Abstract

As applications of lasers demand higher average powers, higher repetition rates, and longer operation times, optics will need to perform well under unprecedented conditions. We investigate the optical degradation of fused silica surfaces at 351 nm for up to 109 pulses with pulse fluences up to 12 J/cm2. The central result is that the transmission loss from defect generation is a function of the pulse intensity, Ip, and total integrated fluence, φT, and is influenced by oxygen partial pressure. In 10−6 Torr vacuum, at low Ip, a transmission loss is observed that increases monotonically as a function of number of pulses. As the pulse intensity increases above 13 MW/cm2, the observed transmission losses decrease, and are not measureable for 130 MW/cm2. A physical model which supports the experimental data is presented to describe the suppression of transmission loss at high pulse intensity. Similar phenomena are observed in anti-reflective sol-gel coated optics. Absorption, not scattering, is the primary mechanism leading to transmission loss. In 2.5 Torr air, no transmission loss was detected under any pulse intensity used. We find that the absorption layer that leads to transmission loss is less than 1 nm in thickness, and results from a laser-activated chemical process involving photo-reduction of silica within a few monolayers of the surface. The competition between photo-reduction and photo-oxidation explains the measured data: transmission loss is reduced when either the light intensity or the O2 concentration is high. We expect processes similar to these to occur in other optical materials for high average power applications.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
    [Crossref]
  2. A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).
  3. W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed‐laser irradiation on the properties of ultraviolet‐grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
    [Crossref]
  4. J. Moll and P. M. Schermerhorn, “Excimer-laser-induced absorption in fused silica,” in Microlithography '99, Proc. SPIE 99, 1129–1136 (1999).
    [Crossref]
  5. J. Moll, “ArF-laser-induced absorption in fused silica exposed to low fluence at 2000 Hz,” in 26th Annual International Symposium on Microlithography, Proc. SPIE, 1272–1279 (2001).
    [Crossref]
  6. P. Allenspacher, W. Riede, and D. Wernham, “Laser qualification testing of space optics,” in Boulder Damage Symposium XXXVIII, Proc. SPIE, 64030T–64030T–64037 (2006).
  7. W. Riede, H. Schroeder, G. Bataviciute, D. Wernham, A. Tighe, F. Pettazzi, and J. Alves, “Laser-induced contamination on space optics,” in XLIII Annual Symposium on Optical Materials for High Power Lasers, Proc. SPIE, 81901E–81914 (2011).
  8. D. Poulios, O. Konoplev, F. Chiragh, A. Vasilyev, M. Stephen, and K. Strickler, “Performance of multilayer optical coatings under long-term 532nm laser exposure,” in Laser Damage, Proc. SPIE 8885, 888523 (2013).
  9. S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Meth. B 266(12-13), 2936–2940 (2008).
    [Crossref]
  10. J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
    [Crossref] [PubMed]
  11. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
    [Crossref] [PubMed]
  12. S. Becker, L. Delrive, P. Bouchut, B. Andre, and F. Geffraye, “Ageing of optical components under laser irradiation at 532nm,” in Optical Systems Design 2005, Proc. SPIE 2005, 59631R (2005).
    [Crossref]
  13. A. K. Burnham, M. J. Runkel, S. G. Demos, M. R. Kozlowski, and P. J. Wegner, “Effect of vacuum on the occurrence of UV-induced surface photoluminescence, transmission loss, and catastrophic surface damage,” in International Symposium on Optical Science and Technology, Proc. SPIE, 243–252 (2000).
    [Crossref]
  14. F. R. Wagner, C. Gouldieff, and J.-Y. Natoli, “Contrasted material responses to nanosecond multiple-pulse laser damage: from statistical behavior to material modification,” Opt. Lett. 38(11), 1869–1871 (2013).
    [Crossref] [PubMed]
  15. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  16. P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
    [Crossref]
  17. P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett. 1(23), 3323–3327 (2010).
    [Crossref]
  18. M. Stevens-Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758 (2002).
    [Crossref]
  19. T. A. Laurence, J. D. Bude, N. Shen, W. A. Steele, and S. Ly, “Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials,” J. Appl. Phys. 115(8), 083501 (2014).
    [Crossref]
  20. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
    [Crossref]
  21. P. Miller, T. Suratwala, J. Bude, T. Laurence, N. Shen, W. Steele, M. Feit, J. Menapace, and L. Wong, “Laser damage precursors in fused silica,” in Laser Damage Symposium XLI, Proc. SPIE, 75040X–75014 (2009).
  22. G. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
    [Crossref]
  23. I. M. Thomas, “High laser damage threshold porous silica antireflective coating,” Appl. Opt. 25(9), 1481–1483 (1986).
    [Crossref] [PubMed]

2014 (2)

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, W. A. Steele, and S. Ly, “Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials,” J. Appl. Phys. 115(8), 083501 (2014).
[Crossref]

2013 (2)

F. R. Wagner, C. Gouldieff, and J.-Y. Natoli, “Contrasted material responses to nanosecond multiple-pulse laser damage: from statistical behavior to material modification,” Opt. Lett. 38(11), 1869–1871 (2013).
[Crossref] [PubMed]

D. Poulios, O. Konoplev, F. Chiragh, A. Vasilyev, M. Stephen, and K. Strickler, “Performance of multilayer optical coatings under long-term 532nm laser exposure,” in Laser Damage, Proc. SPIE 8885, 888523 (2013).

2012 (1)

2011 (2)

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

2010 (1)

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett. 1(23), 3323–3327 (2010).
[Crossref]

2009 (1)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

2008 (1)

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Meth. B 266(12-13), 2936–2940 (2008).
[Crossref]

2006 (1)

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
[Crossref]

2005 (1)

S. Becker, L. Delrive, P. Bouchut, B. Andre, and F. Geffraye, “Ageing of optical components under laser irradiation at 532nm,” in Optical Systems Design 2005, Proc. SPIE 2005, 59631R (2005).
[Crossref]

2002 (2)

M. Stevens-Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758 (2002).
[Crossref]

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

1999 (1)

J. Moll and P. M. Schermerhorn, “Excimer-laser-induced absorption in fused silica,” in Microlithography '99, Proc. SPIE 99, 1129–1136 (1999).
[Crossref]

1993 (1)

G. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
[Crossref]

1991 (1)

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed‐laser irradiation on the properties of ultraviolet‐grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[Crossref]

1986 (1)

Aceves, S.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

Andre, B.

S. Becker, L. Delrive, P. Bouchut, B. Andre, and F. Geffraye, “Ageing of optical components under laser irradiation at 532nm,” in Optical Systems Design 2005, Proc. SPIE 2005, 59631R (2005).
[Crossref]

Anklam, T.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

Auerbach, J.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Baer, D.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Baker, K.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

Baxamusa, S.

Bayramian, A.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

Becker, S.

S. Becker, L. Delrive, P. Bouchut, B. Andre, and F. Geffraye, “Ageing of optical components under laser irradiation at 532nm,” in Optical Systems Design 2005, Proc. SPIE 2005, 59631R (2005).
[Crossref]

Bliss, E.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

Boley, C.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

Bouchut, P.

S. Becker, L. Delrive, P. Bouchut, B. Andre, and F. Geffraye, “Ageing of optical components under laser irradiation at 532nm,” in Optical Systems Design 2005, Proc. SPIE 2005, 59631R (2005).
[Crossref]

Bude, J.

Bude, J. D.

T. A. Laurence, J. D. Bude, N. Shen, W. A. Steele, and S. Ly, “Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials,” J. Appl. Phys. 115(8), 083501 (2014).
[Crossref]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Bullington, A.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

Burnham, A. K.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Caird, J.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

Carr, C. W.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Carr, W.

Celebrano, M.

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett. 1(23), 3323–3327 (2010).
[Crossref]

Chen, D.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

Chiragh, F.

D. Poulios, O. Konoplev, F. Chiragh, A. Vasilyev, M. Stephen, and K. Strickler, “Performance of multilayer optical coatings under long-term 532nm laser exposure,” in Laser Damage, Proc. SPIE 8885, 888523 (2013).

Cross, D.

Delrive, L.

S. Becker, L. Delrive, P. Bouchut, B. Andre, and F. Geffraye, “Ageing of optical components under laser irradiation at 532nm,” in Optical Systems Design 2005, Proc. SPIE 2005, 59631R (2005).
[Crossref]

Demos, S. G.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Deri, R.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

Dunne, M.

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
[Crossref]

Engelhard, M.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Feit, M. D.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Gaspar, D.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Geffraye, F.

S. Becker, L. Delrive, P. Bouchut, B. Andre, and F. Geffraye, “Ageing of optical components under laser irradiation at 532nm,” in Optical Systems Design 2005, Proc. SPIE 2005, 59631R (2005).
[Crossref]

Gouldieff, C.

Huang, J.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Meth. B 266(12-13), 2936–2940 (2008).
[Crossref]

Jiang, X.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Meth. B 266(12-13), 2936–2940 (2008).
[Crossref]

Konoplev, O.

D. Poulios, O. Konoplev, F. Chiragh, A. Vasilyev, M. Stephen, and K. Strickler, “Performance of multilayer optical coatings under long-term 532nm laser exposure,” in Laser Damage, Proc. SPIE 8885, 888523 (2013).

Krajnovich, D.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed‐laser irradiation on the properties of ultraviolet‐grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[Crossref]

Kukura, P.

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett. 1(23), 3323–3327 (2010).
[Crossref]

Kulkarni, M.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed‐laser irradiation on the properties of ultraviolet‐grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[Crossref]

Laurence, T.

Laurence, T. A.

T. A. Laurence, J. D. Bude, N. Shen, W. A. Steele, and S. Ly, “Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials,” J. Appl. Phys. 115(8), 083501 (2014).
[Crossref]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Leung, W. P.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed‐laser irradiation on the properties of ultraviolet‐grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[Crossref]

Lv, H.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Meth. B 266(12-13), 2936–2940 (2008).
[Crossref]

Ly, S.

T. A. Laurence, J. D. Bude, N. Shen, W. A. Steele, and S. Ly, “Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials,” J. Appl. Phys. 115(8), 083501 (2014).
[Crossref]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

Miller, P.

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Molander, W. A.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Moll, J.

J. Moll and P. M. Schermerhorn, “Excimer-laser-induced absorption in fused silica,” in Microlithography '99, Proc. SPIE 99, 1129–1136 (1999).
[Crossref]

Monticelli, M.

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Natoli, J.-Y.

Nelson, A.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Nostrand, M. C.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Poulios, D.

D. Poulios, O. Konoplev, F. Chiragh, A. Vasilyev, M. Stephen, and K. Strickler, “Performance of multilayer optical coatings under long-term 532nm laser exposure,” in Laser Damage, Proc. SPIE 8885, 888523 (2013).

Renn, A.

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett. 1(23), 3323–3327 (2010).
[Crossref]

Sandoghdar, V.

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett. 1(23), 3323–3327 (2010).
[Crossref]

Schermerhorn, P. M.

J. Moll and P. M. Schermerhorn, “Excimer-laser-induced absorption in fused silica,” in Microlithography '99, Proc. SPIE 99, 1129–1136 (1999).
[Crossref]

Shen, N.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, W. A. Steele, and S. Ly, “Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials,” J. Appl. Phys. 115(8), 083501 (2014).
[Crossref]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Siekhaus, W. J.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Spierings, G.

G. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
[Crossref]

Staggs, M. C.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Steele, W.

Steele, W. A.

T. A. Laurence, J. D. Bude, N. Shen, W. A. Steele, and S. Ly, “Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials,” J. Appl. Phys. 115(8), 083501 (2014).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Stephen, M.

D. Poulios, O. Konoplev, F. Chiragh, A. Vasilyev, M. Stephen, and K. Strickler, “Performance of multilayer optical coatings under long-term 532nm laser exposure,” in Laser Damage, Proc. SPIE 8885, 888523 (2013).

Stesmans, A.

M. Stevens-Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758 (2002).
[Crossref]

Stevens-Kalceff, M.

M. Stevens-Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758 (2002).
[Crossref]

Strickler, K.

D. Poulios, O. Konoplev, F. Chiragh, A. Vasilyev, M. Stephen, and K. Strickler, “Performance of multilayer optical coatings under long-term 532nm laser exposure,” in Laser Damage, Proc. SPIE 8885, 888523 (2013).

Suratwala, T.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Tam, A. C.

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed‐laser irradiation on the properties of ultraviolet‐grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[Crossref]

Thomas, I. M.

Vasilyev, A.

D. Poulios, O. Konoplev, F. Chiragh, A. Vasilyev, M. Stephen, and K. Strickler, “Performance of multilayer optical coatings under long-term 532nm laser exposure,” in Laser Damage, Proc. SPIE 8885, 888523 (2013).

Wagner, F. R.

Wang, H.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Meth. B 266(12-13), 2936–2940 (2008).
[Crossref]

Whitman, P. K.

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

Wong, J.

M. Stevens-Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758 (2002).
[Crossref]

Wong, L.

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Xu, S.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Meth. B 266(12-13), 2936–2940 (2008).
[Crossref]

Yuan, X.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Meth. B 266(12-13), 2936–2940 (2008).
[Crossref]

Zheng, W.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Meth. B 266(12-13), 2936–2940 (2008).
[Crossref]

Zu, X.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Meth. B 266(12-13), 2936–2940 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. Stevens-Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758 (2002).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

W. P. Leung, M. Kulkarni, D. Krajnovich, and A. C. Tam, “Effect of intense and prolonged 248 nm pulsed‐laser irradiation on the properties of ultraviolet‐grade fused silica,” Appl. Phys. Lett. 58(6), 551–553 (1991).
[Crossref]

Fusion Science and Technology (1)

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, and R. Deri, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Science and Technology 60, 28–48 (2011).

in Boulder Damage, Proc. SPIE (1)

P. K. Whitman, M. A. Norton, M. C. Nostrand, W. A. Molander, A. Nelson, M. Engelhard, D. Gaspar, D. Baer, W. J. Siekhaus, J. Auerbach, S. G. Demos, M. C. Staggs, and A. K. Burnham, “Performance of bare and sol-gel-coated DKDP crystal surfaces exposed to multiple 351-nm laser pulses in vacuum and air,” in Boulder Damage, Proc. SPIE 2002, 257–270 (2002).
[Crossref]

in Laser Damage, Proc. SPIE (1)

D. Poulios, O. Konoplev, F. Chiragh, A. Vasilyev, M. Stephen, and K. Strickler, “Performance of multilayer optical coatings under long-term 532nm laser exposure,” in Laser Damage, Proc. SPIE 8885, 888523 (2013).

in Microlithography '99, Proc. SPIE (1)

J. Moll and P. M. Schermerhorn, “Excimer-laser-induced absorption in fused silica,” in Microlithography '99, Proc. SPIE 99, 1129–1136 (1999).
[Crossref]

in Optical Systems Design 2005, Proc. SPIE (1)

S. Becker, L. Delrive, P. Bouchut, B. Andre, and F. Geffraye, “Ageing of optical components under laser irradiation at 532nm,” in Optical Systems Design 2005, Proc. SPIE 2005, 59631R (2005).
[Crossref]

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF‐Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

J. Appl. Phys. (1)

T. A. Laurence, J. D. Bude, N. Shen, W. A. Steele, and S. Ly, “Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials,” J. Appl. Phys. 115(8), 083501 (2014).
[Crossref]

J. Mater. Sci. (1)

G. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
[Crossref]

J. Phys. Chem. Lett. (1)

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett. 1(23), 3323–3327 (2010).
[Crossref]

Nat. Phys. (1)

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
[Crossref]

Nucl. Instrum. Meth. B (1)

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355nm laser in vacuum,” Nucl. Instrum. Meth. B 266(12-13), 2936–2940 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Other (5)

A. K. Burnham, M. J. Runkel, S. G. Demos, M. R. Kozlowski, and P. J. Wegner, “Effect of vacuum on the occurrence of UV-induced surface photoluminescence, transmission loss, and catastrophic surface damage,” in International Symposium on Optical Science and Technology, Proc. SPIE, 243–252 (2000).
[Crossref]

J. Moll, “ArF-laser-induced absorption in fused silica exposed to low fluence at 2000 Hz,” in 26th Annual International Symposium on Microlithography, Proc. SPIE, 1272–1279 (2001).
[Crossref]

P. Allenspacher, W. Riede, and D. Wernham, “Laser qualification testing of space optics,” in Boulder Damage Symposium XXXVIII, Proc. SPIE, 64030T–64030T–64037 (2006).

W. Riede, H. Schroeder, G. Bataviciute, D. Wernham, A. Tighe, F. Pettazzi, and J. Alves, “Laser-induced contamination on space optics,” in XLIII Annual Symposium on Optical Materials for High Power Lasers, Proc. SPIE, 81901E–81914 (2011).

P. Miller, T. Suratwala, J. Bude, T. Laurence, N. Shen, W. Steele, M. Feit, J. Menapace, and L. Wong, “Laser damage precursors in fused silica,” in Laser Damage Symposium XLI, Proc. SPIE, 75040X–75014 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Transmission loss images for exposures on uncoated fused silica in vacuum (10−6 Torr) for a) 1 mm beam with IPK = 1.3 MW/cm2 (j p = 0.12 J/cm2) and c) 100 µm beam with IPK = 130 MW/cm2 (j p = 12 J/cm2). Inset shows magnified image. Color coding indicates the percent transmission loss relative to background (0% in red). Line out profiles with percent transmission loss for each exposure is given in b) and d) and mapped to the beam intensity (red dotted line). Experimental parameters for exposures S1-S10 are given in Table 1.

Fig. 2
Fig. 2

(a) Illustration depicting the mapping of the TL to various parts of the beam profile with IP a function of r, the radial distance from the spot center. (b) The TL is mapped at various parts of the beam profile for different pulse numbers to generate the curves on the right.

Fig. 3
Fig. 3

Percent transmission loss as a function of number of pulses for various values of the pulse intensity. The intensity values are derived from the radial distribution of the beam profile. For the 1 mm beam (solid lines) the peak intensity is 1.3 MW/cm2 (solid orange) and for the 100 μm beam (dotted lines) the peak intensity is 130 MW/cm2 (dotted black).

Fig. 4
Fig. 4

Scattering experiment. Change in transmission loss is measured as function of numerical aperture of the collecting objective. No significant changes were observed indicating that scattering is minimal on fused silica surface.

Fig. 5
Fig. 5

A series of wet chemistry experiments to determine the cause of TL on the same sample. The initial lineout (black) shows an exposure site with 4% TL. After applying a nitric acid (HNO3) + peroxide (H2O2) soak, the TL remained the same (green), indicating that organic contamination is not responsible for the TL. Finally a 1 nm BOE etch was applied which attacks the silicon-oxygen bond, but not organics. After the BOE etch, all transmission loss is removed (red).

Fig. 6
Fig. 6

Measured transmission loss data (Fig. 3) plotted as a function of the total integrated fluence (Np * fp = Np * Ip * tp) for various values of the pulse intensity. Behavior in the three regimes is noted on the Fig. as: R1 = linear regime, defect generation proportional to total fluence; R2 = defect generation rate saturation and push-out at high IP; and R3 = defect suppression and back-conversion at high IP and NP.

Fig. 7
Fig. 7

Three state model. S is a ground state that is promoted upon photo-excitation to S*, a metastable state. S* can relax back to S with non-radiative decay rate k1 or to the transmission loss state STL with non-radiative decay rate k2. At high enough intensities, state STL can return back to S. g is the defect generation rate, and in general, depends on both wavelength and partial pressure of oxygen.

Fig. 8
Fig. 8

Simulated transmission loss versus total fluence based on the three state model shown in Fig. 7, showing all of the trends evident in the experimental data in Fig. 6.

Fig. 9
Fig. 9

Comparing experimental data vs simulated data for percent TL vs pulse intensity, IP.

Fig. 10
Fig. 10

A) Low IP exposure that leads to a 4% TL (black) is reversed when followed by a high IP exposure (red). B) High IP exposure with ring profile (black) followed by a low IP exposure. The subsequent low I p exposure filled in the ring and generated TL of 5%.

Fig. 11
Fig. 11

Transmission loss as a function of pressure relative to the TL at 10−6 Torr. Model results (circles) are plotted along with the experimental data (squares) with the reverse reaction rate scaled with pressure.

Fig. 12
Fig. 12

TL reversibility in air. A) For uncoated silica. Loss accumulated from vacuum exposure is erased when followed by air exposure (red curve) while the reverse reaction led to high TL (black curve).

Fig. 13
Fig. 13

Coated fused silica. Percent transmission loss as a function of total integrated fluence for various IP.

Fig. 14
Fig. 14

Coated sample. Experiment to determine if coating had degraded First, a vacuum exposure led to TL of 3% (black). By re-exposing the same spot in air, the TL is erased (red). Reversal of TL is proof that coating did not degrade.

Tables (1)

Tables Icon

Table 1 Summary of Experimental Parameters used in Lifetime Testing up to 109 pulses.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

  d N T L d t = N S 0 g   I P ;         N T L ( t , I P ) = N S 0 g   I P   t
N T L   = N T L ( N p ) = N T L   ( φ T )
d n s * d t = ( 1 n s * ) g I P k 1   n s *
d n T L d t = k 2 n s *
N T L ( t ) = N S 0 g k 2   I P k 1 + g I P   t
N T L ( φ T ) = N S 0 g k 2   k 1 + g I P   φ T
d n T L d t = k 2 n s * g 2 I P n T L
N T L ( t ) = N S 0 g   I P k 1 + g I P k 2 g 2 I P ( 1 exp ( g 2 I p t   ) )
N T L ( φ 2 ) = N S 0 g   I P k 1 + g I P k 2 g 2 I P ( 1 exp ( g 2 φ   T ) )
1) S + h ν à S TL : Si  O Si     + h v         Si  Si   + 1 2 O 2
2) S TL + h ν   + O 2 à S     : Si - Si   + 1 2 O 2   + h v         Si  O   Si

Metrics