Abstract

A novel chirped microwave photonic filter (MPF) capable of achieving a large radio frequency (RF) group delay slope and a single passband response free from high frequency fading is presented. The design is based upon a Fourier domain optical processor (FD-OP) and a single sideband modulator. The FD-OP is utilized to generate both constant time delay to tune the filter and first order dispersion to induce the RF chirp, enabling full software control of the MPF without the need for manual adjustment. An optimized optical parameter region based on a large optical bandwidth >750 GHz and low slicing dispersion < ± 1 ps/nm is introduced, with this technique greatly improving the RF properties including the group delay slope magnitude and passband noise. Experimental results confirm that the structure simultaneously achieves a large in-band RF chirp of −4.2 ns/GHz, centre frequency invariant tuning and independent reconfiguration of the RF amplitude and phase response. Finally, a stochastic study of the device passband noise performance under tuning and reconfiguration is presented, indicating a low passband noise <−120 dB/Hz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable chirped microwave photonic filter employing a dispersive Mach–Zehnder structure

Xiaoxiao Xue, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou
Opt. Lett. 36(17) 3518-3520 (2011)

Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source

Long Huang, Dalei Chen, Fangzheng Zhang, Peng Xiang, Tingting Zhang, Peng Wang, Linlin Lu, Tao Pu, and Xiangfei Chen
Opt. Express 23(20) 25539-25552 (2015)

Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source

Xiaoxiao Xue, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou
Opt. Express 19(19) 18423-18429 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [Crossref]
  2. R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
    [Crossref] [PubMed]
  3. X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
    [Crossref]
  4. L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photon. Technol. Lett. 26(1), 82–85 (2014).
    [Crossref]
  5. G. Saddick, R. S. Singh, and E. R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
    [Crossref]
  6. J. D. McKinney and A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
    [Crossref]
  7. C. Zhang, L. Wang, and K. Qiu, “Proposal for all-optical generation of multiple-frequency millimeter-wave signals for RoF system with multiple base stations using FWM in SOA,” Opt. Express 19(15), 13957–13962 (2011).
    [Crossref] [PubMed]
  8. M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
    [Crossref]
  9. M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
    [Crossref] [PubMed]
  10. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express 19(5), 4566–4576 (2011).
    [PubMed]
  11. J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azana, and D. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Microw. Compon. Lett. 18(2), 103–105 (2008).
    [Crossref]
  12. M. Bolea, J. Mora, B. Ortega, J. Capmany, and L. Chen, “Dynamic chirped microwave photonic filter,” in International Topical Meeting on Microwave Photonics, 2009. MWP ‘09. 1–4, Valencia (2009).
  13. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Tunable chirped microwave photonic filter employing a dispersive Mach-Zehnder structure,” Opt. Lett. 36(17), 3518–3520 (2011).
    [Crossref] [PubMed]
  14. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses,” Opt. Express 20(24), 26929–26934 (2012).
    [Crossref] [PubMed]
  15. X. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” IEEE Trans. Microw. Theory Tech. 24(12), 4959–4965 (2006).
  16. Finisar Corporation product manual, “WaveShaper user manual,” (Finisar Corporation, 2013).
  17. D. Marcuse, “Pulse distortion in single-mode fibers,” Appl. Opt. 19(10), 1653–1660 (1980).
    [Crossref] [PubMed]
  18. J. Mora, B. Ortega, A. Diez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
    [Crossref]
  19. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26(1), 73–78 (2008).
    [Crossref]
  20. Finisar Corporation application note, “Application note: group delay ripple compensation,” (Finisar Corporation, 2012).

2014 (1)

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photon. Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (3)

2008 (2)

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26(1), 73–78 (2008).
[Crossref]

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azana, and D. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Microw. Compon. Lett. 18(2), 103–105 (2008).
[Crossref]

2007 (1)

G. Saddick, R. S. Singh, and E. R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
[Crossref]

2006 (5)

J. D. McKinney and A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
[Crossref]

X. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” IEEE Trans. Microw. Theory Tech. 24(12), 4959–4965 (2006).

J. Mora, B. Ortega, A. Diez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
[Crossref]

2003 (1)

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[Crossref]

2000 (1)

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

1980 (1)

Abakoumov, D.

Andres, M. V.

Arnedo, I.

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azana, and D. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Microw. Compon. Lett. 18(2), 103–105 (2008).
[Crossref]

Azana, J.

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azana, and D. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Microw. Compon. Lett. 18(2), 103–105 (2008).
[Crossref]

Baxter, G.

Benito, D.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[Crossref]

Bertero, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Boccacci, P.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Bolea, M.

Bolger, J. A.

Brown, E. R.

G. Saddick, R. S. Singh, and E. R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
[Crossref]

Capmany, J.

Chan, E. H. W.

Conte, F.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Cruz, J. L.

Diez, A.

Eggleton, B. J.

Erro, M. J.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[Crossref]

Frisken, S.

Furutani, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Garde, M. J.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[Crossref]

Guglielmi, M.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[Crossref]

Huang, T. X. H.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photon. Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

Laso, M. A. G.

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azana, and D. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Microw. Compon. Lett. 18(2), 103–105 (2008).
[Crossref]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[Crossref]

Li, L.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photon. Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

Lopetegi, T.

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azana, and D. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Microw. Compon. Lett. 18(2), 103–105 (2008).
[Crossref]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[Crossref]

Marcuse, D.

McKinney, J. D.

J. D. McKinney and A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[Crossref]

Minasian, R.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photon. Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

Minasian, R. A.

R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
[Crossref] [PubMed]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
[Crossref]

X. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” IEEE Trans. Microw. Theory Tech. 24(12), 4959–4965 (2006).

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

Miyakawa, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Mora, J.

Muriel, M. A.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[Crossref]

Orikasa, K.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Ortega, B.

Pastor, D.

Plant, D.

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azana, and D. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Microw. Compon. Lett. 18(2), 103–105 (2008).
[Crossref]

Poole, S.

Qiu, K.

Roelens, M. A. F.

Saddick, G.

G. Saddick, R. S. Singh, and E. R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
[Crossref]

Schwartz, J. D.

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azana, and D. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Microw. Compon. Lett. 18(2), 103–105 (2008).
[Crossref]

Singh, R. S.

G. Saddick, R. S. Singh, and E. R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
[Crossref]

Sorolla, M.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[Crossref]

Wang, L.

Weiner, A. M.

J. D. McKinney and A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[Crossref]

Xue, X.

Yi, X.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photon. Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
[Crossref] [PubMed]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
[Crossref]

X. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” IEEE Trans. Microw. Theory Tech. 24(12), 4959–4965 (2006).

Zhang, C.

Zhang, H.

Zheng, X.

Zhou, B.

Appl. Opt. (1)

IEEE Microw. Compon. Lett. (1)

J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azana, and D. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Microw. Compon. Lett. 18(2), 103–105 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photon. Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

IEEE Trans. Microw. Theory Tech. (6)

X. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” IEEE Trans. Microw. Theory Tech. 24(12), 4959–4965 (2006).

G. Saddick, R. S. Singh, and E. R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007).
[Crossref]

J. D. McKinney and A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
[Crossref]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (4)

Opt. Lett. (1)

Other (3)

Finisar Corporation product manual, “WaveShaper user manual,” (Finisar Corporation, 2013).

M. Bolea, J. Mora, B. Ortega, J. Capmany, and L. Chen, “Dynamic chirped microwave photonic filter,” in International Topical Meeting on Microwave Photonics, 2009. MWP ‘09. 1–4, Valencia (2009).

Finisar Corporation application note, “Application note: group delay ripple compensation,” (Finisar Corporation, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the proposed chirped filter structure. VNA – vector network analyzer, LOA – linear optical amplifier, PD – photodetector, ω – optical frequency.
Fig. 2
Fig. 2 The RF (a) 3 dB passband width and (b) group delay slope against the dispersion in the slicing structure and the width of the broadband optical source, with the high chirp region shown in red.
Fig. 3
Fig. 3 Root mean square error performance when changing windowing profiles for (a) Gaussian with ϵr = 15 dB (b) Super Gaussian with ϵr = 15 dB (c) Rectangular with ϵr = 15 dB and (d) Gaussian with ϵr = 25 dB.
Fig. 4
Fig. 4 The centre frequency invariant RF (a) amplitude and (b) group delay response with BWRF,3dB = 0.42 GHz and CRF = −4.2 ns/GHz. Measured – solid, Simulated – dotted. Group delay results out of the 15 dB filter bandwidth were curtailed to allow for clarity of the presented data. The decrease in the RF extinction ratio at high frequency in (a) arose due to the VNA calibration for the roll-off of the electronic components.
Fig. 5
Fig. 5 The passband RIN performance for the novel chirped filter achieving (a) BWRF,3dB = 0.42 GHz and CRF = −4.2 ns/GHz and (b) BWRF,3dB = 0.76 GHz and CRF = −2.7 ns/GHz. Measured, Simulated.
Fig. 6
Fig. 6 The independent reconfiguration properties of the novel filter tuned to 10 GHz with (a) BWRF, 10dB = 1.2 GHz, CRF = −2.1 ns/GHz; (b) BWRF, 10dB = 1.3 GHz, CRF = 1.9 ns/GHz; (c) BWRF, 10dB = 1.2 GHz, CRF = −3.2 ns/GHz; (d) BWRF, 10dB = 1.9 GHz, CRF = −2.2 ns/GHz. (blue line) Measured amplitude response, (pink line) Simulated amplitude response, (black line) Measured group delay, (red line) Simulated group delay.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

H up (ω)= e j Φ up (ω) = e j 2 β S (ω ω 0 ) 2 ,
H lo (ω)= e jωΔτ ,
T MZI (ω)= T AP (ω) 2 [ 1Vcos( ωΔτ 1 2 β S (ω ω 0 ) 2 ) ],
P AP (ω)= T AP (ω) | E BOS (ω) | 2 ,
P S (ω)= T MZI (ω) | E BOS (ω) | 2 .
I(t)=R + P S (ω') | + S(ωω') e j[ (ωω')t Φ D (ω)+ Φ D (ω') ] dω | 2 dω' ,
H( f m ) ω min ω max [ 1Vcos( ω'Δτ 1 2 β S (ω' ω 0 ) 2 ) ] P AP (ω') e j β D 2π f m (ω' ω 0 ) dω' ,
H( f m )=B( f m ) V 2 ( M + ( f m )+ M ( f m ) ),
B( f m )= e j2π β D f m ω 0 ω min ω max P AP (ω') e j2π β D f m ω' dω' ,
M ± ( f m )= e j2π β D f m ω 0 ω min ω max P AP (ω') e ±jΔτω' e j 2 β S (ω' ω 0 ) 2 e j2π β D f m ω' dω' .
B( f m )= e j2π β D f m ω 0 p AP ( β D f m ),
M ± ( f m )= e j2π β D f m ω 0 ( p AP ( β D f m )F{ e ±jΔτω' }F{ e j 2 β S (ω' ω 0 ) 2 } ),
M ± ( f m )= e j2π β D f m ω 0 ( p AP ( β D f m Δτ 2π )F{ e j 2 β S (ω' ω 0 ) 2 } ).
f c = Δτ 2π β D .
RIN( f RF )= + P S (ω' ω 0 ) P S (ω' ω 0 2π f RF )dω' ( + P S (ω' ω 0 )dω' ) 2 .
N I ( f RF )= ( R P opt ) 2 RIN( f RF ),
B W RF BOS× β S ,
C RF 1 β S .
A FDOP =0.0048 τ 2 ,
C FDOP (ω)=0.0048( ( τ max ) 2 τ 2 (ω) ),

Metrics