)

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[Crossref] [PubMed]

A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, “Unidirectional transmission in photonic-crystal gratings at beam-type illumination,” Opt. Express 18(21), 22283–22298 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-Dimensional Invisibility Cloak at Optical Wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).

2009 (2)

A. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
[Crossref]

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

2008 (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

2007 (2)

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

A. Mandatori, M. Bertolotti, and C. Sibilia, “Asymmetric transmission of some two-dimensional photonic crystals,” J. Opt. Soc. Am. B 24(3), 685–690 (2007).
[Crossref]

2003 (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

2000 (4)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25(11), 790–792 (2000).
[Crossref] [PubMed]

Akosman, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike Asymmetric Transmission of Linearly Polarized Waves Using Magnetoelectric Coupling and Electromagnetic Wave Tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Alici, K.

A. Serebryannikov, K. Alici, T. Magath, A. Cakmak, and E. Ozbay, “Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling,” Phys. Rev. A 86(5), 053835 (2012).
[Crossref]

Andrés, P.

Arriaga, J.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Bermel, P.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).

Bertolotti, M.

Beruete, M.

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

Birks, T.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-Dimensional Invisibility Cloak at Optical Wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Caglayan, H.

Cai, W.

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Cakmak, A.

A. Serebryannikov, K. Alici, T. Magath, A. Cakmak, and E. Ozbay, “Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling,” Phys. Rev. A 86(5), 053835 (2012).
[Crossref]

Cakmak, A. O.

Cakmakyapan, S.

Cardenas, J.

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Chen, J.

Chen, Y.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Cheng, C.

Chettiar, U.

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Cicek, A.

Colak, E.

Cui, H. X.

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-Dimensional Invisibility Cloak at Optical Wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Fan, Y. X.

Fedotov, V.

E. Plum, V. Fedotov, and N. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

Fedotov, V. A.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Ferrando, A.

Gabrielli, L.

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Guo, C. C.

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Ibanescu, M.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Joannopoulos, J.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).

John, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Johnson, S. G.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).

Kang, M.

Kaya, O. A.

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Kildishev, A.

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Knight, J.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Kotynski, R.

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Lezec, H. J.

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat Commun 5, 4141 (2014).
[Crossref] [PubMed]

Li, Y.

Li, Z.

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D Appl. Phys. 47(7), 075107 (2014).
[Crossref]

Li, Z. Y.

C. Wang, X. L. Zhong, and Z. Y. Li, “Linear and passive silicon optical isolator,” Sci Rep 2, 674 (2012).
[PubMed]

Lipson, M.

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Liu, K.

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Luo, Z.

Lusakowski, J.

Ma, T.

Magath, T.

A. Serebryannikov, K. Alici, T. Magath, A. Cakmak, and E. Ozbay, “Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling,” Phys. Rev. A 86(5), 053835 (2012).
[Crossref]

Mandatori, A.

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Miret, J. J.

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Mutlu, M.

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D Appl. Phys. 47(7), 075107 (2014).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike Asymmetric Transmission of Linearly Polarized Waves Using Magnetoelectric Coupling and Electromagnetic Wave Tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Navarro-Cía, M.

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Ortigosa-Blanch, A.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Oskooi, A.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).

Ozbay, E.

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D Appl. Phys. 47(7), 075107 (2014).
[Crossref]

A. Serebryannikov, K. Alici, T. Magath, A. Cakmak, and E. Ozbay, “Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling,” Phys. Rev. A 86(5), 053835 (2012).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike Asymmetric Transmission of Linearly Polarized Waves Using Magnetoelectric Coupling and Electromagnetic Wave Tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, “Multichannel optical diode with unidirectional diffraction relevant total transmission,” Opt. Express 20(14), 14980–14990 (2012).
[Crossref] [PubMed]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[Crossref] [PubMed]

A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, “Unidirectional transmission in photonic-crystal gratings at beam-type illumination,” Opt. Express 18(21), 22283–22298 (2010).
[Crossref] [PubMed]

Ozin, G. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-Dimensional Invisibility Cloak at Optical Wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Plum, E.

E. Plum, V. Fedotov, and N. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

Poitras, C.

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Rodríguez-Ulibarri, P.

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

Roundy, D.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Serebryannikov, A.

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

A. Serebryannikov, K. Alici, T. Magath, A. Cakmak, and E. Ozbay, “Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling,” Phys. Rev. A 86(5), 053835 (2012).
[Crossref]

A. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
[Crossref]

Serebryannikov, A. E.

Shalaev, V.

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Sibilia, C.

Silvestre, E.

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-Dimensional Invisibility Cloak at Optical Wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Stolarek, M.

Szoplik, T.

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Ulug, B.

van Driel, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Wadsworth, J.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Wang, C.

C. Wang, X. L. Zhong, and Z. Y. Li, “Linear and passive silicon optical isolator,” Sci Rep 2, 674 (2012).
[PubMed]

Wang, H. T.

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-Dimensional Invisibility Cloak at Optical Wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Xu, J.

Xu, T.

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat Commun 5, 4141 (2014).
[Crossref] [PubMed]

Xu, W.

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Yang, B.

Yavorskiy, D.

Ye, W. M.

Yuan, X. D.

Yucel, M. B.

Zapata Rodríguez, C. J.

Zheludev, N.

E. Plum, V. Fedotov, and N. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

Zheludev, N. I.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Zheng, Z.

Zhong, X. L.

C. Wang, X. L. Zhong, and Z. Y. Li, “Linear and passive silicon optical isolator,” Sci Rep 2, 674 (2012).
[PubMed]

Zhu, Z. H.

Comput. Phys. Commun. (1)

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).

J. Opt. (1)

E. Plum, V. Fedotov, and N. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D Appl. Phys. 47(7), 075107 (2014).
[Crossref]

Nano Lett. (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Nat Commun (1)

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat Commun 5, 4141 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Nature (1)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (6)

Photon. Technol. Lett. (1)

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” Photon. Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Phys. Rev. A (1)

A. Serebryannikov, K. Alici, T. Magath, A. Cakmak, and E. Ozbay, “Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling,” Phys. Rev. A 86(5), 053835 (2012).
[Crossref]

Phys. Rev. B (2)

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

A. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
[Crossref]

Phys. Rev. Lett. (2)

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike Asymmetric Transmission of Linearly Polarized Waves Using Magnetoelectric Coupling and Electromagnetic Wave Tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Sci Rep (1)

C. Wang, X. L. Zhong, and Z. Y. Li, “Linear and passive silicon optical isolator,” Sci Rep 2, 674 (2012).
[PubMed]

Science (3)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-Dimensional Invisibility Cloak at Optical Wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref] [PubMed]

Other (1)

M. S. Rill, Three-Dimensional Photonic Metamaterials by Direct Laser Writing and Advanced Metallization Techniques (2010), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The asymmetric transmission structure (drawn to scale): nine-layer dielectric mirror is topped with a diffraction grating made of parallel lines. The glass substrate at the bottom is not shown. (b) Designed and measured transmission profile of the dielectric mirror with high reflectivity between 850 and 1050 nm. (c) Measured angle-dependent transmission of the dielectric stack only. (d) AFM measured grating line profile. While the line height is measured here with high accuracy, the line width is convolved with the AFM tip shape.
Fig. 2
Fig. 2 Calculated transmission curves for the structure from Fig. 1(a) for the electric field parallel (a) and perpendicular (b) to the lines. Also shown are calculated electric field distributions for both polarizations with waves propagating in two directions, calculated for 0.786 μm incident wavelength.
Fig. 3
Fig. 3 Transmission asymmetry of the structure calculated for varying grating line height and width for the electric field vector parallel (a) and perpendicular (b) to the lines. The structure exhibits the highest asymmetry in the perpendicular polarization for the lines with 0.9 µm height and the filling fraction of 0.6.
Fig. 4
Fig. 4 Calculated and measured angle-integrated light transmission in opposite directions (L = >S meaning “from grating lines to stack” and vice versa) (a) and (b) and the transmission asymmetry (c) and (d), for two linear polarizations – parallel ((a) and (c)) and perpendicular ((b) and (d)) to the grating lines. A significant asymmetry in transmission is visible for both polarizations in the range spanning more than 50 nm around 780 nm.

Metrics