Abstract

We have precisely measured the Raman shift of photonic crystal silicon heterostructure nanocavities for Raman laser applications. We utilized a near-infrared excitation laser of wavelength 1.42 μm in order to avoid local sample heating and exploited two high-Q nanocavity modes to calibrate the Raman frequency. The measured Raman shift was 15.606 THz (520.71 cm−1) with a small uncertainty of 1.0 × 10−3 THz. In addition, we investigated the compressive stress generated in a photonic crystal slab in which a ~5.1 × 10−3 THz blue shift of the Raman peak and a slight warpage of the slab were observed. We also demonstrated that the stress could be eliminated by using a cantilever structure.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Implementing a Raman silicon nanocavity laser for integrated optical circuits by using a (100) SOI wafer with a 45-degree-rotated top silicon layer

Yukiko Yamauchi, Makoto Okano, Hiroaki Shishido, Susumu Noda, and Yasushi Takahashi
OSA Continuum 2(7) 2098-2112 (2019)

Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies

Kohei Ashida, Makoto Okano, Minoru Ohtsuka, Miyoshi Seki, Nobuyuki Yokoyama, Keiji Koshino, Masahiko Mori, Takashi Asano, Susumu Noda, and Yasushi Takahashi
Opt. Express 25(15) 18165-18174 (2017)

Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration

Yasushi Takahashi, Yoshinori Tanaka, Hiroyuki Hagino, Tomoyuki Sugiya, Yoshiya Sato, Takashi Asano, and Susumu Noda
Opt. Express 17(20) 18093-18102 (2009)

References

  • View by:
  • |
  • |
  • |

  1. E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, “Effect of static uniaxial stress on the Raman spectrum of silicon,” Solid State Commun. 8(2), 133–138 (1970).
    [Crossref]
  2. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express 10(22), 1305–1313 (2002).
    [Crossref] [PubMed]
  3. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
    [Crossref] [PubMed]
  4. T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
    [Crossref]
  5. M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004).
    [Crossref] [PubMed]
  6. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
    [Crossref] [PubMed]
  7. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [Crossref] [PubMed]
  8. A. Liu, H. Rogn, R. Jones, O. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguides,” J. Lightwave Technol. 24(3), 1440–1455 (2006).
    [Crossref]
  9. H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
    [Crossref]
  10. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
    [Crossref]
  11. V. Sih, S. Xu, Y. H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40 Gb/s data in low-loss silicon waveguides,” Opt. Express 15(2), 357–362 (2007).
    [PubMed]
  12. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a Mid-infrared silicon Raman amplifier,” Opt. Express 15(22), 14355–14362 (2007).
    [Crossref] [PubMed]
  13. D. R. Solli, P. Koonath, and B. Jalali, “Broadband Raman amplification in silicon,” Appl. Phys. Lett. 93(19), 191105 (2008).
    [Crossref]
  14. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23(6), 2094–2102 (2005).
    [Crossref]
  15. R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13(5), 1716–1723 (2005).
    [Crossref] [PubMed]
  16. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
    [Crossref]
  17. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
    [Crossref] [PubMed]
  18. J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
    [Crossref]
  19. P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
    [Crossref]
  20. X. Wu, J. Yu, T. Ren, and L. Liu, “Micro-Raman spectroscopy measurement of stress in silicon,” Microelectron. J. 38(1), 87–90 (2007).
    [Crossref]
  21. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [Crossref]
  22. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
    [Crossref]
  23. R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
    [Crossref] [PubMed]
  24. R. Penndorf, J. “Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μ and their application to atmospheric optics,” Opt. Soc. Am. 47(2), 176–182 (1957).
    [Crossref]
  25. N. C. Craig and I. W. Levin, “Calibrating Raman spectrometers with plasma lines from the argon ion laser,” Appl. Spectrosc. 33(5), 475–476 (1979).
    [Crossref]
  26. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
    [Crossref] [PubMed]
  27. T. Iida, T. Itoh, D. Noguchi, and Y. Takano, J. “Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms,” J. Appl. Phys. 87(2), 675–681 (2000).
    [Crossref]
  28. H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
    [Crossref] [PubMed]
  29. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  30. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
    [Crossref]
  31. H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20(27), 28292–28300 (2012).
    [Crossref] [PubMed]
  32. W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
    [Crossref] [PubMed]
  33. Y. H. Hsiao, S. Iwamoto, and Y. Arakawa, “Design of silicon photonic crystal waveguides for high gain Raman amplification using two symmetric transvers-electric-like slow-light modes,” Jpn. J. Appl. Phys. 52(4S), 04CG03 (2013).
    [Crossref]
  34. X. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007).
    [Crossref] [PubMed]
  35. J. F. McMillan, M. Yu, D. Kwong, and C. W. Wong, “Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
    [Crossref]
  36. X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
    [Crossref]
  37. H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
    [Crossref]

2014 (1)

2013 (5)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

Y. H. Hsiao, S. Iwamoto, and Y. Arakawa, “Design of silicon photonic crystal waveguides for high gain Raman amplification using two symmetric transvers-electric-like slow-light modes,” Jpn. J. Appl. Phys. 52(4S), 04CG03 (2013).
[Crossref]

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

2012 (2)

2010 (1)

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
[Crossref]

2008 (3)

J. F. McMillan, M. Yu, D. Kwong, and C. W. Wong, “Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

D. R. Solli, P. Koonath, and B. Jalali, “Broadband Raman amplification in silicon,” Appl. Phys. Lett. 93(19), 191105 (2008).
[Crossref]

2007 (5)

2006 (4)

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

A. Liu, H. Rogn, R. Jones, O. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguides,” J. Lightwave Technol. 24(3), 1440–1455 (2006).
[Crossref]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

2005 (4)

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23(6), 2094–2102 (2005).
[Crossref]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13(5), 1716–1723 (2005).
[Crossref] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

2004 (3)

2003 (2)

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

2002 (1)

2000 (1)

T. Iida, T. Itoh, D. Noguchi, and Y. Takano, J. “Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms,” J. Appl. Phys. 87(2), 675–681 (2000).
[Crossref]

1979 (1)

1973 (1)

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[Crossref]

1970 (1)

E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, “Effect of static uniaxial stress on the Raman spectrum of silicon,” Solid State Commun. 8(2), 133–138 (1970).
[Crossref]

1967 (1)

J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

1957 (1)

R. Penndorf, J. “Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μ and their application to atmospheric optics,” Opt. Soc. Am. 47(2), 176–182 (1957).
[Crossref]

Akahane, Y.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Almeida, V. R.

Anastassakis, E.

E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, “Effect of static uniaxial stress on the Raman spectrum of silicon,” Solid State Commun. 8(2), 133–138 (1970).
[Crossref]

Arakawa, Y.

Y. H. Hsiao, S. Iwamoto, and Y. Arakawa, “Design of silicon photonic crystal waveguides for high gain Raman amplification using two symmetric transvers-electric-like slow-light modes,” Jpn. J. Appl. Phys. 52(4S), 04CG03 (2013).
[Crossref]

H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20(27), 28292–28300 (2012).
[Crossref] [PubMed]

Asano, T.

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[Crossref] [PubMed]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Ashkin, M.

J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Borlaug, D.

Boucaud, P.

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
[Crossref]

Boyraz, O.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
[Crossref] [PubMed]

Brinkmeyer, E.

Burstein, E.

E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, “Effect of static uniaxial stress on the Raman spectrum of silicon,” Solid State Commun. 8(2), 133–138 (1970).
[Crossref]

Cardona, M.

E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, “Effect of static uniaxial stress on the Raman spectrum of silicon,” Solid State Commun. 8(2), 133–138 (1970).
[Crossref]

Checoury, X.

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
[Crossref]

Chihara, M.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

Claps, R.

Cohen, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

V. Sih, S. Xu, Y. H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40 Gb/s data in low-loss silicon waveguides,” Opt. Express 15(2), 357–362 (2007).
[PubMed]

A. Liu, H. Rogn, R. Jones, O. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguides,” J. Lightwave Technol. 24(3), 1440–1455 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13(5), 1716–1723 (2005).
[Crossref] [PubMed]

Craig, N. C.

Dimitropoulos, D.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Fegadolli, W. S.

Feldman, D. W.

J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Hak, D.

Han, Y.

Han, Z.

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
[Crossref]

Hathaway, C. E.

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[Crossref]

Hsiao, Y. H.

Y. H. Hsiao, S. Iwamoto, and Y. Arakawa, “Design of silicon photonic crystal waveguides for high gain Raman amplification using two symmetric transvers-electric-like slow-light modes,” Jpn. J. Appl. Phys. 52(4S), 04CG03 (2013).
[Crossref]

Iida, T.

T. Iida, T. Itoh, D. Noguchi, and Y. Takano, J. “Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms,” J. Appl. Phys. 87(2), 675–681 (2000).
[Crossref]

Inui, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

Ishida, S.

Itoh, T.

T. Iida, T. Itoh, D. Noguchi, and Y. Takano, J. “Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms,” J. Appl. Phys. 87(2), 675–681 (2000).
[Crossref]

Iwamoto, S.

Y. H. Hsiao, S. Iwamoto, and Y. Arakawa, “Design of silicon photonic crystal waveguides for high gain Raman amplification using two symmetric transvers-electric-like slow-light modes,” Jpn. J. Appl. Phys. 52(4S), 04CG03 (2013).
[Crossref]

H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20(27), 28292–28300 (2012).
[Crossref] [PubMed]

Jalali, B.

Jones, R.

Koonath, P.

D. R. Solli, P. Koonath, and B. Jalali, “Broadband Raman amplification in silicon,” Appl. Phys. Lett. 93(19), 191105 (2008).
[Crossref]

Krause, M.

Kumagai, N.

Kuo, Y.

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Kuo, Y. H.

Kuramochi, E.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Kwong, D.

J. F. McMillan, M. Yu, D. Kwong, and C. W. Wong, “Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

Lee, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Levin, I. W.

Liang, T.

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
[Crossref]

Liu, A.

Liu, L.

X. Wu, J. Yu, T. Ren, and L. Liu, “Micro-Raman spectroscopy measurement of stress in silicon,” Microelectron. J. 38(1), 87–90 (2007).
[Crossref]

McMillan, J. F.

J. F. McMillan, M. Yu, D. Kwong, and C. W. Wong, “Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Noda, S.

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[Crossref] [PubMed]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Noguchi, D.

T. Iida, T. Itoh, D. Noguchi, and Y. Takano, J. “Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms,” J. Appl. Phys. 87(2), 675–681 (2000).
[Crossref]

Notomi, M.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Oliveira, J. E. B.

Ota, Y.

Paniccia, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

V. Sih, S. Xu, Y. H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40 Gb/s data in low-loss silicon waveguides,” Opt. Express 15(2), 357–362 (2007).
[PubMed]

A. Liu, H. Rogn, R. Jones, O. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguides,” J. Lightwave Technol. 24(3), 1440–1455 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13(5), 1716–1723 (2005).
[Crossref] [PubMed]

Parker, J. H.

J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Penndorf, R.

R. Penndorf, J. “Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μ and their application to atmospheric optics,” Opt. Soc. Am. 47(2), 176–182 (1957).
[Crossref]

Pinczuk, A.

E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, “Effect of static uniaxial stress on the Raman spectrum of silicon,” Solid State Commun. 8(2), 133–138 (1970).
[Crossref]

Pollak, F. H.

E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, “Effect of static uniaxial stress on the Raman spectrum of silicon,” Solid State Commun. 8(2), 133–138 (1970).
[Crossref]

Raday, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

V. Sih, S. Xu, Y. H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40 Gb/s data in low-loss silicon waveguides,” Opt. Express 15(2), 357–362 (2007).
[PubMed]

Raghunathan, V.

Ren, T.

X. Wu, J. Yu, T. Ren, and L. Liu, “Micro-Raman spectroscopy measurement of stress in silicon,” Microelectron. J. 38(1), 87–90 (2007).
[Crossref]

Renner, H.

Rice, R. R.

Rogn, H.

Rong, H.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

V. Sih, S. Xu, Y. H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40 Gb/s data in low-loss silicon waveguides,” Opt. Express 15(2), 357–362 (2007).
[PubMed]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13(5), 1716–1723 (2005).
[Crossref] [PubMed]

Scherer, A.

Sekoguchi, H.

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Sih, V.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

V. Sih, S. Xu, Y. H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40 Gb/s data in low-loss silicon waveguides,” Opt. Express 15(2), 357–362 (2007).
[PubMed]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Solli, D. R.

D. R. Solli, P. Koonath, and B. Jalali, “Broadband Raman amplification in silicon,” Appl. Phys. Lett. 93(19), 191105 (2008).
[Crossref]

Song, B.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Song, B. S.

Sumikura, H.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

Takagi, H.

Takahashi, Y.

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

Takano, Y.

T. Iida, T. Itoh, D. Noguchi, and Y. Takano, J. “Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms,” J. Appl. Phys. 87(2), 675–681 (2000).
[Crossref]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Taniyama, H.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

Temple, P. A.

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[Crossref]

Terawaki, R.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

Tsang, H.

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
[Crossref]

Uesugi, T.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Wong, C. W.

J. F. McMillan, M. Yu, D. Kwong, and C. W. Wong, “Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

X. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007).
[Crossref] [PubMed]

Wu, X.

X. Wu, J. Yu, T. Ren, and L. Liu, “Micro-Raman spectroscopy measurement of stress in silicon,” Microelectron. J. 38(1), 87–90 (2007).
[Crossref]

Xu, S.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

V. Sih, S. Xu, Y. H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40 Gb/s data in low-loss silicon waveguides,” Opt. Express 15(2), 357–362 (2007).
[PubMed]

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Yang, X.

Yu, J.

X. Wu, J. Yu, T. Ren, and L. Liu, “Micro-Raman spectroscopy measurement of stress in silicon,” Microelectron. J. 38(1), 87–90 (2007).
[Crossref]

Yu, M.

J. F. McMillan, M. Yu, D. Kwong, and C. W. Wong, “Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

Appl. Phys. Lett. (4)

D. R. Solli, P. Koonath, and B. Jalali, “Broadband Raman amplification in silicon,” Appl. Phys. Lett. 93(19), 191105 (2008).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

J. F. McMillan, M. Yu, D. Kwong, and C. W. Wong, “Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 93(25), 251105 (2008).
[Crossref]

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Cavity-enhanced Raman scattering of single-walled carbon nanotubes,” Appl. Phys. Lett. 102(23), 231110 (2013).
[Crossref]

Appl. Spectrosc. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004).
[Crossref]

J. Appl. Phys. (1)

T. Iida, T. Itoh, D. Noguchi, and Y. Takano, J. “Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms,” J. Appl. Phys. 87(2), 675–681 (2000).
[Crossref]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (1)

Y. H. Hsiao, S. Iwamoto, and Y. Arakawa, “Design of silicon photonic crystal waveguides for high gain Raman amplification using two symmetric transvers-electric-like slow-light modes,” Jpn. J. Appl. Phys. 52(4S), 04CG03 (2013).
[Crossref]

Microelectron. J. (1)

X. Wu, J. Yu, T. Ren, and L. Liu, “Micro-Raman spectroscopy measurement of stress in silicon,” Microelectron. J. 38(1), 87–90 (2007).
[Crossref]

Nat. Mater. (1)

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Nat. Photonics (2)

H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Nature (3)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Opt. Express (13)

X. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007).
[Crossref] [PubMed]

H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “High Q H1 photonic crystal nanocavities with efficient vertical emission,” Opt. Express 20(27), 28292–28300 (2012).
[Crossref] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[Crossref] [PubMed]

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13(5), 1716–1723 (2005).
[Crossref] [PubMed]

V. Sih, S. Xu, Y. H. Kuo, H. Rong, M. Paniccia, O. Cohen, and O. Raday, “Raman amplification of 40 Gb/s data in low-loss silicon waveguides,” Opt. Express 15(2), 357–362 (2007).
[PubMed]

V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a Mid-infrared silicon Raman amplifier,” Opt. Express 15(22), 14355–14362 (2007).
[Crossref] [PubMed]

M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004).
[Crossref] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express 10(22), 1305–1313 (2002).
[Crossref] [PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
[Crossref] [PubMed]

Opt. Soc. Am. (1)

R. Penndorf, J. “Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μ and their application to atmospheric optics,” Opt. Soc. Am. 47(2), 176–182 (1957).
[Crossref]

Phys. Rev. (1)

J. H. Parker, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and germanium,” Phys. Rev. 155(3), 712–714 (1967).
[Crossref]

Phys. Rev. B (3)

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B 82(4), 041308 (2010).
[Crossref]

Solid State Commun. (1)

E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, “Effect of static uniaxial stress on the Raman spectrum of silicon,” Solid State Commun. 8(2), 133–138 (1970).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic picture of a measured heterostructure nanocavity. The x-direction is defined as the [100] crystalline direction of a (001) SOI. (b) Band diagram of the nanocavity: fp is the frequency of the pump nanocavity mode, fS is the frequency of the Stokes nanocavity mode, FR is the Raman shift of the Si nanocavity, and fR is the frequency of the spontaneous Raman peak exciting the pump nanocavity mode.
Fig. 2
Fig. 2 Setup used to measure resonant spectra and Raman scattering spectra. The components indicated by parentheses and chevrons were used for resonant spectra and Raman spectra, respectively.
Fig. 3
Fig. 3 (a) Resonant spectrum of the pump nanocavity mode. (b) Resonant spectrum of the Stokes nanocavity mode. (c) Raman spectrum measured while exciting the pump mode shown in (a). The insets illustrate how the nanocavity modes were excited.
Fig. 4
Fig. 4 (a) Laser microscope image of a measured PC slab. The three line defects are the nanocavity and excitation waveguides. (b) Raman spectra measured at the position of the PC slab (solid line) and the SOI region (dotted line). (c) Raman shift profiles along the dashed line in (a) before (dotted line) and after (solid line) formation of the air-bridge structure. (d) Raman shift profiles for a cantilever PC slab sample. (e) FWHM of Raman peak for each structure.
Fig. 5
Fig. 5 (a) Schematic cross-section of the PC slab before the air-bridge structure is formed. The compressive and tensile stresses are denoted in red and blue. (b) Cross-sectional view of the air-bridge PC slab. Arrows indicate shifts of the SiO2 layer to release stress. (c) Surface shape image of the air-bridge PC slab by a scanning white light interferometer. (d) Cross-sectional view of the cantilever PC slab. (e) Surface shape image of the cantilever PC slab.

Tables (2)

Tables Icon

Table 1 Summary of Raman measurement results for four nanocavities with air-bridge structures

Tables Icon

Table 2 Summary of Raman measurement results for four nanocavities with cantilever structures

Metrics