Abstract

The paper reports on the numerical study of surface plasmon resonance excitation in a bent metal-coated single mode optical fiber with a low V-number. It was shown that by choosing a proper combination of normalized frequency, bend radius, and metal film thickness one can achieve strong coupling between the fundamental mode guided by the fiber core, and symmetric surface plasmon mode supported by the metal layer applied to the fiber cladding. The effect is demonstrated to allow precision refractive index measurement, with spectral sensitivity and resolution estimated at 70 μm/refractive index unit and 3⋅10−7, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method

Yu. N. Kulchin, O. B. Vitrik, and A. V. Dyshlyuk
Opt. Express 22(18) 22196-22201 (2014)

Effect of constructional parameters on the performance of a surface plasmon resonance sensor based on a multimode polymer optical fiber

Katarzyna Gasior, Tadeusz Martynkien, and Waclaw Urbanczyk
Appl. Opt. 53(35) 8167-8174 (2014)

In situ monitoring of the formation of nanoscale polyelectrolyte coatings on optical fibers using Surface Plasmon Resonances

Yanina Shevchenko, Nur Uddin Ahamad, Anatoli Ianoul, and Jacques Albert
Opt. Express 18(19) 20409-20421 (2010)

References

  • View by:
  • |
  • |
  • |

  1. X. Guo, “Surface plasmon resonance based biosensor technique: a review,” J Biophoton. 5(7), 483–501 (2012).
    [Crossref] [PubMed]
  2. Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photon. Sens. 2(1), 37–49 (2012).
    [Crossref]
  3. P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
    [Crossref] [PubMed]
  4. G. Xiao and W. J. Bock, eds., Photonic Sensing: Principles and Applications for Safety and Security Monitoring (Wiley, 2012).
  5. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
  6. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009(1), 979761 (2009).
  7. R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D Appl. Phys. 41(9), 095106 (2008).
    [Crossref]
  8. Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, and Zh. Zhou, “Conditions for surface plasmon resonance excitation by whispering gallery modes in a bent single mode optical fiber for the development of novel refractometric sensors,” Laser Phys. 23(8), 085105 (2013).
    [Crossref]
  9. Y. N. Kulchin, O. B. Vitrik, and A. V. Dyshlyuk, “Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method,” Opt. Express 22(18), 22196–22201 (2014).
    [Crossref] [PubMed]
  10. D. Gallagher and T. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
    [Crossref]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  12. K. S. Chiang, “Analysis of optical fibers by the effective-index method,” Appl. Opt. 25(3), 348–354 (1986).
    [Crossref] [PubMed]
  13. R. Sammut and A. W. Snyder, “Leaky modes on a dielectric waveguide: orthogonality and excitation,” Appl. Opt. 15(4), 1040–1044 (1976).
    [Crossref] [PubMed]
  14. R. K. Verma and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film,” J. Opt. Soc. Am. A 27(4), 846–851 (2010).
    [Crossref] [PubMed]
  15. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
    [Crossref] [PubMed]
  16. J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14(8), 083041 (2012).
    [Crossref]

2014 (1)

2013 (1)

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, and Zh. Zhou, “Conditions for surface plasmon resonance excitation by whispering gallery modes in a bent single mode optical fiber for the development of novel refractometric sensors,” Laser Phys. 23(8), 085105 (2013).
[Crossref]

2012 (4)

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14(8), 083041 (2012).
[Crossref]

X. Guo, “Surface plasmon resonance based biosensor technique: a review,” J Biophoton. 5(7), 483–501 (2012).
[Crossref] [PubMed]

Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photon. Sens. 2(1), 37–49 (2012).
[Crossref]

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (1)

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009(1), 979761 (2009).

2008 (1)

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D Appl. Phys. 41(9), 095106 (2008).
[Crossref]

2003 (1)

D. Gallagher and T. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[Crossref]

1994 (1)

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

1986 (1)

1976 (1)

Barthes, J.

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14(8), 083041 (2012).
[Crossref]

Bouhelier, A.

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14(8), 083041 (2012).
[Crossref]

Chen, Y.

Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photon. Sens. 2(1), 37–49 (2012).
[Crossref]

Chiang, K. S.

Colas des Francs, G.

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14(8), 083041 (2012).
[Crossref]

Dereux, A.

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14(8), 083041 (2012).
[Crossref]

Dyshlyuk, A. V.

Y. N. Kulchin, O. B. Vitrik, and A. V. Dyshlyuk, “Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method,” Opt. Express 22(18), 22196–22201 (2014).
[Crossref] [PubMed]

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, and Zh. Zhou, “Conditions for surface plasmon resonance excitation by whispering gallery modes in a bent single mode optical fiber for the development of novel refractometric sensors,” Laser Phys. 23(8), 085105 (2013).
[Crossref]

Felici, T.

D. Gallagher and T. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Gallagher, D.

D. Gallagher and T. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Guo, X.

X. Guo, “Surface plasmon resonance based biosensor technique: a review,” J Biophoton. 5(7), 483–501 (2012).
[Crossref] [PubMed]

Gupta, B. D.

R. K. Verma and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film,” J. Opt. Soc. Am. A 27(4), 846–851 (2010).
[Crossref] [PubMed]

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009(1), 979761 (2009).

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D Appl. Phys. 41(9), 095106 (2008).
[Crossref]

Hafner, C.

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

Kulchin, Y. N.

Kulchin, Yu. N.

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, and Zh. Zhou, “Conditions for surface plasmon resonance excitation by whispering gallery modes in a bent single mode optical fiber for the development of novel refractometric sensors,” Laser Phys. 23(8), 085105 (2013).
[Crossref]

Ming, H.

Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photon. Sens. 2(1), 37–49 (2012).
[Crossref]

Novotny, L.

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

Orrit, M.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

Paulo, P. M. R.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

Sammut, R.

Snyder, A. W.

Verma, R. K.

R. K. Verma and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film,” J. Opt. Soc. Am. A 27(4), 846–851 (2010).
[Crossref] [PubMed]

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009(1), 979761 (2009).

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D Appl. Phys. 41(9), 095106 (2008).
[Crossref]

Vitrik, O. B.

Y. N. Kulchin, O. B. Vitrik, and A. V. Dyshlyuk, “Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method,” Opt. Express 22(18), 22196–22201 (2014).
[Crossref] [PubMed]

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, and Zh. Zhou, “Conditions for surface plasmon resonance excitation by whispering gallery modes in a bent single mode optical fiber for the development of novel refractometric sensors,” Laser Phys. 23(8), 085105 (2013).
[Crossref]

Zhou, Zh.

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, and Zh. Zhou, “Conditions for surface plasmon resonance excitation by whispering gallery modes in a bent single mode optical fiber for the development of novel refractometric sensors,” Laser Phys. 23(8), 085105 (2013).
[Crossref]

Zijlstra, P.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

J Biophoton. (1)

X. Guo, “Surface plasmon resonance based biosensor technique: a review,” J Biophoton. 5(7), 483–501 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D Appl. Phys. 41(9), 095106 (2008).
[Crossref]

J. Sens. (1)

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009(1), 979761 (2009).

Laser Phys. (1)

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, and Zh. Zhou, “Conditions for surface plasmon resonance excitation by whispering gallery modes in a bent single mode optical fiber for the development of novel refractometric sensors,” Laser Phys. 23(8), 085105 (2013).
[Crossref]

Nat. Nanotechnol. (1)

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14(8), 083041 (2012).
[Crossref]

Opt. Express (1)

Photon. Sens. (1)

Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photon. Sens. 2(1), 37–49 (2012).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Gallagher and T. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Other (3)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

G. Xiao and W. J. Bock, eds., Photonic Sensing: Principles and Applications for Safety and Security Monitoring (Wiley, 2012).

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) The schematic of the waveguide under study: 1 – straight input section, 2 – bent metal-coated sensing section, 3 – straight output section, 4 – waveguide core, 5 – waveguide cladding, 6 – polymer jacket, 7 – silver layer, 8 – amplitude profile of one of the two modes responsible for the transfer of the core mode power to surface plasmons (the second mode’s profile is nearly identical and not shown), 9 – amplitude profile of the fundamental mode of sections 1 and 3. (b) RI profile of a standard single mode optical fiber and the effective graded profile of an equivalent slab waveguide (n’1). (c) Amplitude profile of the symmetric surface plasmon mode supported by the metal film. (d) Amplitude profile of the fundamental mode of bent SMF-28-type single mode fiber (V~2 at λ = 1.55 μm) calculated under the assumption of infinite optical cladding for R = 8 mm. (d) Amplitude profile of the fundamental mode of bent single mode fiber with a low V-number (V~0.75 at λ = 1.55 μm) calculated under the assumption of infinite optical cladding for R = 7 cm.
Fig. 2
Fig. 2 Calculated electric field amplitude distribution of guided light in section 2 at the resonant wavelength: 1 – waveguide core, 2 – waveguide cladding, 3 – surrounding medium, 4 – metal film, 5 – surface plasmon wave. As a result of interference of the two modes discussed above guided light is concentrated in core (1) at the beginning of section 2, but as it propagates further along the waveguide the interference maximum shifts to cladding (2) and then to the metal – surrounding medium interface which corresponds to the excitation of surface plasmon wave (5). The opposite process is not observed owing to the high resonant losses of the modes and the guided light is almost completely attenuated at about 2 cm from the beginning of section 2.
Fig. 3
Fig. 3 Simulation results: (a) the dependence of the width of the resonant dip in the transmission spectrum on the metal layer thickness at n3 = 1.4314, R = 7 cm, L = 2 cm; (b) dispersion curves for the symmetric surface plasmon mode supported by the metal layer (calculated for n3 = 1.4312 (1), 1.4314 (2), 1.4316 (3)) and the fundamental mode of SM waveguide with an infinite optical cladding (4); (с) SPR wavelength dependence on the refractive index of the surrounding medium; (d) calculated transmission spectra for three values of the surrounding medium refractive index: n3 = 1.4312 (1), 1.4314 (2), 1.4316 (3);

Metrics