Abstract

In this paper, hyper-entanglement on polarization and energy-time is generated based on a silicon micro-ring cavity. The silicon micro-ring cavity is placed in a fiber loop connected by a polarization beam splitter. Photon pairs are generated by the spontaneous four wave mixing (SFWM) in the cavity bi-directionally. The two photon states of photon pairs propagate along the two directions of the fiber loop and are superposed in the polarization beam splitter with orthogonal polarizations, leading to the polarization entanglement generation. On the other hand, the energy-time entanglement is an intrinsic property of photon pairs generated by the SFWM, which maintains in the process of the state superposition. The property of polarization entanglement is demonstrated by the two photon interferences under two non-orthogonal polarization bases. The property of energy-time entanglement is demonstrated by the Franson type interference under two non-orthogonal phase bases. The raw visibilities of all the measured interference fringes are higher than 1/2, the bench mark for violation of the Bell inequality. It indicates that silicon micro-ring cavity is a promising candidate to realize high performance hyper-entanglement generation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Energy-time entanglement generation in optical fibers under CW pumping

Shuai Dong, Qiang Zhou, Wei Zhang, Yuhao He, Weijun Zhang, Lixing You, Yidong Huang, and Jiangde Peng
Opt. Express 22(1) 359-368 (2014)

Frequency-entanglement preparation based on the coherent manipulation of frequency nondegenerate energy-time entangled state

Qiang Zhou, Shuai Dong, Wei Zhang, Lixing You, Yuhao He, Weijun Zhang, Yidong Huang, and Jiangde Peng
J. Opt. Soc. Am. B 31(8) 1801-1806 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44(11-12), 2173–2184 (1997).
    [Crossref]
  2. S. P. Walborn, “Hyperentanglement: Breaking the communication barrier,” Nat. Phys. 4(4), 268–269 (2008).
    [Crossref]
  3. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
    [Crossref] [PubMed]
  4. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621 (2003).
    [Crossref]
  5. Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 µm,” Opt. Lett. 34(18), 2706–2708 (2009).
    [Crossref] [PubMed]
  6. K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
    [Crossref]
  7. S. Dong, Q. Zhou, W. Zhang, Y. He, W. Zhang, L. You, Y. Huang, and J. Peng, “Energy-time entanglement generation in optical fibers under CW pumping,” Opt. Express 22(1), 359–368 (2014).
    [Crossref] [PubMed]
  8. L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett. 35(18), 3006–3008 (2010).
    [Crossref] [PubMed]
  9. Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on CW pumping correlated photon pair generation,” Opt. Express 22(3), 2620–2631 (2014).
    [Crossref] [PubMed]
  10. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Emission of time-energy entangled photon pairs from an integrated silicon ring resonator,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FTh1A.3.
  11. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16(8), 5721–5727 (2008).
    [Crossref] [PubMed]
  12. H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in fiber loop,” Phys. Rev. A 70, 031802(R) (2004).
  13. Q. Zhou, W. Zhang, C. Yuan, Y. Huang, and J. Peng, “Generation of 1.5 μm discrete frequency-entangled two-photon state in polarization-maintaining fibers,” Opt. Lett. 39(7), 2109–2112 (2014).
    [Crossref] [PubMed]
  14. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
    [Crossref] [PubMed]
  15. B. Fang, O. Cohen, and V. O. Lorenz, “Polarization-entangled photon-pair generation in commercial-grade polarization-maintaining fiber,” J. Opt. Soc. Am. B 31(2), 277–281 (2014).
    [Crossref]
  16. N. Lv, W. Zhang, Y. Guo, Q. Zhou, Y. Huang, and J. Peng, “1.5 μm polarization entanglement generation based on birefringence in silicon wire waveguides,” Opt. Lett. 38(15), 2873–2876 (2013).
    [Crossref] [PubMed]
  17. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-µm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30(3), 293–295 (2005).
    [Crossref] [PubMed]
  18. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
    [Crossref]
  19. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16(8), 5776–5781 (2008).
    [Crossref] [PubMed]
  20. N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215 [quant-ph] (2014)
  21. N. Matsuda, P. Karkus, H. Nishi, T. Tsuchizawa, W. J. Munro, H. Takesue, and K. Yamada, “On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform,” Opt. Express 22(19), 22831–22840 (2014).
    [Crossref] [PubMed]

2014 (5)

2013 (1)

2010 (2)

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[Crossref]

L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett. 35(18), 3006–3008 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

2005 (3)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-µm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30(3), 293–295 (2005).
[Crossref] [PubMed]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

2004 (1)

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in fiber loop,” Phys. Rev. A 70, 031802(R) (2004).

2003 (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621 (2003).
[Crossref]

1999 (1)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

1997 (1)

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44(11-12), 2173–2184 (1997).
[Crossref]

Asobe, M.

Baek, B.

Barreiro, J. T.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Cheng, J.

Cohen, O.

Dong, S.

Fang, B.

Fejer, M. M.

Fukuda, H.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[Crossref]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16(8), 5721–5727 (2008).
[Crossref] [PubMed]

Gisin, N.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Guo, Y.

Harada, K.-I.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[Crossref]

He, Y.

Helt, L. G.

Huang, Y.

Inoue, K.

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-µm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30(3), 293–295 (2005).
[Crossref] [PubMed]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in fiber loop,” Phys. Rev. A 70, 031802(R) (2004).

Itabashi, S.

Itabashi, S.-I.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[Crossref]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621 (2003).
[Crossref]

Karkus, P.

Kumar, P.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

Kwiat, P. G.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44(11-12), 2173–2184 (1997).
[Crossref]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Langrock, C.

Li, X.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

Liscidini, M.

Lorenz, V. O.

Lv, N.

Matsuda, N.

Munro, W. J.

Nam, S. W.

Nishi, H.

Nishida, Y.

Peng, J.

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

Sipe, J. E.

Tadanaga, O.

Takesue, H.

N. Matsuda, P. Karkus, H. Nishi, T. Tsuchizawa, W. J. Munro, H. Takesue, and K. Yamada, “On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform,” Opt. Express 22(19), 22831–22840 (2014).
[Crossref] [PubMed]

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[Crossref]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16(8), 5776–5781 (2008).
[Crossref] [PubMed]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16(8), 5721–5727 (2008).
[Crossref] [PubMed]

H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-µm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett. 30(3), 293–295 (2005).
[Crossref] [PubMed]

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in fiber loop,” Phys. Rev. A 70, 031802(R) (2004).

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Tokura, Y.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[Crossref]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16(8), 5721–5727 (2008).
[Crossref] [PubMed]

Tsuchida, H.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621 (2003).
[Crossref]

Tsuchizawa, T.

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

Walborn, S. P.

S. P. Walborn, “Hyperentanglement: Breaking the communication barrier,” Nat. Phys. 4(4), 268–269 (2008).
[Crossref]

Watanabe, T.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[Crossref]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16(8), 5721–5727 (2008).
[Crossref] [PubMed]

Xie, X.

Yamada, K.

Yamamoto, Y.

Yang, Z.

Yoshizawa, A.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621 (2003).
[Crossref]

You, L.

Yuan, C.

Zbinden, H.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Zhang, Q.

Zhang, W.

Zhou, Q.

Electron. Lett. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[Crossref]

J. Mod. Opt. (1)

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44(11-12), 2173–2184 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

S. P. Walborn, “Hyperentanglement: Breaking the communication barrier,” Nat. Phys. 4(4), 268–269 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. A (1)

H. Takesue and K. Inoue, “Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in fiber loop,” Phys. Rev. A 70, 031802(R) (2004).

Phys. Rev. Lett. (3)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Other (2)

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Emission of time-energy entangled photon pairs from an integrated silicon ring resonator,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FTh1A.3.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems,” arXiv:1409.8215 [quant-ph] (2014)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The silicon micro-ring cavity sample used in the experiment. (a) Cross section of the waveguide in the micro-ring cavity. (b) Transmission spectrum of the silicon micro-ring cavity sample.

Fig. 2
Fig. 2

The performance of correlated photon pair generation in the silicon micro-ring cavity sample. (a) Experiment setup. (b) A typical measurement result of TCSPC. (c) CAR under different pump power levels. TOBF: tunable optical band-pass filter, FPC: fiber polarization controller, CWDM: coarse wavelength division multiplexer, SPD: single photon detector, TCSPC: time correlated single photon counter.

Fig. 3
Fig. 3

Experiment setup for hyper-entanglement generation. (a) The main part. (b) The quantum state analyzer for polarization entanglement. (c) The quantum state analyzer for energy-time entanglement. PM: power meter, DWDM: dense wavelength division multiplexer, PBS: polarization beam splitter, FC: fiber coupler, P: polarizer, UMZI: unbalanced Mach-Zehnder interferometer.

Fig. 4
Fig. 4

Experiment demonstration of the polarization entanglement. (a) The measured two photon interference fringes under two non-orthogonal polarization bases. The red solid circles and blue hollow circles are coincidence counts under varying direction of P1 when the direction of P2 is set at 0 rad and π/4 rad respectively. The red and blue curves are their fitting curves. (b) Single side counts under varying direction of P1 when P2 is set at 0 rad.

Fig. 5
Fig. 5

Experiment demonstration of energy-time entanglement. (a) A typical result of the coincidence counts recorded by the TCSPC. (b) The measured Franson type interference fringes under two non-orthogonal phase bases. The red solid circles and blue hollow circles are coincidence counts with varying α under β = 4.61 rad and 5.72 rad, respectively.

Tables (1)

Tables Icon

Table 1 Parameters of the resonances for the pump light and the signal / idler photons

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

|Φ= 1 2 ( |s signal |s idler + e i(α+β) |l signal |l idler )

Metrics