Abstract

Developing versatile joining techniques to weld transparent materials on a micrometer scale is of great importance in a growing number of applications, especially for the fabrication and assembly of biomedical devices. In this paper, we report on fs-laser microwelding of two transparent layers of polymethyl methacrylate (PMMA) based on nonlinear absorption and localized heat accumulation at high repetition rates. A fiber CPA laser system was used delivering 650-fs pulses at 1030 nm with repetition rates in the MHz regime. The laser-induced modifications produced by the focused beam into the bulk PMMA were firstly investigated, trying to find a suitable set of process parameters generating continuous and localized melting. Results have been evaluated based on existing heat accumulation models. Then, we have successfully laser welded two 1-mm-thick PMMA layers in a lap-joint configuration. Sealing of the sample was demonstrated through static and dynamic leakage tests. This fs-laser micro-welding process does not need any pre-processing of the samples or any intermediate absorbing layer. Furthermore, it offers several advantages compared to other joining techniques, because it prevents contamination and thermal distortion of the samples, thus being extremely interesting for application in direct laser fabrication of microfluidic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm

Takayuki Tamaki, Wataru Watanabe, and Kazuyoshi Itoh
Opt. Express 14(22) 10460-10468 (2006)

Dendrite-joining of air-gap-separated PMMA substrates using ultrashort laser pulses

Yusuke Mizuguchi, Takayuki Tamaki, Takashi Fukuda, Koji Hatanaka, Saulius Juodkazis, and Wataru Watanabe
Opt. Mater. Express 7(7) 2141-2149 (2017)

Ultrashort pulsed fiber laser welding and sealing of transparent materials

Huan Huang, Lih-Mei Yang, and Jian Liu
Appl. Opt. 51(15) 2979-2986 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer-Verlag, 2012).
  2. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360–4364 (2002).
    [Crossref] [PubMed]
  3. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
    [Crossref]
  4. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
    [Crossref]
  5. D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
    [Crossref]
  6. H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
    [Crossref]
  7. M. Mikutis, T. Kudrius, G. Šlekys, D. Paipulas, and S. Juodkazis, “High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams,” Opt. Mater. Express 3, 1862–1871 (2013).
  8. A. Ben-Yakar and R. L. Byer, “Femtosecond laser machining of fluidic microchannels for miniaturized bioanalytical systems,” Proc. SPIE 4637, 212–217 (2002).
    [Crossref]
  9. M. S. Giridhar, K. Seong, A. Schülzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,” Appl. Opt. 43(23), 4584–4589 (2004).
    [Crossref] [PubMed]
  10. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
    [Crossref]
  11. C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
    [Crossref] [PubMed]
  12. R. Suriano, A. Kuznetsov, S. Eaton, G. R. Kiyan, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257(14), 6243–6250 (2011).
    [Crossref]
  13. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
    [Crossref]
  14. H. Huang, L.-M. Yang, and J. Liu, “Direct welding of fused silica with femtosecond fiber laser,” Proc. SPIE 8244, 824403 (2012).
    [Crossref]
  15. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
    [Crossref]
  16. W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Joining of transparent materials by femtosecond laser pulses,” Proc. SPIE 6460, 646017 (2007).
    [Crossref]
  17. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 58–63 (2007).
    [Crossref]
  18. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
    [Crossref]
  19. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), 687–689 (2005).
    [Crossref]
  20. W. Watanabe, T. Tamaki, Y. Ozeki, and K. Itoh, “Filamentation in Ultrafast Laser Material Processing,” in Progress in Ultrafast Intense Laser Science VI, K. Yamanouchi, G. Gerber, A.D. Bandrauk, eds. (Springer-Verlag, 2010).
  21. I. Miyamoto, A. Horn, D. Wirtmann, J. Gottmann, and F. Yoshino, “High-precision, high-throughput fusion welding of glass using femtosecond laser pulses,” Fourth International Congress on Laser Advanced Materials Processing (LAMP2006), Kyoto, Japan, 16–19 May, 2006.
  22. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
    [Crossref] [PubMed]
  23. H. Becker and L. E. Locascio, “Polymer microfluidic devices,” Talanta 56(2), 267–287 (2002).
    [Crossref] [PubMed]
  24. A. Boglea, A. Olowinsky, and A. Gillner, “Fibre laser welding for packaging of disposable polymeric microfluidic-biochips,” Appl. Surf. Sci. 254(4), 1174–1178 (2007).
    [Crossref]
  25. B. Acherjee, A. S. Kuar, S. Mitra, D. Misra, and S. Acharyya, “Experimental investigation on laser transmission welding of PMMA to ABS via response surface modeling,” Opt. Laser Technol. 44(5), 1372–1383 (2012).
    [Crossref]
  26. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
    [Crossref]
  27. M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, “Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluid. Nanofluid. 10(5), 1097–1107 (2011).
    [Crossref]
  28. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882 (1997).
    [Crossref]
  29. S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
    [Crossref] [PubMed]
  30. E. Gamaly, S. Joudkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
    [Crossref]
  31. D. Bäuerle, Laser Processing and Chemistry, 2nd ed. (Springer-Verlag, 1996), Chap. 7.
  32. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
    [Crossref] [PubMed]
  33. R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
    [Crossref] [PubMed]
  34. Makeitfrom, “Material properties database,” (2009). http://www.makeitfrom.com/material-properties/Polymethylmethacrylate-PMMA-Acrylic/ .
  35. F. Smith and J. Hashemi, Foundations of Materials Science and Engineering, 4th ed. (McGraw-Hill, 2006).
  36. Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 551–575 (1998).
  37. C.-W. Tsao and D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid. 6(1), 1–16 (2009).
    [Crossref]
  38. S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J Biophotonics 5(8-9), 687–702 (2012).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

2012 (4)

H. Huang, L.-M. Yang, and J. Liu, “Direct welding of fused silica with femtosecond fiber laser,” Proc. SPIE 8244, 824403 (2012).
[Crossref]

B. Acherjee, A. S. Kuar, S. Mitra, D. Misra, and S. Acharyya, “Experimental investigation on laser transmission welding of PMMA to ABS via response surface modeling,” Opt. Laser Technol. 44(5), 1372–1383 (2012).
[Crossref]

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J Biophotonics 5(8-9), 687–702 (2012).
[Crossref] [PubMed]

2011 (4)

M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, “Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluid. Nanofluid. 10(5), 1097–1107 (2011).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

R. Suriano, A. Kuznetsov, S. Eaton, G. R. Kiyan, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257(14), 6243–6250 (2011).
[Crossref]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

2010 (2)

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[Crossref] [PubMed]

D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

2009 (3)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

C.-W. Tsao and D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid. 6(1), 1–16 (2009).
[Crossref]

2008 (2)

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[Crossref] [PubMed]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

2007 (3)

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Joining of transparent materials by femtosecond laser pulses,” Proc. SPIE 6460, 646017 (2007).
[Crossref]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 58–63 (2007).
[Crossref]

A. Boglea, A. Olowinsky, and A. Gillner, “Fibre laser welding for packaging of disposable polymeric microfluidic-biochips,” Appl. Surf. Sci. 254(4), 1174–1178 (2007).
[Crossref]

2006 (3)

E. Gamaly, S. Joudkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

2005 (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), 687–689 (2005).
[Crossref]

2004 (2)

M. S. Giridhar, K. Seong, A. Schülzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,” Appl. Opt. 43(23), 4584–4589 (2004).
[Crossref] [PubMed]

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

2002 (3)

A. Ben-Yakar and R. L. Byer, “Femtosecond laser machining of fluidic microchannels for miniaturized bioanalytical systems,” Proc. SPIE 4637, 212–217 (2002).
[Crossref]

M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360–4364 (2002).
[Crossref] [PubMed]

H. Becker and L. E. Locascio, “Polymer microfluidic devices,” Talanta 56(2), 267–287 (2002).
[Crossref] [PubMed]

1998 (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 551–575 (1998).

1997 (1)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882 (1997).
[Crossref]

Acharyya, S.

B. Acherjee, A. S. Kuar, S. Mitra, D. Misra, and S. Acharyya, “Experimental investigation on laser transmission welding of PMMA to ABS via response surface modeling,” Opt. Laser Technol. 44(5), 1372–1383 (2012).
[Crossref]

Acherjee, B.

B. Acherjee, A. S. Kuar, S. Mitra, D. Misra, and S. Acharyya, “Experimental investigation on laser transmission welding of PMMA to ABS via response surface modeling,” Opt. Laser Technol. 44(5), 1372–1383 (2012).
[Crossref]

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Ancona, A.

Baum, A.

D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Becker, H.

H. Becker and L. E. Locascio, “Polymer microfluidic devices,” Talanta 56(2), 267–287 (2002).
[Crossref] [PubMed]

Ben-Yakar, A.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser machining of fluidic microchannels for miniaturized bioanalytical systems,” Proc. SPIE 4637, 212–217 (2002).
[Crossref]

Berger, P.

Boglea, A.

A. Boglea, A. Olowinsky, and A. Gillner, “Fibre laser welding for packaging of disposable polymeric microfluidic-biochips,” Appl. Surf. Sci. 254(4), 1174–1178 (2007).
[Crossref]

Burmeister, F.

Byer, R. L.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser machining of fluidic microchannels for miniaturized bioanalytical systems,” Proc. SPIE 4637, 212–217 (2002).
[Crossref]

Cerullo, G.

S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J Biophotonics 5(8-9), 687–702 (2012).
[Crossref] [PubMed]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[Crossref] [PubMed]

Chichkov, B. N.

R. Suriano, A. Kuznetsov, S. Eaton, G. R. Kiyan, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257(14), 6243–6250 (2011).
[Crossref]

M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360–4364 (2002).
[Crossref] [PubMed]

Choi, T. Y.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

De Marco, C.

S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J Biophotonics 5(8-9), 687–702 (2012).
[Crossref] [PubMed]

Dearden, G.

D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

DeVoe, D. L.

C.-W. Tsao and D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid. 6(1), 1–16 (2009).
[Crossref]

Döring, S.

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref] [PubMed]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

Eaton, S.

R. Suriano, A. Kuznetsov, S. Eaton, G. R. Kiyan, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257(14), 6243–6250 (2011).
[Crossref]

Eaton, S. M.

S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J Biophotonics 5(8-9), 687–702 (2012).
[Crossref] [PubMed]

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[Crossref] [PubMed]

Edwardson, S.

D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Ezoe, R.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Fearon, E.

D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Feuer, A.

Freitag, C.

Gamaly, E.

E. Gamaly, S. Joudkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Gillner, A.

A. Boglea, A. Olowinsky, and A. Gillner, “Fibre laser welding for packaging of disposable polymeric microfluidic-biochips,” Appl. Surf. Sci. 254(4), 1174–1178 (2007).
[Crossref]

Giridhar, M. S.

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882 (1997).
[Crossref]

Gottmann, J.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 58–63 (2007).
[Crossref]

Graf, T.

Grigoropoulos, C. P.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

Hallo, L.

E. Gamaly, S. Joudkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Hirono, S.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Hoekstra, H. J. W. M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Horn, A.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 58–63 (2007).
[Crossref]

Huang, H.

H. Huang, L.-M. Yang, and J. Liu, “Direct welding of fused silica with femtosecond fiber laser,” Proc. SPIE 8244, 824403 (2012).
[Crossref]

Hwang, D. J.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

Itoh, K.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Joining of transparent materials by femtosecond laser pulses,” Proc. SPIE 6460, 646017 (2007).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), 687–689 (2005).
[Crossref]

Joudkazis, S.

E. Gamaly, S. Joudkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Juodkazis, S.

Kadwani, P.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Kasuya, M.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Khulbe, P.

Kiyan, G. R.

R. Suriano, A. Kuznetsov, S. Eaton, G. R. Kiyan, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257(14), 6243–6250 (2011).
[Crossref]

Kuang, Z.

D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Kuar, A. S.

B. Acherjee, A. S. Kuar, S. Mitra, D. Misra, and S. Acharyya, “Experimental investigation on laser transmission welding of PMMA to ABS via response surface modeling,” Opt. Laser Technol. 44(5), 1372–1383 (2012).
[Crossref]

Kudrius, T.

Kuznetsov, A.

R. Suriano, A. Kuznetsov, S. Eaton, G. R. Kiyan, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257(14), 6243–6250 (2011).
[Crossref]

Laganà, M.

M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, “Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluid. Nanofluid. 10(5), 1097–1107 (2011).
[Crossref]

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Levi, M.

R. Suriano, A. Kuznetsov, S. Eaton, G. R. Kiyan, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257(14), 6243–6250 (2011).
[Crossref]

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[Crossref] [PubMed]

Limpert, J.

Liu, D.

D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Liu, J.

H. Huang, L.-M. Yang, and J. Liu, “Direct welding of fused silica with femtosecond fiber laser,” Proc. SPIE 8244, 824403 (2012).
[Crossref]

Locascio, L. E.

H. Becker and L. E. Locascio, “Polymer microfluidic devices,” Talanta 56(2), 267–287 (2002).
[Crossref] [PubMed]

Luther-Davies, B.

E. Gamaly, S. Joudkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Mansuripur, M.

Marco, C. D.

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[Crossref] [PubMed]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Martinez-Vazquez, R.

S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J Biophotonics 5(8-9), 687–702 (2012).
[Crossref] [PubMed]

Matsuda, K.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Mazur, E.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882 (1997).
[Crossref]

Mikutis, M.

Mingareev, I.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Misawa, H.

E. Gamaly, S. Joudkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Misra, D.

B. Acherjee, A. S. Kuar, S. Mitra, D. Misra, and S. Acharyya, “Experimental investigation on laser transmission welding of PMMA to ABS via response surface modeling,” Opt. Laser Technol. 44(5), 1372–1383 (2012).
[Crossref]

Mitra, S.

B. Acherjee, A. S. Kuar, S. Mitra, D. Misra, and S. Acharyya, “Experimental investigation on laser transmission welding of PMMA to ABS via response surface modeling,” Opt. Laser Technol. 44(5), 1372–1383 (2012).
[Crossref]

Miyamoto, I.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 58–63 (2007).
[Crossref]

Mochizuki, H.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Moretti, M.

M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, “Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluid. Nanofluid. 10(5), 1097–1107 (2011).
[Crossref]

Nicolai, P.

E. Gamaly, S. Joudkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Nishii, J.

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), 687–689 (2005).
[Crossref]

Nishimura, K.

E. Gamaly, S. Joudkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Nolte, S.

Olowinsky, A.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

A. Boglea, A. Olowinsky, and A. Gillner, “Fibre laser welding for packaging of disposable polymeric microfluidic-biochips,” Appl. Surf. Sci. 254(4), 1174–1178 (2007).
[Crossref]

Onda, S.

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Joining of transparent materials by femtosecond laser pulses,” Proc. SPIE 6460, 646017 (2007).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

Onuseit, V.

Osellame, R.

S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J Biophotonics 5(8-9), 687–702 (2012).
[Crossref] [PubMed]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

R. Suriano, A. Kuznetsov, S. Eaton, G. R. Kiyan, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257(14), 6243–6250 (2011).
[Crossref]

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[Crossref] [PubMed]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Ozeki, Y.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Paipulas, D.

Perrie, W.

D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Peyghambarian, N.

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Piraino, F.

M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, “Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluid. Nanofluid. 10(5), 1097–1107 (2011).
[Crossref]

Pollnau, M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Rademaker, K.

Ramponi, R.

S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J Biophotonics 5(8-9), 687–702 (2012).
[Crossref] [PubMed]

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[Crossref] [PubMed]

Rasponi, M.

M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, “Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluid. Nanofluid. 10(5), 1097–1107 (2011).
[Crossref]

Redaelli, A.

M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, “Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluid. Nanofluid. 10(5), 1097–1107 (2011).
[Crossref]

Richardson, M.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Richter, S.

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref] [PubMed]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

Röser, F.

Sadr, N.

M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, “Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluid. Nanofluid. 10(5), 1097–1107 (2011).
[Crossref]

Schülzgen, A.

Scully, P.

D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Seong, K.

Shah, L.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Šlekys, G.

Suriano, R.

R. Suriano, A. Kuznetsov, S. Eaton, G. R. Kiyan, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257(14), 6243–6250 (2011).
[Crossref]

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[Crossref] [PubMed]

Tamaki, T.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Joining of transparent materials by femtosecond laser pulses,” Proc. SPIE 6460, 646017 (2007).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), 687–689 (2005).
[Crossref]

Tikhonchuk, V. T.

E. Gamaly, S. Joudkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Tsao, C.-W.

C.-W. Tsao and D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid. 6(1), 1–16 (2009).
[Crossref]

Tünnermann, A.

Turri, S.

S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J Biophotonics 5(8-9), 687–702 (2012).
[Crossref] [PubMed]

R. Suriano, A. Kuznetsov, S. Eaton, G. R. Kiyan, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257(14), 6243–6250 (2011).
[Crossref]

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[Crossref] [PubMed]

Watanabe, W.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Joining of transparent materials by femtosecond laser pulses,” Proc. SPIE 6460, 646017 (2007).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), 687–689 (2005).
[Crossref]

Watkins, K. G.

D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Weber, R.

Weirauch, F.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 551–575 (1998).

Wiedenmann, M.

Will, M.

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Wortmann, D.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 58–63 (2007).
[Crossref]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 551–575 (1998).

Yang, L.-M.

H. Huang, L.-M. Yang, and J. Liu, “Direct welding of fused silica with femtosecond fiber laser,” Proc. SPIE 8244, 824403 (2012).
[Crossref]

Yoshino, F.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 58–63 (2007).
[Crossref]

Zimmermann, F.

ACS Appl. Mater. Interfaces (1)

C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 551–575 (1998).

Appl. Opt. (2)

Appl. Phys. B (1)

D. Liu, Z. Kuang, W. Perrie, P. Scully, A. Baum, S. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Appl. Phys. Lett. (3)

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882 (1997).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

Appl. Surf. Sci. (2)

R. Suriano, A. Kuznetsov, S. Eaton, G. R. Kiyan, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257(14), 6243–6250 (2011).
[Crossref]

A. Boglea, A. Olowinsky, and A. Gillner, “Fibre laser welding for packaging of disposable polymeric microfluidic-biochips,” Appl. Surf. Sci. 254(4), 1174–1178 (2007).
[Crossref]

J Biophotonics (1)

S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J Biophotonics 5(8-9), 687–702 (2012).
[Crossref] [PubMed]

J. Laser Micro Nanoeng. (1)

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 58–63 (2007).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), 687–689 (2005).
[Crossref]

Laser Photonics Rev. (2)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Microfluid. Nanofluid. (2)

M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, “Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluid. Nanofluid. 10(5), 1097–1107 (2011).
[Crossref]

C.-W. Tsao and D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid. 6(1), 1–16 (2009).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (2)

B. Acherjee, A. S. Kuar, S. Mitra, D. Misra, and S. Acharyya, “Experimental investigation on laser transmission welding of PMMA to ABS via response surface modeling,” Opt. Laser Technol. 44(5), 1372–1383 (2012).
[Crossref]

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

E. Gamaly, S. Joudkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Proc. SPIE (3)

A. Ben-Yakar and R. L. Byer, “Femtosecond laser machining of fluidic microchannels for miniaturized bioanalytical systems,” Proc. SPIE 4637, 212–217 (2002).
[Crossref]

H. Huang, L.-M. Yang, and J. Liu, “Direct welding of fused silica with femtosecond fiber laser,” Proc. SPIE 8244, 824403 (2012).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Joining of transparent materials by femtosecond laser pulses,” Proc. SPIE 6460, 646017 (2007).
[Crossref]

Talanta (1)

H. Becker and L. E. Locascio, “Polymer microfluidic devices,” Talanta 56(2), 267–287 (2002).
[Crossref] [PubMed]

Other (6)

W. Watanabe, T. Tamaki, Y. Ozeki, and K. Itoh, “Filamentation in Ultrafast Laser Material Processing,” in Progress in Ultrafast Intense Laser Science VI, K. Yamanouchi, G. Gerber, A.D. Bandrauk, eds. (Springer-Verlag, 2010).

I. Miyamoto, A. Horn, D. Wirtmann, J. Gottmann, and F. Yoshino, “High-precision, high-throughput fusion welding of glass using femtosecond laser pulses,” Fourth International Congress on Laser Advanced Materials Processing (LAMP2006), Kyoto, Japan, 16–19 May, 2006.

D. Bäuerle, Laser Processing and Chemistry, 2nd ed. (Springer-Verlag, 1996), Chap. 7.

Makeitfrom, “Material properties database,” (2009). http://www.makeitfrom.com/material-properties/Polymethylmethacrylate-PMMA-Acrylic/ .

F. Smith and J. Hashemi, Foundations of Materials Science and Engineering, 4th ed. (McGraw-Hill, 2006).

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer-Verlag, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Picture of a chip connected to the microfluidic pumps for the static leakage tests.
Fig. 2
Fig. 2 Optical microscope images (top view) of single line modifications with different pulse energies (rep. rate: 5MHz; translation speed: 0.1mm/s).
Fig. 3
Fig. 3 Optical microscope image of modified tracks observed along the propagation axis of laser pulses at different pulse energy (rep. rate: 5MHz; translation speed: 0.1mm/s).
Fig. 4
Fig. 4 Top view on the laser induced modifications in PMMA for different translation speed (rep. rate: 5MHz; pulse energy: 0.4 µJ).
Fig. 5
Fig. 5 Microscope images (top view) of the laser induced modification at different spacing between consecutive lines (rep. rate: 5 MHz; pulse energy: 0.4 μJ). The scanning order of subsequent lines goes from right to left.
Fig. 6
Fig. 6 Simulation of the temperature evolution of the laser irradiated volume in a PMMA sample at 5 MHz of repetition rate and 0.4 µJ of laser pulse energy. The red dashed line describes heating due to heat accumulation.
Fig. 7
Fig. 7 Calculated temperature increase due to the heat accumulation effect versus translation speed, as predicted by the model described by Eqs. (1) and (2). The PMMA melting threshold (Tmelt = 160 °C [35]) is highlighted by the red dashed line. The predicted temperature value is reliable for T<Tmelt (black line), while for T>Tmelt (black dotted line) the model does not provide a realistic temperature estimation because, owing to the phase transformation, the chosen material parameters do not hold anymore.
Fig. 8
Fig. 8 Microscope image (top view) of a fs-laser lap-welded sample (two overlapped 1-mm-thick PMMA plates) along a square path.
Fig. 9
Fig. 9 a) Schematic view of the fs-laser welding process adopted to seal the microfluidic device; b) microscope image (top view) of the welding seam surrounding the microfluidic channel and a reservoir.
Fig. 10
Fig. 10 Microscope image of the microfluidic channel after 5 cycles at 1 bar pressure, showing no leakage of the blue fluid outside of the microchannel.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔT= I a w 0 2 τ 2*4 π kt ( Dt ) 1/2 .
N lap = 2 w 0 ν V .

Metrics