Abstract

Using metal-clad (or plasmonic) waveguide structures in semiconductor lasers carries a promise of reduced size, threshold, and power consumption. This promise is put to a rigorous theoretical test, that takes into account increased waveguide loss, Auger recombination, and Purcell enhancement of spontaneous recombination. The conclusion is that purported benefits of metal waveguides are small to nonexistent for all the band-to-band and intersubband lasers operating from UV to Mid-IR range, with a prominent exception of far-IR and THz quantum cascade lasers. For these devices, however, metal waveguides already represent the state of the art, and the guiding mechanism in them has far more in common with a ubiquitous transmission line than with plasmonics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Status and prospects for metallic and plasmonic nano-lasers [Invited]

Martin T. Hill
J. Opt. Soc. Am. B 27(11) B36-B44 (2010)

Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence

Jacob B. Khurgin and Greg Sun
Opt. Express 20(14) 15309-15325 (2012)

The metal-clad semiconductor nanoring laser and its scaling properties

Min W. Kim and Pei-Cheng Ku
Opt. Express 19(4) 3218-3225 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, k (Wiley,1995)
  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76(22), 22–24 (2000).
    [Crossref]
  3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [Crossref] [PubMed]
  4. M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 808–816 (2014).
    [Crossref]
  5. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
    [Crossref] [PubMed]
  6. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  7. M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
    [Crossref] [PubMed]
  8. K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301 (2012).
    [Crossref]
  9. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett. 10(9), 3679–3683 (2010).
    [Crossref] [PubMed]
  10. A. M. Lakhani, M.-K. Kim, E. K. Lau, and M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19(19), 18237–18245 (2011).
    [Crossref] [PubMed]
  11. J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19(22), 21524–21531 (2011).
    [Crossref] [PubMed]
  12. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
    [Crossref]
  13. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
    [Crossref] [PubMed]
  14. R. F. Oulton, “Plasmonics: Loss and gain,” Nat. Photonics 6(4), 219–221 (2012).
    [Crossref]
  15. R. F. Oulton, “Surface plasmon lasers: sources of nanoscopic light,” Mater. Today 15(1-2), 26–34 (2012).
    [Crossref]
  16. R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1) 1–21 (2012).
  17. D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [Crossref] [PubMed]
  18. M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
    [Crossref]
  19. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010).
    [Crossref]
  20. J. B. Khurgin and G. Sun, “Injection pumped single mode surface plasmon generators: Threshold, linewidth, and coherence,” Opt. Express 20(14), 15309–15325 (2012).
    [Crossref] [PubMed]
  21. J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon emitting Diodes,” Nat. Photonics 8(6), 468–473 (2014).
    [Crossref]
  22. J. B. Khurgin and G. Sun, “How small can “ Nano ” be in a “ Nanolaser?” Nanophoton. 1(1), 3–8 (2012).
    [Crossref]
  23. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
  24. A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17(11), 9391–9400 (2009).
    [Crossref] [PubMed]
  25. H. T. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
    [Crossref] [PubMed]
  26. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
    [Crossref] [PubMed]
  27. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299(2-3), 309–312 (2002).
    [Crossref]
  28. D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
    [Crossref]
  29. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  30. K. Ohtani, M. Beck, and J. Faist, “Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinemen,” Appl. Phys. Lett. 105(12), 121115 (2014).
    [Crossref]
  31. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
    [Crossref]
  32. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16(5), 3242–3248 (2008).
    [Crossref] [PubMed]
  33. M. Martl, J. Darmo, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, G. Strasser, and K. Unterrainer, “Gain and losses in THz quantum cascade laser with metal-metal waveguide,” Opt. Express 19(2), 733–738 (2011).
    [Crossref] [PubMed]
  34. C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
    [Crossref] [PubMed]

2014 (3)

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 808–816 (2014).
[Crossref]

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon emitting Diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

K. Ohtani, M. Beck, and J. Faist, “Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinemen,” Appl. Phys. Lett. 105(12), 121115 (2014).
[Crossref]

2012 (8)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

J. B. Khurgin and G. Sun, “Injection pumped single mode surface plasmon generators: Threshold, linewidth, and coherence,” Opt. Express 20(14), 15309–15325 (2012).
[Crossref] [PubMed]

J. B. Khurgin and G. Sun, “How small can “ Nano ” be in a “ Nanolaser?” Nanophoton. 1(1), 3–8 (2012).
[Crossref]

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301 (2012).
[Crossref]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

R. F. Oulton, “Plasmonics: Loss and gain,” Nat. Photonics 6(4), 219–221 (2012).
[Crossref]

R. F. Oulton, “Surface plasmon lasers: sources of nanoscopic light,” Mater. Today 15(1-2), 26–34 (2012).
[Crossref]

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1) 1–21 (2012).

2011 (4)

2010 (4)

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010).
[Crossref]

2009 (4)

2008 (3)

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16(5), 3242–3248 (2008).
[Crossref] [PubMed]

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

2006 (2)

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
[Crossref] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref] [PubMed]

2003 (2)

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

2002 (1)

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299(2-3), 309–312 (2002).
[Crossref]

2000 (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76(22), 22–24 (2000).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Amanti, M. I.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

Andrews, A. M.

Babuty, A.

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Beaudoin, G.

Beck, M.

K. Ohtani, M. Beck, and J. Faist, “Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinemen,” Appl. Phys. Lett. 105(12), 121115 (2014).
[Crossref]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

Belkin, M. A.

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Berini, P.

Bondarenko, O.

J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19(22), 21524–21531 (2011).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Bousseksou, A.

Brandstetter, M.

Callebaut, H.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

Capasso, F.

Chassagneux, Y.

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Colombelli, R.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Darmo, J.

Davies, A. G.

De Wilde, Y.

Deutsch, C.

Ding, K.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301 (2012).
[Crossref]

Fainman, Y.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19(22), 21524–21531 (2011).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Faist, J.

K. Ohtani, M. Beck, and J. Faist, “Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinemen,” Appl. Phys. Lett. 105(12), 121115 (2014).
[Crossref]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Fan, J. A.

Feng, L.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Gather, M. C.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 808–816 (2014).
[Crossref]

Geluk, E. J.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Gu, Q.

Han, Q.

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

Hill, M. T.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 808–816 (2014).
[Crossref]

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301 (2012).
[Crossref]

M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hormoz, S.

Hu, Q.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

Huang, S.

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76(22), 22–24 (2000).
[Crossref]

Kang, J.-H.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Karouta, F.

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19(22), 21524–21531 (2011).
[Crossref] [PubMed]

Khanna, S. P.

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon emitting Diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

J. B. Khurgin and G. Sun, “How small can “ Nano ” be in a “ Nanolaser?” Nanophoton. 1(1), 3–8 (2012).
[Crossref]

J. B. Khurgin and G. Sun, “Injection pumped single mode surface plasmon generators: Threshold, linewidth, and coherence,” Opt. Express 20(14), 15309–15325 (2012).
[Crossref] [PubMed]

Kim, M.-K.

Kim, S.-K.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Klang, P.

Kumar, S.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref] [PubMed]

Kwon, S.-H.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Lachab, M.

Lakhani, A. M.

Lau, E. K.

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19(22), 21524–21531 (2011).
[Crossref] [PubMed]

Lee, Y.-H.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Leong, E. S.

Lieber, C. M.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Linfield, E. H.

Liu, Z. C.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301 (2012).
[Crossref]

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Ma, R.-M.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1) 1–21 (2012).

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maier, S. A.

Marell, M.

Marell, M. J. H.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301 (2012).
[Crossref]

Martl, M.

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76(22), 22–24 (2000).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref] [PubMed]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Mukai, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76(22), 22–24 (2000).
[Crossref]

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76(22), 22–24 (2000).
[Crossref]

Nakamura, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76(22), 22–24 (2000).
[Crossref]

Nezhad, M. P.

J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19(22), 21524–21531 (2011).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Ni, H.

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

Ning, C. Z.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301 (2012).
[Crossref]

M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

Niu, Z.

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

Nöetzel, R.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301 (2012).
[Crossref]

Nötzel, R.

Oei, Y. S.

Ohtani, K.

K. Ohtani, M. Beck, and J. Faist, “Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinemen,” Appl. Phys. Lett. 105(12), 121115 (2014).
[Crossref]

Oulton, R. F.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1) 1–21 (2012).

R. F. Oulton, “Plasmonics: Loss and gain,” Nat. Photonics 6(4), 219–221 (2012).
[Crossref]

R. F. Oulton, “Surface plasmon lasers: sources of nanoscopic light,” Mater. Today 15(1-2), 26–34 (2012).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Park, H.-G.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Patriarche, G.

Regreny, P.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Reno, J. L.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

Ruppin, R.

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299(2-3), 309–312 (2002).
[Crossref]

Sagnes, I.

Scalari, G.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

Seassal, C.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76(22), 22–24 (2000).
[Crossref]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19(22), 21524–21531 (2011).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Sirtori, C.

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19(22), 21524–21531 (2011).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Smalbrugge, B.

Smit, M. K.

Sorger, V. J.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1) 1–21 (2012).

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
[Crossref] [PubMed]

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010).
[Crossref]

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Strasser, G.

Sun, G.

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon emitting Diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

J. B. Khurgin and G. Sun, “How small can “ Nano ” be in a “ Nanolaser?” Nanophoton. 1(1), 3–8 (2012).
[Crossref]

J. B. Khurgin and G. Sun, “Injection pumped single mode surface plasmon generators: Threshold, linewidth, and coherence,” Opt. Express 20(14), 15309–15325 (2012).
[Crossref] [PubMed]

Sun, M.

Tangring, I.

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

Unterrainer, K.

van Veldhoven, P. J.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301 (2012).
[Crossref]

M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

Walther, C.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

Wang, H.

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

Wang, P.

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

Wang, S. M.

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

Williams, B. S.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

Wu, B.

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

Wu, D.

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

Wu, M. C.

Xiong, Y.

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Yin, L. J.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301 (2012).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, X.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1) 1–21 (2012).

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhu, Y.

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (3)

K. Ohtani, M. Beck, and J. Faist, “Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinemen,” Appl. Phys. Lett. 105(12), 121115 (2014).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at 100 mm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76(22), 22–24 (2000).
[Crossref]

Electron. Lett. (1)

D. Wu, H. Wang, B. Wu, H. Ni, S. Huang, Y. Xiong, P. Wang, Q. Han, Z. Niu, I. Tangring, and S. M. Wang, “Low threshold current density 1.3 mm metamorphic InGaAs/GaAs quantum well laser diodes,” Electron. Lett. 44(7), 474–475 (2008).
[Crossref]

J. Opt. (1)

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010).
[Crossref]

Laser Photon. Rev. (1)

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7(1) 1–21 (2012).

Mater. Today (1)

R. F. Oulton, “Surface plasmon lasers: sources of nanoscopic light,” Mater. Today 15(1-2), 26–34 (2012).
[Crossref]

Nano Lett. (1)

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Nanophoton. (1)

J. B. Khurgin and G. Sun, “How small can “ Nano ” be in a “ Nanolaser?” Nanophoton. 1(1), 3–8 (2012).
[Crossref]

Nat. Photonics (6)

M. I. Stockman, “Spasers explained,” Nat. Photonics 2(6), 327–329 (2008).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

R. F. Oulton, “Plasmonics: Loss and gain,” Nat. Photonics 6(4), 219–221 (2012).
[Crossref]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 808–816 (2014).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

J. B. Khurgin and G. Sun, “Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon emitting Diodes,” Nat. Photonics 8(6), 468–473 (2014).
[Crossref]

Nature (2)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (9)

M. Martl, J. Darmo, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, G. Strasser, and K. Unterrainer, “Gain and losses in THz quantum cascade laser with metal-metal waveguide,” Opt. Express 19(2), 733–738 (2011).
[Crossref] [PubMed]

A. M. Lakhani, M.-K. Kim, E. K. Lau, and M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19(19), 18237–18245 (2011).
[Crossref] [PubMed]

J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19(22), 21524–21531 (2011).
[Crossref] [PubMed]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
[Crossref] [PubMed]

J. B. Khurgin and G. Sun, “Injection pumped single mode surface plasmon generators: Threshold, linewidth, and coherence,” Opt. Express 20(14), 15309–15325 (2012).
[Crossref] [PubMed]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
[Crossref] [PubMed]

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16(5), 3242–3248 (2008).
[Crossref] [PubMed]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17(11), 9391–9400 (2009).
[Crossref] [PubMed]

M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

Phys. Lett. A (1)

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299(2-3), 309–312 (2002).
[Crossref]

Phys. Rev. B (1)

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301 (2012).
[Crossref]

Phys. Rev. Lett. (2)

D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref] [PubMed]

Science (2)

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327(5972), 1495–1497 (2010).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Other (1)

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, k (Wiley,1995)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Interface SPP and (b) gap SPP propagating in metal clad semiconductor waveguide.
Fig. 2
Fig. 2 Dependences of pertinent characteristics on metal clad injection SL’s operating at different wavelength in visible and near IR on the gap size a. (a) Effective index (b) Transparency gain coefficient (c) Purcell factor (d) Transparency carrier density and (e) Transparency current density.
Fig. 3
Fig. 3 Dependences of pertinent characteristics on metal clad QCL’s operating at different wavelengths from mid IR to THz on the gap size a. (a) Effective index (b) Transparency gain coefficient (c) Transparency current density (d) Transparency power density

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E x ={ ε d ε m E 0 e q m x e jβz x>0 E 0 e q d x e jβz x<0 .
n eff = βc ω n d = ε m ε m + ε d >1,
E x ={ ε d ε m E 0 e q m |xa/2| e jβz |x|>a/2 E 0 cosh( q d x) e jβz |x|<a/2 ,
q d,eff = (1 ε m / ε d ) + q d,eff 2 ( ε m / ε d )tanh( q d,eff π n d a/λ) .
q d,eff 2 1 ( ε m / ε d ) 1/2 (π n d a/λ) λ p a ,
g(ω,N)= 2 α 0 A 3 n d n eff ( 2 μ r 2 ( ω E g ) ) 1/2 [ f c ( E c ,N) f v ( E v ,N) ],
R rad = 8 α 0 A n r 3 λ 2 ( 2 μ r 2 ) 1/2 F P (ω) f c (1 f v ) ( ω E g ) 1/2 d( ω ) ,
F P (ω)=1+ λ n eff n g 8πa n d .

Metrics