Abstract

We describe a new method enabling continuous stabilization and fine-level phase control of time-bin entanglement interferometers. Using this technique we demonstrate entangled photon transmission through 50 km of standard single-mode fiber. This technique reuses the entangled-pair generation pump which is co-propagated with the transmitted entangled photons. The co-propagating pump adds minimal noise to the entangled photons which are characterized by measuring a two-photon interference fringe.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue
Opt. Express 15(21) 13957-13964 (2007)

Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber

Xiaoying Li, Paul L. Voss, Jun Chen, Jay E. Sharping, and Prem Kumar
Opt. Lett. 30(10) 1201-1203 (2005)

Implementation of quantum state tomography for time-bin entangled photon pairs

Hiroki Takesue and Yuita Noguchi
Opt. Express 17(13) 10976-10989 (2009)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  2. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
    [Crossref]
  3. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
    [Crossref]
  4. H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
    [Crossref]
  5. S. X. Wang, C. Chan, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter, “High speed tomography of time-bin entangled photons using a single measurement setting,” Phys. Rev. A 86(4), 042122 (2012).
    [Crossref]
  6. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
    [Crossref]
  7. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
    [Crossref] [PubMed]
  8. Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13(2), 660–665 (2005).
    [Crossref] [PubMed]
  9. D. Stucki, N. Gisin, O. Guinnard, R. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 411–418 (2002).
    [Crossref]
  10. R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
    [Crossref]
  11. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21(20), 23241–23249 (2013).
    [Crossref] [PubMed]
  12. G. B. Xavier and J. P. von der Weid, “Stable single-photon interference in a 1 km fiber-optic Mach-Zehnder interferometer with continuous phase adjustment,” Opt. Lett. 36(10), 1764–1766 (2011).
    [Crossref] [PubMed]
  13. S. B. Cho and T. G. Noh, “Stabilization of a long-armed fiber-optic single-photon interferometer,” Opt. Express 17(21), 19027–19032 (2009).
    [Crossref] [PubMed]
  14. D. Grassani, M. Galli, and D. Bajoni, “Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution,” Opt. Lett. 39(8), 2530–2533 (2014).
    [PubMed]
  15. A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
    [Crossref] [PubMed]
  16. P. Toliver, J. M. Dailey, A. Agarwal, and N. A. Peters, “Active stabilization and continuous phase control of time-bin entanglement interferometers,” CLEO 2014, San Jose, CA, USA, June 2014, paper JTu4A.37 (2014).
  17. X.-F. Mo, B. Zhu, Z.-F. Han, Y.-Z. Gui, and G.-C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett. 30(19), 2632–2634 (2005).
    [Crossref] [PubMed]
  18. H. Takesue and K. Inoue, “1.5-µm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
    [Crossref] [PubMed]
  19. F. Golnaraghi and B. C. Kuo, Automatic Control Systems, 9th Edition. (John Wiley & Sons, Inc., 2009).
  20. A. Agarwal, J. M. Dailey, P. Toliver, and N. A. Peters, “Entangled-pair transmission improvement using distributed phase-sensitive amplication,” Phys. Rev. X 4, 041038 (2014).

2014 (2)

D. Grassani, M. Galli, and D. Bajoni, “Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution,” Opt. Lett. 39(8), 2530–2533 (2014).
[PubMed]

A. Agarwal, J. M. Dailey, P. Toliver, and N. A. Peters, “Entangled-pair transmission improvement using distributed phase-sensitive amplication,” Phys. Rev. X 4, 041038 (2014).

2013 (2)

T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21(20), 23241–23249 (2013).
[Crossref] [PubMed]

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

2012 (1)

S. X. Wang, C. Chan, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter, “High speed tomography of time-bin entangled photons using a single measurement setting,” Phys. Rev. A 86(4), 042122 (2012).
[Crossref]

2011 (1)

2009 (2)

S. B. Cho and T. G. Noh, “Stabilization of a long-armed fiber-optic single-photon interferometer,” Opt. Express 17(21), 19027–19032 (2009).
[Crossref] [PubMed]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

2005 (5)

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13(2), 660–665 (2005).
[Crossref] [PubMed]

H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
[Crossref]

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

X.-F. Mo, B. Zhu, Z.-F. Han, Y.-Z. Gui, and G.-C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett. 30(19), 2632–2634 (2005).
[Crossref] [PubMed]

H. Takesue and K. Inoue, “1.5-µm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[Crossref] [PubMed]

2004 (1)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

2002 (3)

D. Stucki, N. Gisin, O. Guinnard, R. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 411–418 (2002).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

1999 (1)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Agarwal, A.

A. Agarwal, J. M. Dailey, P. Toliver, and N. A. Peters, “Entangled-pair transmission improvement using distributed phase-sensitive amplication,” Phys. Rev. X 4, 041038 (2014).

Altepeter, J. B.

S. X. Wang, C. Chan, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter, “High speed tomography of time-bin entangled photons using a single measurement setting,” Phys. Rev. A 86(4), 042122 (2012).
[Crossref]

Asobe, M.

Bajoni, D.

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Cabello, A.

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

Cariñe, J.

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

Carvacho, G.

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

Chan, C.

S. X. Wang, C. Chan, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter, “High speed tomography of time-bin entangled photons using a single measurement setting,” Phys. Rev. A 86(4), 042122 (2012).
[Crossref]

Chapuran, T. E.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

Cho, S. B.

Cuevas, A.

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

Dailey, J. M.

A. Agarwal, J. M. Dailey, P. Toliver, and N. A. Peters, “Entangled-pair transmission improvement using distributed phase-sensitive amplication,” Phys. Rev. X 4, 041038 (2014).

Dallmann, N.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[Crossref]

Figueroa, M.

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

Galli, M.

Gisin, N.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

D. Stucki, N. Gisin, O. Guinnard, R. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 411–418 (2002).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Grassani, D.

Gui, Y.-Z.

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, R. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 411–418 (2002).
[Crossref]

Guo, G.-C.

Han, Z.-F.

Hiskett, P. A.

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

Hughes, R. J.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

Inagaki, T.

Inoue, K.

H. Takesue and K. Inoue, “1.5-µm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[Crossref] [PubMed]

H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
[Crossref]

Kanter, G. S.

S. X. Wang, C. Chan, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter, “High speed tomography of time-bin entangled photons using a single measurement setting,” Phys. Rev. A 86(4), 042122 (2012).
[Crossref]

Legré, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

Lima, G.

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[Crossref]

Mataloni, P.

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

Matsuda, N.

McCabe, K. P.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

McNown, S. R.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

Mo, X.-F.

Montano, P. M.

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

Moraw, P.

S. X. Wang, C. Chan, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter, “High speed tomography of time-bin entangled photons using a single measurement setting,” Phys. Rev. A 86(4), 042122 (2012).
[Crossref]

Nogueira, W. A.

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

Noh, T. G.

Nordholt, J. E.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

Peters, N. A.

A. Agarwal, J. M. Dailey, P. Toliver, and N. A. Peters, “Entangled-pair transmission improvement using distributed phase-sensitive amplication,” Phys. Rev. X 4, 041038 (2014).

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

Peterson, C. G.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

Reilly, D. R.

S. X. Wang, C. Chan, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter, “High speed tomography of time-bin entangled photons using a single measurement setting,” Phys. Rev. A 86(4), 042122 (2012).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Ribordy, R.

D. Stucki, N. Gisin, O. Guinnard, R. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 411–418 (2002).
[Crossref]

Rosenberg, D.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

Runser, R. J.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

Saavedra, G.

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

Scarani, V.

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[Crossref]

Sedillo, R.

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

Shields, A. J.

Stucki, D.

D. Stucki, N. Gisin, O. Guinnard, R. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 411–418 (2002).
[Crossref]

Tadanaga, O.

Takesue, H.

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Toliver, P.

A. Agarwal, J. M. Dailey, P. Toliver, and N. A. Peters, “Entangled-pair transmission improvement using distributed phase-sensitive amplication,” Phys. Rev. X 4, 041038 (2014).

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

Tyagi, K.

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

Tyagi, K. T.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

von der Weid, J. P.

Wang, S. X.

S. X. Wang, C. Chan, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter, “High speed tomography of time-bin entangled photons using a single measurement setting,” Phys. Rev. A 86(4), 042122 (2012).
[Crossref]

Wipf, C. C.

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

Xavier, G. B.

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

G. B. Xavier and J. P. von der Weid, “Stable single-photon interference in a 1 km fiber-optic Mach-Zehnder interferometer with continuous phase adjustment,” Opt. Lett. 36(10), 1764–1766 (2011).
[Crossref] [PubMed]

Yuan, Z. L.

Zbinden, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

D. Stucki, N. Gisin, O. Guinnard, R. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 411–418 (2002).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Zhu, B.

Nat Commun. (1)

A. Cuevas, G. Carvacho, G. Saavedra, J. Cariñe, W. A. Nogueira, M. Figueroa, A. Cabello, P. Mataloni, G. Lima, and G. B. Xavier, “Long-distance distribution of genuine energy-time entanglement,” Nat Commun. 4, 2871 (2013).
[Crossref] [PubMed]

New J. Phys. (2)

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11(4), 045012 (2009).
[Crossref]

D. Stucki, N. Gisin, O. Guinnard, R. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 411–418 (2002).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (3)

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002).
[Crossref]

H. Takesue and K. Inoue, “Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
[Crossref]

S. X. Wang, C. Chan, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter, “High speed tomography of time-bin entangled photons using a single measurement setting,” Phys. Rev. A 86(4), 042122 (2012).
[Crossref]

Phys. Rev. Lett. (2)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004).
[Crossref] [PubMed]

Phys. Rev. X (1)

A. Agarwal, J. M. Dailey, P. Toliver, and N. A. Peters, “Entangled-pair transmission improvement using distributed phase-sensitive amplication,” Phys. Rev. X 4, 041038 (2014).

Proc. SPIE (1)

R. J. Hughes, T. E. Chapuran, N. Dallmann, P. A. Hiskett, K. P. McCabe, P. M. Montano, J. E. Nordholt, C. G. Peterson, R. J. Runser, R. Sedillo, K. Tyagi, and C. C. Wipf, “A quantum key distribution system for optical fiber networks,” Proc. SPIE 5893, 589301 (2005).
[Crossref]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Other (2)

P. Toliver, J. M. Dailey, A. Agarwal, and N. A. Peters, “Active stabilization and continuous phase control of time-bin entanglement interferometers,” CLEO 2014, San Jose, CA, USA, June 2014, paper JTu4A.37 (2014).

F. Golnaraghi and B. C. Kuo, Automatic Control Systems, 9th Edition. (John Wiley & Sons, Inc., 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup for time-bin qubit generation and analysis. The two analysis interferometers are stabilized with respect to the source interferometer. MLL: Mode-locked laser, FRM: Faraday rotator mirror, DSF: dispersion-shifted fiber, PBS: polarization beam splitter, SMF: single-mode fiber; SPD: Single photon detector; PI: proportional-integral.
Fig. 2
Fig. 2 The control system monitor signal when the system is disabled (non-solid lines) and enabled (solid lines). The standard deviation of the control signal with the system enabled indicates 0.2 degrees of phase stability is achieved.
Fig. 3
Fig. 3 The two-photon interference fringes measured at (a) the output from the source and (b) after transmission through the 2x25 km fiber channels. The green triangles indicate the singles counting rates, and the blue circles the coincidence counting rates. The solid blue lines are sinusoidal fits to the data.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R cc 1 2 { 1+Vcos[ ( ϕ S ϕ SRC )+( ϕ I ϕ SRC ) ] }
( ϕ S ϕ SRC )= ω S ( τ 1 τ 0 )+( ϕ 1 ϕ 0 )
( ϕ I ϕ SRC )= ω I ( τ 2 τ 0 )+( ϕ 2 ϕ 0 )
ω P ( τ 1 τ 0 )+( ϕ 1 ϕ 0 )=2πm
ω P ( τ 2 τ 0 )+( ϕ 2 ϕ 0 )=2πm
( ϕ S ϕ SRC )=Δω( τ 1 τ 0 )+2πm
( ϕ I ϕ SRC )=Δω( τ 2 τ 0 )+2πm
R cc 1 2 ( 1+Vcos[ Δω( τ 2 τ 1 ) ] ).

Metrics