Abstract

We numerically demonstrate an all-optical tunable dual-band double negative (DNG) index chirped metamaterial (MM) in the mid-infrared (M-IR) region. This MM possesses an ultrafast and significant tunability under low pump light power, realized by combining phase change material (PCM). It has a configuration of elliptical nanohole array (ENA) penetrating through metal/PCM/metal (Au-Ge2Sb2Te5-Au) films. Here, we consider the case when the chirp is introduced by displacing the positions of the ENA along the short axis of the elliptical apertures inside the primitive cell, which can achieve multiple internal surface-plasmon polariton (SPP) modes at the inner metal-dielectric interfaces of the structure and thus providing a dual-band negative index with simultaneous negative permittivity and permeability. The influence of amorphous and crystalline states of Ge2Sb2Te5 on the effective optical parameters of the structure is analyzed. Switching between these states provides a large wavelength shift of the structure’s effective optical parameters. A photothermal model is used to study the temporal variation of the temperature of the Ge2Sb2Te5 layer to show a potential to switch the phase of Ge2Sb2Te5 by optical heating. Generation of the tunable dual-band DNG index presents clear advantages as it possesses a fast tuning time of 0.4 ns, a low pump light intensity of 7.3μW/μm2, and a large tunable wavelength range of 978 nm. We expect that our design may have potential applications in actively tunable multi-band nanodevices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of tunable negative index metamaterials based on phase-change materials

Tun Cao, Robert E. Simpson, and Martin J. Cryan
J. Opt. Soc. Am. B 30(2) 439-444 (2013)

Fast tuning of Fano resonance in metal/phase-change materials/metal metamaterials

Tun Cao, Chenwei Wei, Robert E. Simpson, Lei Zhang, and Martin J. Cryan
Opt. Mater. Express 4(9) 1775-1786 (2014)

Low-loss dual-band double-negative chirped metamaterial

Tun Cao, Chenwei Wei, and Martin J. Cryan
J. Opt. Soc. Am. B 32(1) 108-113 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substance simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  3. C. W. Qiu and L. Gao, “Resonant light scattering by small coated nonmagnetic spheres: Magnetic resonances, negative refraction and prediction,” J. Opt. Soc. Am. B 25, 1728–1737 (2008).
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  5. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  6. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [Crossref] [PubMed]
  7. G. Dolling, M. Wegener, A. Schaedle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89(23), 231118 (2006).
    [Crossref]
  8. U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett. 32(12), 1671–1673 (2007).
    [Crossref] [PubMed]
  9. T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
    [Crossref]
  10. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref] [PubMed]
  11. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
    [Crossref]
  12. M. I. Aslam and Ö. G. Durdu, “Dual-band, double-negative, polarization-independent metamaterial for the visible spectrum,” J. Opt. Soc. Am. B 29(10), 2839–2847 (2012).
    [Crossref]
  13. C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34(10), 1603–1605 (2009).
    [Crossref] [PubMed]
  14. T. Paul, C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Optical Metamaterials,” Adv. Mater. 22(21), 2354–2357 (2010).
    [Crossref] [PubMed]
  15. A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101(10), 103902 (2008).
    [Crossref] [PubMed]
  16. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
    [Crossref]
  17. C. Sabah and H. G. Roskos, “Dual-band polarization-independent sub-terahertz fishnet metamaterial,” Curr. Appl. Phys. 12(2), 443–450 (2012).
    [Crossref]
  18. Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. Adv. Mater. 108, 19–24 (2012).
    [Crossref]
  19. S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett. 54(2), 545–549 (2012).
    [Crossref]
  20. D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007).
    [Crossref] [PubMed]
  21. H. X. Xu, G. M. Wang, C. X. Zhang, Q. Liu, Z. M. Xu, X. Chen, and D. L. Zhai, “Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry,” Photon. Nanostructures 11(1), 15–28 (2013).
    [Crossref]
  22. H. X. Xu, G. M. Wang, Q. Liu, J. F. Wang, and J. Q. Gong, “A metamaterial with multi-band left handed characteristic,” Appl. Phys. Adv. Mater. 107, 261–268 (2012).
  23. B. Liu, X. Zhao, W. Zhu, W. Luo, and X. Cheng, “Multiple pass-band optical left-handed metamaterials based on random dendritic cells,” Adv. Funct. Mater. 18(21), 3523–3528 (2008).
    [Crossref]
  24. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
    [Crossref]
  25. X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
    [Crossref]
  26. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
    [Crossref]
  27. K. Bi, J. Zhou, H. Zhao, X. Liu, and C. Lan, “Tunable dual-band negative refractive index in ferrite-based metamaterials,” Opt. Express 21(9), 10746–10752 (2013).
    [Crossref] [PubMed]
  28. K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, A. J. Taylor, and S. R. J. Brueck, “Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device,” Opt. Express 19(5), 3973–3983 (2011).
    [Crossref] [PubMed]
  29. T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B 30(2), 439–444 (2013).
    [Crossref]
  30. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
    [Crossref] [PubMed]
  31. R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol. 6(8), 501–505 (2011).
    [Crossref] [PubMed]
  32. A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
    [Crossref] [PubMed]
  33. J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104(4), 043523 (2008).
    [Crossref]
  34. J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys. 108(1), 014907 (2010).
    [Crossref]
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  36. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
    [Crossref] [PubMed]
  37. M. Born, E. Wolf, and A. B. Bhatia, “Wave propagation in a stratified medium theory of dielectric films,” in Principles of Optics, (Cambridge University, Cambridge,1997),pp 54–74.
  38. R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antenn. Propag. 51(7), 1516–1529 (2003).
    [Crossref]
  39. A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19(4), 377–382 (1970).
    [Crossref]
  40. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  41. X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
    [Crossref] [PubMed]
  42. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23(3), 434–438 (2006).
    [Crossref]
  43. Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
    [Crossref]
  44. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101–1110 (2013).
    [Crossref]
  45. D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
    [Crossref] [PubMed]
  46. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46, 21 (2010).
  47. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46, 5 (2010).
  48. V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
    [Crossref]
  49. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
    [Crossref]
  50. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
    [Crossref] [PubMed]
  51. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
    [Crossref] [PubMed]
  52. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15(18), 11536–11541 (2007).
    [Crossref] [PubMed]
  53. Z. Ku and S. R. J. Brueck, “Comparison of negative refractive index materials with circular, elliptical and rectangular holes,” Opt. Express 15(8), 4515–4522 (2007).
    [Crossref] [PubMed]

2013 (5)

H. X. Xu, G. M. Wang, C. X. Zhang, Q. Liu, Z. M. Xu, X. Chen, and D. L. Zhai, “Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry,” Photon. Nanostructures 11(1), 15–28 (2013).
[Crossref]

K. Bi, J. Zhou, H. Zhao, X. Liu, and C. Lan, “Tunable dual-band negative refractive index in ferrite-based metamaterials,” Opt. Express 21(9), 10746–10752 (2013).
[Crossref] [PubMed]

T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B 30(2), 439–444 (2013).
[Crossref]

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101–1110 (2013).
[Crossref]

2012 (7)

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

H. X. Xu, G. M. Wang, Q. Liu, J. F. Wang, and J. Q. Gong, “A metamaterial with multi-band left handed characteristic,” Appl. Phys. Adv. Mater. 107, 261–268 (2012).

C. Sabah and H. G. Roskos, “Dual-band polarization-independent sub-terahertz fishnet metamaterial,” Curr. Appl. Phys. 12(2), 443–450 (2012).
[Crossref]

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. Adv. Mater. 108, 19–24 (2012).
[Crossref]

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett. 54(2), 545–549 (2012).
[Crossref]

M. I. Aslam and Ö. G. Durdu, “Dual-band, double-negative, polarization-independent metamaterial for the visible spectrum,” J. Opt. Soc. Am. B 29(10), 2839–2847 (2012).
[Crossref]

2011 (4)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol. 6(8), 501–505 (2011).
[Crossref] [PubMed]

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, A. J. Taylor, and S. R. J. Brueck, “Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device,” Opt. Express 19(5), 3973–3983 (2011).
[Crossref] [PubMed]

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

2010 (7)

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46, 21 (2010).

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46, 5 (2010).

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys. 108(1), 014907 (2010).
[Crossref]

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

T. Paul, C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Optical Metamaterials,” Adv. Mater. 22(21), 2354–2357 (2010).
[Crossref] [PubMed]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
[Crossref]

2009 (2)

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34(10), 1603–1605 (2009).
[Crossref] [PubMed]

2008 (6)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101(10), 103902 (2008).
[Crossref] [PubMed]

C. W. Qiu and L. Gao, “Resonant light scattering by small coated nonmagnetic spheres: Magnetic resonances, negative refraction and prediction,” J. Opt. Soc. Am. B 25, 1728–1737 (2008).

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104(4), 043523 (2008).
[Crossref]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

B. Liu, X. Zhao, W. Zhu, W. Luo, and X. Cheng, “Multiple pass-band optical left-handed metamaterials based on random dendritic cells,” Adv. Funct. Mater. 18(21), 3523–3528 (2008).
[Crossref]

2007 (8)

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett. 32(12), 1671–1673 (2007).
[Crossref] [PubMed]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[Crossref]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15(18), 11536–11541 (2007).
[Crossref] [PubMed]

Z. Ku and S. R. J. Brueck, “Comparison of negative refractive index materials with circular, elliptical and rectangular holes,” Opt. Express 15(8), 4515–4522 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (1)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

2004 (1)

X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

2003 (1)

R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antenn. Propag. 51(7), 1516–1529 (2003).
[Crossref]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

2001 (1)

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[Crossref]

2000 (2)

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1970 (1)

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19(4), 377–382 (1970).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substance simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Aslam, M. I.

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Beneš, L.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104(4), 043523 (2008).
[Crossref]

Bi, K.

Brueck, S. R. J.

Burger, S.

G. Dolling, M. Wegener, A. Schaedle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89(23), 231118 (2006).
[Crossref]

Cai, W.

Cao, T.

Carbonell, J.

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys. 108(1), 014907 (2010).
[Crossref]

Chen, X.

H. X. Xu, G. M. Wang, C. X. Zhang, Q. Liu, Z. M. Xu, X. Chen, and D. L. Zhai, “Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry,” Photon. Nanostructures 11(1), 15–28 (2013).
[Crossref]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Chen, X. D.

X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Cheng, X.

B. Liu, X. Zhao, W. Zhu, W. Luo, and X. Cheng, “Multiple pass-band optical left-handed metamaterials based on random dendritic cells,” Adv. Funct. Mater. 18(21), 3523–3528 (2008).
[Crossref]

Chettiar, U. K.

Chigrin, D. N.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Choi, H. K.

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett. 54(2), 545–549 (2012).
[Crossref]

Choi, J. I.

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett. 54(2), 545–549 (2012).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coutaz, J. L.

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys. 108(1), 014907 (2010).
[Crossref]

Croënne, C.

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys. 108(1), 014907 (2010).
[Crossref]

Cryan, M. J.

Dani, K. M.

De Angelis, F.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Di Fabrizio, E.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Dickson, W.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Dolling, G.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15(18), 11536–11541 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, A. Schaedle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89(23), 231118 (2006).
[Crossref]

Dong, Z. G.

Drachev, V. P.

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Durdu, Ö. G.

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23(3), 434–438 (2006).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Fons, P.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol. 6(8), 501–505 (2011).
[Crossref] [PubMed]

Friedrich, I.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[Crossref]

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

Frumar, M.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104(4), 043523 (2008).
[Crossref]

Fukaya, T.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol. 6(8), 501–505 (2011).
[Crossref] [PubMed]

Gao, L.

García-Meca, C.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34(10), 1603–1605 (2009).
[Crossref] [PubMed]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Garcia-Vidal, F. J.

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101(10), 103902 (2008).
[Crossref] [PubMed]

Garet, F.

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys. 108(1), 014907 (2010).
[Crossref]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Gholipour, B.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Gong, J. Q.

H. X. Xu, G. M. Wang, Q. Liu, J. F. Wang, and J. Q. Gong, “A metamaterial with multi-band left handed characteristic,” Appl. Phys. Adv. Mater. 107, 261–268 (2012).

Grzegorczyk, T. M.

X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Gu, S.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. Adv. Mater. 108, 19–24 (2012).
[Crossref]

Hattori, H. T.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
[Crossref]

Hewak, D. W.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Huang, C. C.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Hurtado, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Ikuma, Y.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46, 21 (2010).

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46, 5 (2010).

Jagadish, C.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kang, L.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Kawashima, H.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46, 5 (2010).

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46, 21 (2010).

Khoo, I. C.

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

Kildishev, A. V.

Kim, S.

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett. 54(2), 545–549 (2012).
[Crossref]

Kintaka, K.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46, 21 (2010).

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46, 5 (2010).

Kivshar, Y. S.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
[Crossref]

Knight, K.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Kolobov, A. V.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol. 6(8), 501–505 (2011).
[Crossref] [PubMed]

Kong, J. A.

X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Krbal, M.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol. 6(8), 501–505 (2011).
[Crossref] [PubMed]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Ku, Z.

Kuwahara, M.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46, 21 (2010).

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46, 5 (2010).

Kwon, D. H.

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

Kwon, D.-H.

Lan, C.

Lapine, M.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
[Crossref]

Lederer, F.

T. Paul, C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Optical Metamaterials,” Adv. Mater. 22(21), 2354–2357 (2010).
[Crossref] [PubMed]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Lheurette, E.

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys. 108(1), 014907 (2010).
[Crossref]

Li, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Li, J. Q.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[Crossref]

Li, T.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[Crossref]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[Crossref] [PubMed]

Liang, X.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Linden, S.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15(18), 11536–11541 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, A. Schaedle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89(23), 231118 (2006).
[Crossref]

Lippens, D.

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys. 108(1), 014907 (2010).
[Crossref]

Liu, B.

B. Liu, X. Zhao, W. Zhu, W. Luo, and X. Cheng, “Multiple pass-band optical left-handed metamaterials based on random dendritic cells,” Adv. Funct. Mater. 18(21), 3523–3528 (2008).
[Crossref]

Liu, H.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[Crossref]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[Crossref] [PubMed]

Liu, Q.

H. X. Xu, G. M. Wang, C. X. Zhang, Q. Liu, Z. M. Xu, X. Chen, and D. L. Zhai, “Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry,” Photon. Nanostructures 11(1), 15–28 (2013).
[Crossref]

H. X. Xu, G. M. Wang, Q. Liu, J. F. Wang, and J. Q. Gong, “A metamaterial with multi-band left handed characteristic,” Appl. Phys. Adv. Mater. 107, 261–268 (2012).

Liu, X.

Liu, Y.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. Adv. Mater. 108, 19–24 (2012).
[Crossref]

Luo, C.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. Adv. Mater. 108, 19–24 (2012).
[Crossref]

Luo, W.

B. Liu, X. Zhao, W. Zhu, W. Luo, and X. Cheng, “Multiple pass-band optical left-handed metamaterials based on random dendritic cells,” Adv. Funct. Mater. 18(21), 3523–3528 (2008).
[Crossref]

MacDonald, K. F.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23(3), 434–438 (2006).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Martí, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34(10), 1603–1605 (2009).
[Crossref] [PubMed]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Martínez, A.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34(10), 1603–1605 (2009).
[Crossref] [PubMed]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Martin-Moreno, L.

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101(10), 103902 (2008).
[Crossref] [PubMed]

Mary, A.

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101(10), 103902 (2008).
[Crossref] [PubMed]

Maß, T. W. W.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Menzel, C.

T. Paul, C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Optical Metamaterials,” Adv. Mater. 22(21), 2354–2357 (2010).
[Crossref] [PubMed]

Michel, A. K.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Minovich, A.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

Neshev, D. N.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
[Crossref]

Nicolson, A. M.

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19(4), 377–382 (1970).
[Crossref]

Orava, J.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104(4), 043523 (2008).
[Crossref]

Ortuño, R.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34(10), 1603–1605 (2009).
[Crossref] [PubMed]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23(3), 434–438 (2006).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Pacheco, J.

X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23(3), 434–438 (2006).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Park, J. H.

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett. 54(2), 545–549 (2012).
[Crossref]

Paul, T.

T. Paul, C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Optical Metamaterials,” Adv. Mater. 22(21), 2354–2357 (2010).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pirch, N.

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

Powell, D. A.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

Prasankumar, R. P.

Prikryl, J.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104(4), 043523 (2008).
[Crossref]

Qiu, C. W.

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Rockstuhl, C.

T. Paul, C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Optical Metamaterials,” Adv. Mater. 22(21), 2354–2357 (2010).
[Crossref] [PubMed]

Rodrigo, S. G.

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101(10), 103902 (2008).
[Crossref] [PubMed]

Rodríguez-Fortuño, F. J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34(10), 1603–1605 (2009).
[Crossref] [PubMed]

Roskos, H. G.

C. Sabah and H. G. Roskos, “Dual-band polarization-independent sub-terahertz fishnet metamaterial,” Curr. Appl. Phys. 12(2), 443–450 (2012).
[Crossref]

Ross, G. F.

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19(4), 377–382 (1970).
[Crossref]

Sabah, C.

C. Sabah and H. G. Roskos, “Dual-band polarization-independent sub-terahertz fishnet metamaterial,” Curr. Appl. Phys. 12(2), 443–450 (2012).
[Crossref]

Salinga, M.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Samson, Z. L.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Schaedle, A.

G. Dolling, M. Wegener, A. Schaedle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89(23), 231118 (2006).
[Crossref]

Schönauer, K.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Shadrivov, I. V.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

Shalaev, V. M.

Shoji, Y.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46, 21 (2010).

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46, 5 (2010).

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Šik, J.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104(4), 043523 (2008).
[Crossref]

Simpson, R. E.

Smith, D. R.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15(18), 11536–11541 (2007).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Tan, H. H.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
[Crossref]

Tanaka, D.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46, 5 (2010).

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46, 21 (2010).

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Taubner, T.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Taylor, A. J.

Tominaga, J.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol. 6(8), 501–505 (2011).
[Crossref] [PubMed]

Toyosaki, T.

Tsuda, H.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46, 21 (2010).

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46, 5 (2010).

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Upadhya, P. C.

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substance simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Wágner, T.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104(4), 043523 (2008).
[Crossref]

Wang, F. M.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[Crossref]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[Crossref] [PubMed]

Wang, G. M.

H. X. Xu, G. M. Wang, C. X. Zhang, Q. Liu, Z. M. Xu, X. Chen, and D. L. Zhai, “Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry,” Photon. Nanostructures 11(1), 15–28 (2013).
[Crossref]

H. X. Xu, G. M. Wang, Q. Liu, J. F. Wang, and J. Q. Gong, “A metamaterial with multi-band left handed characteristic,” Appl. Phys. Adv. Mater. 107, 261–268 (2012).

Wang, J. F.

H. X. Xu, G. M. Wang, Q. Liu, J. F. Wang, and J. Q. Gong, “A metamaterial with multi-band left handed characteristic,” Appl. Phys. Adv. Mater. 107, 261–268 (2012).

Wang, Q. J.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[Crossref]

Wang, X.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46, 5 (2010).

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46, 21 (2010).

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15(18), 11536–11541 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, A. Schaedle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89(23), 231118 (2006).
[Crossref]

Wei, C.

Weidenhof, V.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[Crossref]

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

Werner, D. H.

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007).
[Crossref] [PubMed]

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Wu, B. I.

X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Wuttig, M.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[Crossref]

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

Xiao, S.

Xu, H. X.

H. X. Xu, G. M. Wang, C. X. Zhang, Q. Liu, Z. M. Xu, X. Chen, and D. L. Zhai, “Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry,” Photon. Nanostructures 11(1), 15–28 (2013).
[Crossref]

H. X. Xu, G. M. Wang, Q. Liu, J. F. Wang, and J. Q. Gong, “A metamaterial with multi-band left handed characteristic,” Appl. Phys. Adv. Mater. 107, 261–268 (2012).

Xu, Z. M.

H. X. Xu, G. M. Wang, C. X. Zhang, Q. Liu, Z. M. Xu, X. Chen, and D. L. Zhai, “Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry,” Photon. Nanostructures 11(1), 15–28 (2013).
[Crossref]

Yagi, T.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol. 6(8), 501–505 (2011).
[Crossref] [PubMed]

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Yuan, H. K.

Zayats, A. V.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhai, D. L.

H. X. Xu, G. M. Wang, C. X. Zhang, Q. Liu, Z. M. Xu, X. Chen, and D. L. Zhai, “Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry,” Photon. Nanostructures 11(1), 15–28 (2013).
[Crossref]

Zhang, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Zhang, C. X.

H. X. Xu, G. M. Wang, C. X. Zhang, Q. Liu, Z. M. Xu, X. Chen, and D. L. Zhai, “Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry,” Photon. Nanostructures 11(1), 15–28 (2013).
[Crossref]

Zhang, L.

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23(3), 434–438 (2006).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[Crossref] [PubMed]

Zhao, H.

Zhao, Q.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Zhao, X.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. Adv. Mater. 108, 19–24 (2012).
[Crossref]

B. Liu, X. Zhao, W. Zhu, W. Luo, and X. Cheng, “Multiple pass-band optical left-handed metamaterials based on random dendritic cells,” Adv. Funct. Mater. 18(21), 3523–3528 (2008).
[Crossref]

Zheludev, N. I.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Zhou, J.

K. Bi, J. Zhou, H. Zhao, X. Liu, and C. Lan, “Tunable dual-band negative refractive index in ferrite-based metamaterials,” Opt. Express 21(9), 10746–10752 (2013).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Zhu, S. N.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[Crossref]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[Crossref] [PubMed]

Zhu, W.

B. Liu, X. Zhao, W. Zhu, W. Luo, and X. Cheng, “Multiple pass-band optical left-handed metamaterials based on random dendritic cells,” Adv. Funct. Mater. 18(21), 3523–3528 (2008).
[Crossref]

Zhu, Y. Y.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[Crossref]

Ziegler, S.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[Crossref]

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antenn. Propag. 51(7), 1516–1529 (2003).
[Crossref]

ACS Nano (1)

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

B. Liu, X. Zhao, W. Zhu, W. Luo, and X. Cheng, “Multiple pass-band optical left-handed metamaterials based on random dendritic cells,” Adv. Funct. Mater. 18(21), 3523–3528 (2008).
[Crossref]

Adv. Mater. (1)

T. Paul, C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Optical Metamaterials,” Adv. Mater. 22(21), 2354–2357 (2010).
[Crossref] [PubMed]

Appl. Phys. Adv. Mater. (2)

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. Adv. Mater. 108, 19–24 (2012).
[Crossref]

H. X. Xu, G. M. Wang, Q. Liu, J. F. Wang, and J. Q. Gong, “A metamaterial with multi-band left handed characteristic,” Appl. Phys. Adv. Mater. 107, 261–268 (2012).

Appl. Phys. Lett. (6)

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010).
[Crossref]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90(25), 251112 (2007).
[Crossref]

G. Dolling, M. Wegener, A. Schaedle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89(23), 231118 (2006).
[Crossref]

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Curr. Appl. Phys. (1)

C. Sabah and H. G. Roskos, “Dual-band polarization-independent sub-terahertz fishnet metamaterial,” Curr. Appl. Phys. 12(2), 443–450 (2012).
[Crossref]

Electron. Lett. (2)

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film,” Electron. Lett. 46, 21 (2010).

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46, 5 (2010).

IEEE Trans. Antenn. Propag. (1)

R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antenn. Propag. 51(7), 1516–1529 (2003).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19(4), 377–382 (1970).
[Crossref]

J. Appl. Phys. (4)

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[Crossref]

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104(4), 043523 (2008).
[Crossref]

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys. 108(1), 014907 (2010).
[Crossref]

J. Opt. Soc. Am. B (4)

Microw. Opt. Technol. Lett. (1)

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett. 54(2), 545–549 (2012).
[Crossref]

Nano Lett. (1)

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol. 6(8), 501–505 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Opt. Express (7)

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007).
[Crossref] [PubMed]

K. Bi, J. Zhou, H. Zhao, X. Liu, and C. Lan, “Tunable dual-band negative refractive index in ferrite-based metamaterials,” Opt. Express 21(9), 10746–10752 (2013).
[Crossref] [PubMed]

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, A. J. Taylor, and S. R. J. Brueck, “Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device,” Opt. Express 19(5), 3973–3983 (2011).
[Crossref] [PubMed]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15(18), 11536–11541 (2007).
[Crossref] [PubMed]

Z. Ku and S. R. J. Brueck, “Comparison of negative refractive index materials with circular, elliptical and rectangular holes,” Opt. Express 15(8), 4515–4522 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Photon. Nanostructures (1)

H. X. Xu, G. M. Wang, C. X. Zhang, Q. Liu, Z. M. Xu, X. Chen, and D. L. Zhai, “Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry,” Photon. Nanostructures 11(1), 15–28 (2013).
[Crossref]

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81(11), 115109 (2010).
[Crossref]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101(10), 103902 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substance simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Other (1)

M. Born, E. Wolf, and A. B. Bhatia, “Wave propagation in a stratified medium theory of dielectric films,” in Principles of Optics, (Cambridge University, Cambridge,1997),pp 54–74.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of the normal MM consisting of a 80nm thick Ge2Sb2Te5 dielectric layer between two 40nm thick Au films perforated with a square array of elliptical holes suspended in a vacuum. The lattice constant is Lx = Ly = 400nm and hole diameters are d1 = 360nm, d2 = 200nm. (b) Illustration of ENA lattice in the normal MM. (c) Schematic of the chirped MM consisting of a 80nm thick Ge2Sb2Te5 dielectric layer between two 40nm thick Au films perforated with a rectangular array of elliptical holes suspended in a vacuum. The lattice constant along the long axis of the elliptical hole is Ly = 400nm, Lx1 and Lx2 are the chirped lattice constants along the short axis of the elliptical aperture varying with the different values of δ, and hole diameters are d1 = 360nm, d2 = 200nm. (d) Illustration of ENA lattice in the chirped MM.
Fig. 2
Fig. 2 Dielectric constant (a) ɛ1(ω) vs wavelength,(b) ɛ2(ω) vs wavelength for both amorphous and crystalline phases of Ge2Sb2Te5.
Fig. 3
Fig. 3 3D FEM simulation of (a) transmission;(b) the real part of permeability of the amorphous Ge2Sb2Te5 for the different δ with p polarization at normal incidence.
Fig. 4
Fig. 4 3D FEM simulation of (a) transmission; (b) reflection; (c)transmission phase; (d)reflection phase for different states of Ge2Sb2Te5 with δ = 40nm for p polarization at normal incidence.
Fig. 5
Fig. 5 3D FEM simulation of (a) real part of permeability; (b) imaginary part of permeability; (c) real part of permittivity; (d) imaginary part of permittivity for different states of Ge2Sb2Te5 with δ = 40nm for p polarization at normal incidence.
Fig. 6
Fig. 6 3D FEM simulation of (a) real part of neff; (b)imaginary part of neff; (c) figure-of -merit; (d) absorbance for different states of Ge2Sb2Te5 with δ = 40nm for p polarization at normal incidence.
Fig. 7
Fig. 7 A map of the normalized total magnetic field intensity distribution H (colour bar) and displacement current JD (red arrows) along β plane (a) at 2100nm resonance wavelength for the amorphous Ge2Sb2Te5, (b) at 3318nm resonance wavelength for the amorphous Ge2Sb2Te5, (c) at 3078nm resonance wavelength for the crystalline Ge2Sb2Te5, (d) at 4776nm resonance wavelength for the crystalline Ge2Sb2Te5.
Fig. 8
Fig. 8 3D- FEM simulation of heat power irradiating on an amorphous MDM-ENA (δ = 40nm) located at the beam center, where the solid red line presents the heat power irradiating on the structures under normal incident intensity of 7.3 μW/μm2, the dash red line is the temperature of the amorphous Ge2Sb2Te5 layer during one pulse.
Fig. 9
Fig. 9 The temperature distribution of the unit cell of an amorphous rectangular periodic MDM-ENA along the β plane at (a) 0.4ns and (b) 0.62ns, where the color image indicates the temperature distribution and the arrows indicate the heat flux.
Fig. 10
Fig. 10 (a) Spectra of the transmission losses for both ON-state (amorphous) and OFF-state (crystalline) of the structure. (b) Spectra of the extinction ratio of the structure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F l (r)= 2 P 0 π w 2 f r exp(- 2 r 2 w 2 )
η=± ( 1+r ) 2 t 2 n 1 2 ( 1r ) 2 n 3 2 t 2
n eff =± 1 kh arccos[ 1 t n 1 ( 1 r 2 )+ n 3 t 2 n 1 + n 3 +r( n 3 n 1 ) ]+ 2πm kh
ε eff = n eff /η , μ eff = n eff η

Metrics