Abstract

We demonstrate the broadband cascaded four-wave mixing (FWM) and supercontinuum (SC) generation in a tellurite MOF which is made from 76.5TeO2-6ZnO-11.5Li2O-6Bi2O3 (TZLB, mol%) glass. By using a 2-μm picosecond laser with the center wavelength of ~1958 nm as the pump source, the broadband FWM with the frequency separation of ~1.1 THz is obtained. The bandwidth of the frequency comb spans a range of ~630 nm from ~1620 to 2250 nm at the average pump power of ~125 mW. With the average pump power increasing to ~800 mW, the broadband mid-infrared SC generation with the spectrum from ~900 to 3900 nm is observed. Changing the pump source to a femtosecond laser (optical parametric oscillator, OPO) with the center wavelength of ~2000 nm, solitons and dispersive waves (DWs) are obtained.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Supercontinuum generation from a multiple-ring-holes tellurite microstructured optical fiber pumped by a 2 μm mode-locked picosecond fiber laser

Dinghuan Deng, Weiqing Gao, Meisong Liao, Zhongchao Duan, Tonglei Cheng, Takenobu Suzuki, and Yasutake Ohishi
Appl. Opt. 52(16) 3818-3823 (2013)

Experimental observation of multiple dispersive waves emitted by multiple mid-infrared solitons in a birefringence tellurite microstuctured optical fiber

Tonglei Cheng, Tong Hoang Tuan, Xiaojei Xue, Lai Liu, Dinghuan Deng, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 23(16) 20647-20654 (2015)

Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber

Tonglei Cheng, Yasuhire Kanou, Xiaojie Xue, Dinghuan Deng, Morio Matsumoto, Takashi Misumi, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 22(19) 23019-23025 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26(14), 1048–1050 (2001).
    [Crossref] [PubMed]
  2. M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
    [Crossref] [PubMed]
  3. C. J. McKinstrie and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14(21), 9600–9610 (2006).
    [Crossref] [PubMed]
  4. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
    [Crossref] [PubMed]
  5. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [Crossref] [PubMed]
  6. J. J. Wathen, P. Apiratikul, C. J. K. Richardson, G. A. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides,” Opt. Lett. 39(11), 3161–3164 (2014).
    [Crossref] [PubMed]
  7. X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
    [Crossref]
  8. P. Steinvurzel, J. Demas, B. Tai, Y. Chen, L. Yan, and S. Ramachandran, “Broadband parametric wavelength conversion at 1 μm with large mode area fibers,” Opt. Lett. 39(4), 743–746 (2014).
    [Crossref] [PubMed]
  9. K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
    [Crossref]
  10. A. Cerqueira S, J. M. Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16(4), 2816–2828 (2008).
    [Crossref] [PubMed]
  11. B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express 21(3), 2707–2717 (2013).
    [Crossref] [PubMed]
  12. K. Inoue, “Four-Wave Mixing in an Optical Fiber in the Zero-Dispersion Wavelength Region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
    [Crossref]
  13. T. L. Cheng, D. H. Deng, X. J. Xue, T. Suzuki, and Y. Ohishi, “Continuous-wave four-wave mixing in a single-mode tellurite fiber,” Appl. Phys. Lett. 104(25), 251903 (2014).
    [Crossref]
  14. L. Krzczanowicz and M. J. Connelly, “40 Gb/s NRZ-DQPSK Data All-Optical Wavelength Conversion Using Four Wave Mixing in a Bulk SOA,” IEEE Photon. Technol. Lett. 25(24), 2439–2441 (2013).
    [Crossref]
  15. T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
    [Crossref]
  16. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005).
    [Crossref] [PubMed]
  17. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
    [Crossref] [PubMed]
  18. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
    [Crossref]
  19. K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, and A. L. Gaeta, “Broadband parametric frequency comb generation with a 1-μm pump source,” Opt. Express 20(24), 26935–26941 (2012).
    [Crossref] [PubMed]
  20. J. Hou, Y. Li, J. Leng, P. Zhou, and Z. Jiang, “Cascaded four-wave mixing generation in photonic crystal fibers,” Appl. Phys. B 113(4), 611–618 (2013).
    [Crossref]
  21. Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett. 30(11), 1282–1284 (2005).
    [Crossref] [PubMed]
  22. H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1μm,” Appl. Phys. B 110(3), 299–302 (2013).
    [Crossref]
  23. W. Liu, L. Zhu, L. Wang, and C. Fang, “Cascaded four-wave mixing for broadband tunable laser sideband generation,” Opt. Lett. 38(11), 1772–1774 (2013).
    [Crossref] [PubMed]
  24. A. V. Husakou and J. Herrmann, “Frequency comb generation by four-wave mixing in a multicore photonic crystal fiber,” Appl. Phys. Lett. 83(19), 3867–3869 (2003).
    [Crossref]
  25. G. A. Sefler and K. Kitayama, “Frequency Comb Generation by Four-Wave Mixing and the Role of Fiber Dispersion,” J. Lightwave Technol. 16(9), 1596–1605 (1998).
    [Crossref]
  26. D. Türke, I. Teipel, and H. Giessen, “Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibers,” Appl. Phys. B 92(2), 159–163 (2008).
    [Crossref]
  27. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20(22), 24218–24225 (2012).
    [Crossref] [PubMed]
  28. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  29. S. P. Stark, J. C. Travers, and P. St. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37(5), 770–772 (2012).
    [Crossref] [PubMed]
  30. J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
    [Crossref]
  31. M. S. Liao, W. Q. Gao, T. L. Cheng, Z. C. Duan, X. J. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20(26), B574–B580 (2012).
    [PubMed]
  32. T. L. Cheng, Y. Kanou, D. H. Deng, X. J. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
    [Crossref] [PubMed]
  33. W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
    [Crossref]
  34. F. Théberge, J. F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38(22), 4683–4685 (2013).
    [Crossref] [PubMed]
  35. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As₂S₃ fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38(15), 2865–2868 (2013).
    [Crossref] [PubMed]
  36. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 microm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
    [Crossref] [PubMed]
  37. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 m in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
    [Crossref]
  38. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [Crossref] [PubMed]
  39. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  40. A. Mori, K. Shikano, W. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, “1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675 W−1km−1,” Eur. Conf. Opt. Commun. (ECOC), Stockholm, Sweden, Paper Th3.3.6 (2004).
  41. A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
    [Crossref]
  42. Y. H. Lin and G. R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser modelocked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett. 10(4), 045109 (2013).
    [Crossref]
  43. T. L. Cheng, K. Asano, Z. C. Duan, T. H. Tuan, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification,” Opt. Commun. 318, 105–111 (2014).
    [Crossref]
  44. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” Appl. Phys. Lett. 107, 043108 (2010).
  45. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 3rd ed. 2001).
  46. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001).
    [Crossref] [PubMed]
  47. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004).
    [Crossref] [PubMed]

2014 (7)

T. L. Cheng, D. H. Deng, X. J. Xue, T. Suzuki, and Y. Ohishi, “Continuous-wave four-wave mixing in a single-mode tellurite fiber,” Appl. Phys. Lett. 104(25), 251903 (2014).
[Crossref]

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

T. L. Cheng, K. Asano, Z. C. Duan, T. H. Tuan, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification,” Opt. Commun. 318, 105–111 (2014).
[Crossref]

P. Steinvurzel, J. Demas, B. Tai, Y. Chen, L. Yan, and S. Ramachandran, “Broadband parametric wavelength conversion at 1 μm with large mode area fibers,” Opt. Lett. 39(4), 743–746 (2014).
[Crossref] [PubMed]

J. J. Wathen, P. Apiratikul, C. J. K. Richardson, G. A. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides,” Opt. Lett. 39(11), 3161–3164 (2014).
[Crossref] [PubMed]

T. L. Cheng, Y. Kanou, D. H. Deng, X. J. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

2013 (9)

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express 21(3), 2707–2717 (2013).
[Crossref] [PubMed]

W. Liu, L. Zhu, L. Wang, and C. Fang, “Cascaded four-wave mixing for broadband tunable laser sideband generation,” Opt. Lett. 38(11), 1772–1774 (2013).
[Crossref] [PubMed]

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As₂S₃ fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38(15), 2865–2868 (2013).
[Crossref] [PubMed]

F. Théberge, J. F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38(22), 4683–4685 (2013).
[Crossref] [PubMed]

Y. H. Lin and G. R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser modelocked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett. 10(4), 045109 (2013).
[Crossref]

L. Krzczanowicz and M. J. Connelly, “40 Gb/s NRZ-DQPSK Data All-Optical Wavelength Conversion Using Four Wave Mixing in a Bulk SOA,” IEEE Photon. Technol. Lett. 25(24), 2439–2441 (2013).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
[Crossref]

J. Hou, Y. Li, J. Leng, P. Zhou, and Z. Jiang, “Cascaded four-wave mixing generation in photonic crystal fibers,” Appl. Phys. B 113(4), 611–618 (2013).
[Crossref]

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

2012 (5)

2011 (1)

2010 (2)

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” Appl. Phys. Lett. 107, 043108 (2010).

X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

2009 (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 m in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

2008 (4)

2006 (4)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 microm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[Crossref] [PubMed]

C. J. McKinstrie and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14(21), 9600–9610 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (1)

2003 (1)

A. V. Husakou and J. Herrmann, “Frequency comb generation by four-wave mixing in a multicore photonic crystal fiber,” Appl. Phys. Lett. 83(19), 3867–3869 (2003).
[Crossref]

2002 (1)

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

2001 (2)

1998 (1)

1996 (1)

1994 (1)

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[Crossref]

1992 (1)

K. Inoue, “Four-Wave Mixing in an Optical Fiber in the Zero-Dispersion Wavelength Region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abedin, K. S.

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

Apiratikul, P.

Asano, K.

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
[Crossref]

T. L. Cheng, K. Asano, Z. C. Duan, T. H. Tuan, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification,” Opt. Commun. 318, 105–111 (2014).
[Crossref]

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Boggio, J. M.

Brambilla, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Byer, R. L.

Carter, G. M.

Cerqueira S, A.

Chandalia, J. K.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 m in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Chavez Boggio, J. M.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Chen, Y.

Cheng, T. L.

T. L. Cheng, Y. Kanou, D. H. Deng, X. J. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

T. L. Cheng, D. H. Deng, X. J. Xue, T. Suzuki, and Y. Ohishi, “Continuous-wave four-wave mixing in a single-mode tellurite fiber,” Appl. Phys. Lett. 104(25), 251903 (2014).
[Crossref]

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
[Crossref]

T. L. Cheng, K. Asano, Z. C. Duan, T. H. Tuan, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification,” Opt. Commun. 318, 105–111 (2014).
[Crossref]

M. S. Liao, W. Q. Gao, T. L. Cheng, Z. C. Duan, X. J. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20(26), B574–B580 (2012).
[PubMed]

Chiang, T. K.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cohen, O.

Coker, A.

Connelly, M. J.

L. Krzczanowicz and M. J. Connelly, “40 Gb/s NRZ-DQPSK Data All-Optical Wavelength Conversion Using Four Wave Mixing in a Bulk SOA,” IEEE Photon. Technol. Lett. 25(24), 2439–2441 (2013).
[Crossref]

Cordeiro, C. M. B.

Cristiani, I.

Cronin-Golomb, M.

Daigle, J. F.

Degiorgio, V.

Del’Haye, P.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
[Crossref]

Demas, J.

Deng, D. H.

T. L. Cheng, Y. Kanou, D. H. Deng, X. J. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

T. L. Cheng, D. H. Deng, X. J. Xue, T. Suzuki, and Y. Ohishi, “Continuous-wave four-wave mixing in a single-mode tellurite fiber,” Appl. Phys. Lett. 104(25), 251903 (2014).
[Crossref]

T. L. Cheng, K. Asano, Z. C. Duan, T. H. Tuan, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification,” Opt. Commun. 318, 105–111 (2014).
[Crossref]

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
[Crossref]

Dianov, E. M.

Domachuk, P.

Duan, Z. C.

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
[Crossref]

T. L. Cheng, K. Asano, Z. C. Duan, T. H. Tuan, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification,” Opt. Commun. 318, 105–111 (2014).
[Crossref]

M. S. Liao, W. Q. Gao, T. L. Cheng, Z. C. Duan, X. J. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20(26), B574–B580 (2012).
[PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Duligall, J.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Eggleton, B. J.

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001).
[Crossref] [PubMed]

Fang, B.

Fang, C.

Feng, X.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Fiorentino, M.

Fortin, J.

Foster, M. A.

K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, and A. L. Gaeta, “Broadband parametric frequency comb generation with a 1-μm pump source,” Opt. Express 20(24), 26935–26941 (2012).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Fragnito, H. L.

Freeman, M. J.

Fukuda, H.

Fulconis, J.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gaeta, A. L.

K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, and A. L. Gaeta, “Broadband parametric frequency comb generation with a 1-μm pump source,” Opt. Express 20(24), 26935–26941 (2012).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Gao, W. Q.

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
[Crossref]

T. L. Cheng, K. Asano, Z. C. Duan, T. H. Tuan, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification,” Opt. Commun. 318, 105–111 (2014).
[Crossref]

M. S. Liao, W. Q. Gao, T. L. Cheng, Z. C. Duan, X. J. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20(26), B574–B580 (2012).
[PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

George, A. K.

Giessen, H.

D. Türke, I. Teipel, and H. Giessen, “Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibers,” Appl. Phys. B 92(2), 159–163 (2008).
[Crossref]

Gopinath, J. T.

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

Green, W. M. J.

X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

Han, Y. G.

Hänsch, T. W.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
[Crossref]

Haynes, R.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Heidt, A. M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Hernandez-Figueroa, H. E.

Herr, T.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
[Crossref]

Herrmann, J.

A. V. Husakou and J. Herrmann, “Frequency comb generation by four-wave mixing in a multicore photonic crystal fiber,” Appl. Phys. Lett. 83(19), 3867–3869 (2003).
[Crossref]

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
[Crossref]

Holzwarth, R.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
[Crossref]

Horak, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Hou, J.

J. Hou, Y. Li, J. Leng, P. Zhou, and Z. Jiang, “Cascaded four-wave mixing generation in photonic crystal fibers,” Appl. Phys. B 113(4), 611–618 (2013).
[Crossref]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Frequency comb generation by four-wave mixing in a multicore photonic crystal fiber,” Appl. Phys. Lett. 83(19), 3867–3869 (2003).
[Crossref]

Ibsen, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Inoue, K.

K. Inoue, “Four-Wave Mixing in an Optical Fiber in the Zero-Dispersion Wavelength Region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[Crossref]

Ippen, E. P.

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

Islam, M. N.

Itabashi, S.

Jiang, Z.

J. Hou, Y. Li, J. Leng, P. Zhou, and Z. Jiang, “Cascaded four-wave mixing generation in photonic crystal fibers,” Appl. Phys. B 113(4), 611–618 (2013).
[Crossref]

Kagi, N.

Kanou, Y.

Kawanishi, S.

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[Crossref]

Kazovsky, L. G.

Kerbage, C. E.

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

Kim, S. H.

Kippenberg, T. J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
[Crossref]

Kitayama, K.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” Appl. Phys. Lett. 107, 043108 (2010).

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 m in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Knight, J. C.

Knox, W. H.

Kosinski, S. G.

Kracht, D.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Krzczanowicz, L.

L. Krzczanowicz and M. J. Connelly, “40 Gb/s NRZ-DQPSK Data All-Optical Wavelength Conversion Using Four Wave Mixing in a Bulk SOA,” IEEE Photon. Technol. Lett. 25(24), 2439–2441 (2013).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kulkarni, O. P.

Kumar, M.

Kumar, P.

Lau, R. K. W.

Lee, S. B.

Légaré, F.

Leng, J.

J. Hou, Y. Li, J. Leng, P. Zhou, and Z. Jiang, “Cascaded four-wave mixing generation in photonic crystal fibers,” Appl. Phys. B 113(4), 611–618 (2013).
[Crossref]

Levy, J. S.

Li, Y.

J. Hou, Y. Li, J. Leng, P. Zhou, and Z. Jiang, “Cascaded four-wave mixing generation in photonic crystal fibers,” Appl. Phys. B 113(4), 611–618 (2013).
[Crossref]

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” Appl. Phys. Lett. 107, 043108 (2010).

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 m in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Liao, M. S.

Lin, G. R.

Y. H. Lin and G. R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser modelocked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett. 10(4), 045109 (2013).
[Crossref]

Lin, Y. H.

Y. H. Lin and G. R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser modelocked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett. 10(4), 045109 (2013).
[Crossref]

Lipson, M.

K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, and A. L. Gaeta, “Broadband parametric frequency comb generation with a 1-μm pump source,” Opt. Express 20(24), 26935–26941 (2012).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Liu, W.

Liu, X.

Liu, X. P.

X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

Loh, W. H.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Lorenz, V. O.

Luke, K.

Marandi, A.

Marhic, M. E.

Mathieu, P.

Matsumoto, M.

T. L. Cheng, Y. Kanou, D. H. Deng, X. J. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
[Crossref]

Mazé, G.

McKinstrie, C. J.

Misumi, T.

T. L. Cheng, Y. Kanou, D. H. Deng, X. J. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moreno, J. B.

Morgner, U.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Mori, A.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” Appl. Phys. Lett. 107, 043108 (2010).

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[Crossref]

Morioka, T.

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[Crossref]

Murphy, T. E.

Neumann, J.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Ohishi, Y.

T. L. Cheng, D. H. Deng, X. J. Xue, T. Suzuki, and Y. Ohishi, “Continuous-wave four-wave mixing in a single-mode tellurite fiber,” Appl. Phys. Lett. 104(25), 251903 (2014).
[Crossref]

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
[Crossref]

T. L. Cheng, K. Asano, Z. C. Duan, T. H. Tuan, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification,” Opt. Commun. 318, 105–111 (2014).
[Crossref]

T. L. Cheng, Y. Kanou, D. H. Deng, X. J. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

M. S. Liao, W. Q. Gao, T. L. Cheng, Z. C. Duan, X. J. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20(26), B574–B580 (2012).
[PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” Appl. Phys. Lett. 107, 043108 (2010).

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 m in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Okawachi, Y.

Omenetto, F. G.

Osgood, R. M.

X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Petropoulos, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Petrovich, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Picqué, N.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
[Crossref]

Plotnichenko, V. G.

Poletti, F.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Ponzo, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Porkolab, G. A.

Poulain, M.

Price, J. H. V.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” Appl. Phys. Lett. 107, 043108 (2010).

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 m in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Ramachandran, S.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Rarity, J. G.

Raymer, M. G.

Richardson, C. J. K.

Richardson, D. J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Rieznik, A. A.

Roth, M. M.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Rudy, C. W.

Russell, P. St. J.

Rutt, H. N.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Saha, K.

Saruwatari, M.

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[Crossref]

Sayinc, H.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
[Crossref]

Schmidt, B. E.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Schunemann, P. G.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sefler, G. A.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26(14), 1048–1050 (2001).
[Crossref] [PubMed]

Shi, J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Shoji, T.

Sorokin, E.

Sorokina, I. T.

Stark, S. P.

Steinvurzel, P.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Suzuki, T.

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
[Crossref]

T. L. Cheng, K. Asano, Z. C. Duan, T. H. Tuan, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification,” Opt. Commun. 318, 105–111 (2014).
[Crossref]

T. L. Cheng, D. H. Deng, X. J. Xue, T. Suzuki, and Y. Ohishi, “Continuous-wave four-wave mixing in a single-mode tellurite fiber,” Appl. Phys. Lett. 104(25), 251903 (2014).
[Crossref]

T. L. Cheng, Y. Kanou, D. H. Deng, X. J. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

M. S. Liao, W. Q. Gao, T. L. Cheng, Z. C. Duan, X. J. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20(26), B574–B580 (2012).
[PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” Appl. Phys. Lett. 107, 043108 (2010).

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 m in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Tai, B.

Takahashi, J.

Takahashi, M.

Takara, H.

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tartara, L.

Tediosi, R.

Teipel, I.

D. Türke, I. Teipel, and H. Giessen, “Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibers,” Appl. Phys. B 92(2), 159–163 (2008).
[Crossref]

Terry, F. L.

Théberge, F.

Thiré, N.

Tran, T. V. A.

Travers, J. C.

Tsuchizawa, T.

Tuan, T. H.

T. L. Cheng, K. Asano, Z. C. Duan, T. H. Tuan, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification,” Opt. Commun. 318, 105–111 (2014).
[Crossref]

Türke, D.

D. Türke, I. Teipel, and H. Giessen, “Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibers,” Appl. Phys. B 92(2), 159–163 (2008).
[Crossref]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Vincent, D.

Vlasov, Y. A.

X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

Vodopyanov, K. L.

Wadsworth, W. J.

Wang, A.

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
[Crossref]

Wang, L.

Watanabe, T.

Wathen, J. J.

Windeler, R. S.

Wolchover, N. A.

Wysmolek, M.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Xia, C.

Xu, C.

Xue, X. J.

Yamada, K.

Yan, L.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” Appl. Phys. Lett. 107, 043108 (2010).

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 m in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhou, P.

J. Hou, Y. Li, J. Leng, P. Zhou, and Z. Jiang, “Cascaded four-wave mixing generation in photonic crystal fibers,” Appl. Phys. B 113(4), 611–618 (2013).
[Crossref]

Zhu, L.

Appl. Phys. B (4)

J. Hou, Y. Li, J. Leng, P. Zhou, and Z. Jiang, “Cascaded four-wave mixing generation in photonic crystal fibers,” Appl. Phys. B 113(4), 611–618 (2013).
[Crossref]

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

D. Türke, I. Teipel, and H. Giessen, “Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibers,” Appl. Phys. B 92(2), 159–163 (2008).
[Crossref]

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116(4), 847–853 (2014).
[Crossref]

Appl. Phys. Lett. (5)

A. V. Husakou and J. Herrmann, “Frequency comb generation by four-wave mixing in a multicore photonic crystal fiber,” Appl. Phys. Lett. 83(19), 3867–3869 (2003).
[Crossref]

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

T. L. Cheng, D. H. Deng, X. J. Xue, T. Suzuki, and Y. Ohishi, “Continuous-wave four-wave mixing in a single-mode tellurite fiber,” Appl. Phys. Lett. 104(25), 251903 (2014).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 m in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” Appl. Phys. Lett. 107, 043108 (2010).

Electron. Lett. (1)

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Krzczanowicz and M. J. Connelly, “40 Gb/s NRZ-DQPSK Data All-Optical Wavelength Conversion Using Four Wave Mixing in a Bulk SOA,” IEEE Photon. Technol. Lett. 25(24), 2439–2441 (2013).
[Crossref]

J. Ceram. Soc. Jpn. (1)

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[Crossref]

J. Lightwave Technol. (2)

G. A. Sefler and K. Kitayama, “Frequency Comb Generation by Four-Wave Mixing and the Role of Fiber Dispersion,” J. Lightwave Technol. 16(9), 1596–1605 (1998).
[Crossref]

K. Inoue, “Four-Wave Mixing in an Optical Fiber in the Zero-Dispersion Wavelength Region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[Crossref]

Laser Phys. Lett. (1)

Y. H. Lin and G. R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser modelocked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett. 10(4), 045109 (2013).
[Crossref]

Nat. Commun. (1)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 mmbased on crystalline microresonators,” Nat. Commun. 4, 2335 (2013), doi:.
[Crossref]

Nat. Photonics (2)

X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

T. L. Cheng, K. Asano, Z. C. Duan, T. H. Tuan, W. Q. Gao, D. H. Deng, T. Suzuki, and Y. Ohishi, “Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification,” Opt. Commun. 318, 105–111 (2014).
[Crossref]

Opt. Express (11)

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[Crossref] [PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004).
[Crossref] [PubMed]

C. J. McKinstrie and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14(21), 9600–9610 (2006).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
[Crossref] [PubMed]

K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, and A. L. Gaeta, “Broadband parametric frequency comb generation with a 1-μm pump source,” Opt. Express 20(24), 26935–26941 (2012).
[Crossref] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005).
[Crossref] [PubMed]

A. Cerqueira S, J. M. Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16(4), 2816–2828 (2008).
[Crossref] [PubMed]

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express 21(3), 2707–2717 (2013).
[Crossref] [PubMed]

M. S. Liao, W. Q. Gao, T. L. Cheng, Z. C. Duan, X. J. Xue, T. Suzuki, and Y. Ohishi, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Opt. Express 20(26), B574–B580 (2012).
[PubMed]

T. L. Cheng, Y. Kanou, D. H. Deng, X. J. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[Crossref] [PubMed]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20(22), 24218–24225 (2012).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Opt. Lett. (12)

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001).
[Crossref] [PubMed]

W. Liu, L. Zhu, L. Wang, and C. Fang, “Cascaded four-wave mixing for broadband tunable laser sideband generation,” Opt. Lett. 38(11), 1772–1774 (2013).
[Crossref] [PubMed]

Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, “Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature,” Opt. Lett. 30(11), 1282–1284 (2005).
[Crossref] [PubMed]

S. P. Stark, J. C. Travers, and P. St. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37(5), 770–772 (2012).
[Crossref] [PubMed]

F. Théberge, J. F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38(22), 4683–4685 (2013).
[Crossref] [PubMed]

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As₂S₃ fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38(15), 2865–2868 (2013).
[Crossref] [PubMed]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 microm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[Crossref] [PubMed]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
[Crossref] [PubMed]

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26(14), 1048–1050 (2001).
[Crossref] [PubMed]

M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
[Crossref] [PubMed]

J. J. Wathen, P. Apiratikul, C. J. K. Richardson, G. A. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides,” Opt. Lett. 39(11), 3161–3164 (2014).
[Crossref] [PubMed]

P. Steinvurzel, J. Demas, B. Tai, Y. Chen, L. Yan, and S. Ramachandran, “Broadband parametric wavelength conversion at 1 μm with large mode area fibers,” Opt. Lett. 39(4), 743–746 (2014).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (2)

A. Mori, K. Shikano, W. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, “1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient γ of 675 W−1km−1,” Eur. Conf. Opt. Commun. (ECOC), Stockholm, Sweden, Paper Th3.3.6 (2004).

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 3rd ed. 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Photos of TZLB tube and rod. (b) Cross section of the tellurite MOF taken by SEM. (c) Calculated chromatic dispersion of the tellurite MOF. Inset is the fundamental mode-field profile at 2000 nm.
Fig. 2
Fig. 2 Experimental setup for the cascaded FWM and SC generation in the tellurite MOF.
Fig. 3
Fig. 3 Spectrum of the pump source with a Kelly sideband.
Fig. 4
Fig. 4 (a) Cascaded FWM spectra from the tellurite MOF with the average pump power of ~92, 125 and 164 mW. (b) Enlarged pump, signal and idler waves in the frequency domain with the frequency separation of ~1.1 THz.
Fig. 5
Fig. 5 Calculated phase-matching condition with the peak pump power of ~107, 145, 190, 581, 755 and 929 W from 1820 to 2100 nm.
Fig. 6
Fig. 6 Measured SC in the tellurite MOF at the pump wavelengths of ~1958 nm with the average pump power of ~500, 650 and 800 mW.
Fig. 7
Fig. 7 Measured SC in the tellurite MOF at the pump wavelengths of ~2000 nm with the average pump power of ~80, 150, 220 300 and 350 mW.
Fig. 8
Fig. 8 Fundamental soliton wavelength shift corresponding to the average pump power of ~80, 150, 220 300 and 350 mW.
Fig. 9
Fig. 9 Experimental and calculated 1st λDW at the average pump power of ~80, 150, 220, 300 and 350 mW.

Tables (1)

Tables Icon

Table 1 Launched peak powers in the tellurite MOF corresponding to the average pump powers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 ω p = ω i + ω s
κ=Δβ+2γP=0
Δβ= β i + β s 2 β p = n( ω i ) ω i c + n( ω s ) ω s c 2n( ω p ) ω p c
n2 β n ( ω soliton ) n! ( ω DW ω soliton ) n = γ P soliton 2

Metrics