Abstract

A novel Ho3+/Yb3+-codoped PbF2 mid-IR laser crystal was successfully grown and analyzed. Enhanced emission at 2.86 μm was observed from the crystal under excitation of a common 970 nm laser diode for the first time. The effect of Yb3+ codoping on the 2.86 μm photoluminescence of Ho3+ was investigated. In comparison to Ho3+-singly doped PbF2 crystal, the Ho3+/Yb3+-codoped PbF2 crystal possessed comparable quantum efficiency (88.8%), and fluorescence branching ratio (20.52%) along with a larger calculated emission cross section (1.90×10−20 cm2) corresponding to the laser transition 5I65I7 of Ho3+. It was found that the introduced Yb3+ enhanced the 2.86 μm emission by depopulating the Ho3+:5I7 level. The energy transfer (ET) efficiency from Yb3+:2F5/2 to Ho3+:5I6 is as high as 96.7%, indicating that Yb3+ ion is an effective sensitizer for Ho3+ ion in PbF2 crystal. These results suggest that Ho3+/Yb3+-codoped PbF2 crystal may become an attractive host for developing solid state lasers at around 2.86 μm under a conventional 970 nm LD pump.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intense 2.89 μm emission from Dy3+/Yb3+-codoped PbF2 crystal by 970 nm laser diode pumping

Peixiong Zhang, Min Xu, Lianhan Zhang, Jiaqi Hong, Xianyong Wang, Yaqi Wang, Guangzhu Chen, and Yin Hang
Opt. Express 23(21) 27786-27794 (2015)

Enhanced 2.86 μm emission of Ho3+,Pr3+-codoped LaF3 single crystal

Jiaqi Hong, Lianhan Zhang, and Yin Hang
Opt. Mater. Express 7(5) 1509-1513 (2017)

Activation and deactivation effects to Ho3+ at ~2.8 μm MIR emission by Yb3+ and Pr3+ ions in YAG crystal

J. Q. Hong, L. H. Zhang, M. Xu, and Y. Hang
Opt. Mater. Express 6(5) 1444-1450 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
    [Crossref] [PubMed]
  2. E. Kasper, M. Kittler, M. Oehme, and T. Arguirov, “Germanium tin: silicon photonics toward the mid-infrared,” Photon. Res. 1(2), 69–76 (2013).
    [Crossref]
  3. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express. 22(20), 24384–24391 (2014).
    [Crossref] [PubMed]
  4. J. Zhang, E. Cassan, and X. Zhang, “Enhanced mid-to-near-infrared second harmonic generation in silicon plasmonic microring resonators with low pump power,” Photon. Res. 2(5), 143–149 (2014).
    [Crossref]
  5. X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7 μm laser material,” Chin. Opt. Lett. 11(12), 121601 (2013).
    [Crossref]
  6. P. X. Zhang, Y. Hang, and L. H. Zhang, “Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal,” Opt. Lett. 37(24), 5241–5243 (2012).
    [Crossref] [PubMed]
  7. P. X. Zhang, J. G. Yin, B. T. Zhang, L. H. Zhang, J. Q. Hong, J. L. He, and Y. Hang, “Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal,” Opt. Lett. 39(13), 3942–3945 (2014).
    [Crossref] [PubMed]
  8. J. Pan, R. Xu, Y. Tian, K. Li, L. Hu, and J. Zhang, “2.0 μm emission properties of transparent oxyfuoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
    [Crossref]
  9. Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germinate glasses with efficient energy transfer,” J. Appl. Phys. 106, 113102 (2009).
    [Crossref]
  10. R. Lisiecki, W. R. Romanowski, L. Macalik, J. Komar, and M. Berkowski, “Optical study of La3Ga5.5Ta0.5O14 single crystal co-doped with Ho3+ and Yb3+,” Appl. Phys. B. 116, 183–194 (2014).
    [Crossref]
  11. H. Zhang, D. Sun, J. Luo, J. Chen, H. Yang, J. Xiao, Q. Zhang, and S. Yin, “Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu:YAP laser crystal,” Opt. Mater. 36(8), 1361–1365 (2014).
    [Crossref]
  12. Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 μm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
    [Crossref] [PubMed]
  13. A. Diening, S. Kuck, and G. Huber, “Quasi-cw laser oscillation of Yb,Ho:YSGG at 3 μm under laser-diode excitation,” OSA TOPS Advanced Solid State Lasers 19, 221 (1998).
  14. F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Progress in Quantum Electronics 33, 61–109 (2009).
    [Crossref]
  15. F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fuoride glass sensitized by Tm3+ or Ho3+ for 2.7 μm emission,” Chin. Opt. Lett. 12(05), 051601 (2014).
    [Crossref]
  16. J. Yin, Y. Hang, X. He, L. Zhang, C. Zhao, and J. Gong, “Room-temperature diode-pumped Yb, Na:PbF2 laser,” Opt. Lett. 37(1), 109–111 (2012).
    [Crossref] [PubMed]
  17. S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5, 153 (1964).
    [Crossref]
  18. W. J. Tropf, M. F. Thomas, and T. J. Harris, Handbook of Optics (McGraw-Hill, 1995).
  19. G. Dantelle, M. Mortier, Ph. Goldner, and D. Vivien, “EPR and optical study of Yb3+-doped β-PbF2 single crystals and nanocrystals of glass-ceramics,” J. Phys. Condens. Matter 18, 7905–7922 (2006).
    [Crossref]
  20. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett. 81, 1937 (2002).
    [Crossref]
  21. H. Kuhn, S. T. Fredrich-Thornton, C. Krankel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
    [Crossref] [PubMed]
  22. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [Crossref]
  23. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [Crossref]
  24. C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
    [Crossref]
  25. M. Wang, L. X. Yi, Y. K. Chen, C. L. Yu, G. N. Wang, L. L. Hu, and J. J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application,” Mater. Chem. Phys. 114, 295–299 (2009).
    [Crossref]
  26. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  27. S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
    [Crossref]
  28. Z. Chengchun, H. Yin, Z. Lianhan, Y. Jigang, H. Pengchao, and M. En, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater. 33(11), 1610–1615 (2011).
    [Crossref]
  29. A. Dieninga and S. Kuck, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys. 87(9), 4063–4068 (2000).
    [Crossref]
  30. L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfuoride glasses,” J. Lumin. 124(2), 187–194 (2007).
    [Crossref]

2014 (6)

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express. 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

J. Zhang, E. Cassan, and X. Zhang, “Enhanced mid-to-near-infrared second harmonic generation in silicon plasmonic microring resonators with low pump power,” Photon. Res. 2(5), 143–149 (2014).
[Crossref]

P. X. Zhang, J. G. Yin, B. T. Zhang, L. H. Zhang, J. Q. Hong, J. L. He, and Y. Hang, “Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal,” Opt. Lett. 39(13), 3942–3945 (2014).
[Crossref] [PubMed]

R. Lisiecki, W. R. Romanowski, L. Macalik, J. Komar, and M. Berkowski, “Optical study of La3Ga5.5Ta0.5O14 single crystal co-doped with Ho3+ and Yb3+,” Appl. Phys. B. 116, 183–194 (2014).
[Crossref]

H. Zhang, D. Sun, J. Luo, J. Chen, H. Yang, J. Xiao, Q. Zhang, and S. Yin, “Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu:YAP laser crystal,” Opt. Mater. 36(8), 1361–1365 (2014).
[Crossref]

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fuoride glass sensitized by Tm3+ or Ho3+ for 2.7 μm emission,” Chin. Opt. Lett. 12(05), 051601 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (1)

Z. Chengchun, H. Yin, Z. Lianhan, Y. Jigang, H. Pengchao, and M. En, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater. 33(11), 1610–1615 (2011).
[Crossref]

2010 (1)

J. Pan, R. Xu, Y. Tian, K. Li, L. Hu, and J. Zhang, “2.0 μm emission properties of transparent oxyfuoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

2009 (4)

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germinate glasses with efficient energy transfer,” J. Appl. Phys. 106, 113102 (2009).
[Crossref]

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

M. Wang, L. X. Yi, Y. K. Chen, C. L. Yu, G. N. Wang, L. L. Hu, and J. J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application,” Mater. Chem. Phys. 114, 295–299 (2009).
[Crossref]

F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Progress in Quantum Electronics 33, 61–109 (2009).
[Crossref]

2007 (2)

H. Kuhn, S. T. Fredrich-Thornton, C. Krankel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
[Crossref] [PubMed]

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfuoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

2006 (1)

G. Dantelle, M. Mortier, Ph. Goldner, and D. Vivien, “EPR and optical study of Yb3+-doped β-PbF2 single crystals and nanocrystals of glass-ceramics,” J. Phys. Condens. Matter 18, 7905–7922 (2006).
[Crossref]

2002 (1)

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett. 81, 1937 (2002).
[Crossref]

2000 (1)

A. Dieninga and S. Kuck, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys. 87(9), 4063–4068 (2000).
[Crossref]

1998 (1)

A. Diening, S. Kuck, and G. Huber, “Quasi-cw laser oscillation of Yb,Ho:YSGG at 3 μm under laser-diode excitation,” OSA TOPS Advanced Solid State Lasers 19, 221 (1998).

1995 (1)

S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
[Crossref]

1983 (1)

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

1964 (1)

S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5, 153 (1964).
[Crossref]

1962 (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Arguirov, T.

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Beggiora, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett. 81, 1937 (2002).
[Crossref]

Berkowski, M.

R. Lisiecki, W. R. Romanowski, L. Macalik, J. Komar, and M. Berkowski, “Optical study of La3Ga5.5Ta0.5O14 single crystal co-doped with Ho3+ and Yb3+,” Appl. Phys. B. 116, 183–194 (2014).
[Crossref]

Cassan, E.

Chen, D.

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fuoride glass sensitized by Tm3+ or Ho3+ for 2.7 μm emission,” Chin. Opt. Lett. 12(05), 051601 (2014).
[Crossref]

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germinate glasses with efficient energy transfer,” J. Appl. Phys. 106, 113102 (2009).
[Crossref]

Chen, G.

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germinate glasses with efficient energy transfer,” J. Appl. Phys. 106, 113102 (2009).
[Crossref]

Chen, J.

H. Zhang, D. Sun, J. Luo, J. Chen, H. Yang, J. Xiao, Q. Zhang, and S. Yin, “Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu:YAP laser crystal,” Opt. Mater. 36(8), 1361–1365 (2014).
[Crossref]

Chen, Y. K.

M. Wang, L. X. Yi, Y. K. Chen, C. L. Yu, G. N. Wang, L. L. Hu, and J. J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application,” Mater. Chem. Phys. 114, 295–299 (2009).
[Crossref]

Chengchun, Z.

Z. Chengchun, H. Yin, Z. Lianhan, Y. Jigang, H. Pengchao, and M. En, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater. 33(11), 1610–1615 (2011).
[Crossref]

Cornacchia, F.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Progress in Quantum Electronics 33, 61–109 (2009).
[Crossref]

Dantelle, G.

G. Dantelle, M. Mortier, Ph. Goldner, and D. Vivien, “EPR and optical study of Yb3+-doped β-PbF2 single crystals and nanocrystals of glass-ceramics,” J. Phys. Condens. Matter 18, 7905–7922 (2006).
[Crossref]

Diening, A.

A. Diening, S. Kuck, and G. Huber, “Quasi-cw laser oscillation of Yb,Ho:YSGG at 3 μm under laser-diode excitation,” OSA TOPS Advanced Solid State Lasers 19, 221 (1998).

Dieninga, A.

A. Dieninga and S. Kuck, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys. 87(9), 4063–4068 (2000).
[Crossref]

En, M.

Z. Chengchun, H. Yin, Z. Lianhan, Y. Jigang, H. Pengchao, and M. En, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater. 33(11), 1610–1615 (2011).
[Crossref]

Feng, L.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfuoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Ferrari, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett. 81, 1937 (2002).
[Crossref]

Fredrich-Thornton, S. T.

Furniss, D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett. 81, 1937 (2002).
[Crossref]

Goldner, Ph.

G. Dantelle, M. Mortier, Ph. Goldner, and D. Vivien, “EPR and optical study of Yb3+-doped β-PbF2 single crystals and nanocrystals of glass-ceramics,” J. Phys. Condens. Matter 18, 7905–7922 (2006).
[Crossref]

Gong, J.

Guo, H.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Hang, Y.

Harris, T. J.

W. J. Tropf, M. F. Thomas, and T. J. Harris, Handbook of Optics (McGraw-Hill, 1995).

Hatch, S. E.

S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5, 153 (1964).
[Crossref]

He, J. L.

He, X.

Hong, J. Q.

Hou, C.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Hu, L.

Hu, L. L.

M. Wang, L. X. Yi, Y. K. Chen, C. L. Yu, G. N. Wang, L. L. Hu, and J. J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application,” Mater. Chem. Phys. 114, 295–299 (2009).
[Crossref]

Huang, F.

Huber, G.

A. Diening, S. Kuck, and G. Huber, “Quasi-cw laser oscillation of Yb,Ho:YSGG at 3 μm under laser-diode excitation,” OSA TOPS Advanced Solid State Lasers 19, 221 (1998).

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Jigang, Y.

Z. Chengchun, H. Yin, Z. Lianhan, Y. Jigang, H. Pengchao, and M. En, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater. 33(11), 1610–1615 (2011).
[Crossref]

Jorgensen, C. K.

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Kasper, E.

Kittler, M.

Komar, J.

R. Lisiecki, W. R. Romanowski, L. Macalik, J. Komar, and M. Berkowski, “Optical study of La3Ga5.5Ta0.5O14 single crystal co-doped with Ho3+ and Yb3+,” Appl. Phys. B. 116, 183–194 (2014).
[Crossref]

Krankel, C.

Krupke, W. F.

S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
[Crossref]

Kuck, S.

A. Dieninga and S. Kuck, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys. 87(9), 4063–4068 (2000).
[Crossref]

A. Diening, S. Kuck, and G. Huber, “Quasi-cw laser oscillation of Yb,Ho:YSGG at 3 μm under laser-diode excitation,” OSA TOPS Advanced Solid State Lasers 19, 221 (1998).

Kuhn, H.

Li, J.

Li, K.

J. Pan, R. Xu, Y. Tian, K. Li, L. Hu, and J. Zhang, “2.0 μm emission properties of transparent oxyfuoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

Li, W.

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fuoride glass sensitized by Tm3+ or Ho3+ for 2.7 μm emission,” Chin. Opt. Lett. 12(05), 051601 (2014).
[Crossref]

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Li, X.

Liang, H.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfuoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Liang, L.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfuoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Lianhan, Z.

Z. Chengchun, H. Yin, Z. Lianhan, Y. Jigang, H. Pengchao, and M. En, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater. 33(11), 1610–1615 (2011).
[Crossref]

Lisiecki, R.

R. Lisiecki, W. R. Romanowski, L. Macalik, J. Komar, and M. Berkowski, “Optical study of La3Ga5.5Ta0.5O14 single crystal co-doped with Ho3+ and Yb3+,” Appl. Phys. B. 116, 183–194 (2014).
[Crossref]

Liu, J.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express. 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

Liu, K.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express. 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

Liu, L.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Liu, X.

Lu, M.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Luo, J.

H. Zhang, D. Sun, J. Luo, J. Chen, H. Yang, J. Xiao, Q. Zhang, and S. Yin, “Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu:YAP laser crystal,” Opt. Mater. 36(8), 1361–1365 (2014).
[Crossref]

Macalik, L.

R. Lisiecki, W. R. Romanowski, L. Macalik, J. Komar, and M. Berkowski, “Optical study of La3Ga5.5Ta0.5O14 single crystal co-doped with Ho3+ and Yb3+,” Appl. Phys. B. 116, 183–194 (2014).
[Crossref]

Montagna, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett. 81, 1937 (2002).
[Crossref]

Mortier, M.

G. Dantelle, M. Mortier, Ph. Goldner, and D. Vivien, “EPR and optical study of Yb3+-doped β-PbF2 single crystals and nanocrystals of glass-ceramics,” J. Phys. Condens. Matter 18, 7905–7922 (2006).
[Crossref]

Oehme, M.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

Pan, J.

J. Pan, R. Xu, Y. Tian, K. Li, L. Hu, and J. Zhang, “2.0 μm emission properties of transparent oxyfuoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

Parsons, W. F.

S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5, 153 (1964).
[Crossref]

Payne, S. A.

S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
[Crossref]

Peng, B.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Pengchao, H.

Z. Chengchun, H. Yin, Z. Lianhan, Y. Jigang, H. Pengchao, and M. En, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater. 33(11), 1610–1615 (2011).
[Crossref]

Petermann, K.

Peters, R.

Qiu, J.

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germinate glasses with efficient energy transfer,” J. Appl. Phys. 106, 113102 (2009).
[Crossref]

Reaney, I. M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett. 81, 1937 (2002).
[Crossref]

Reisfeld, R.

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

Rolli, R.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett. 81, 1937 (2002).
[Crossref]

Romanowski, W. R.

R. Lisiecki, W. R. Romanowski, L. Macalik, J. Komar, and M. Berkowski, “Optical study of La3Ga5.5Ta0.5O14 single crystal co-doped with Ho3+ and Yb3+,” Appl. Phys. B. 116, 183–194 (2014).
[Crossref]

Seddon, A. B.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett. 81, 1937 (2002).
[Crossref]

Shi, H.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express. 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

Smith, L. K.

S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
[Crossref]

Su, Q.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfuoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Sun, D.

H. Zhang, D. Sun, J. Luo, J. Chen, H. Yang, J. Xiao, Q. Zhang, and S. Yin, “Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu:YAP laser crystal,” Opt. Mater. 36(8), 1361–1365 (2014).
[Crossref]

Tan, F.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express. 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

Tang, Q.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfuoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Thomas, M. F.

W. J. Tropf, M. F. Thomas, and T. J. Harris, Handbook of Optics (McGraw-Hill, 1995).

Tian, Y.

J. Pan, R. Xu, Y. Tian, K. Li, L. Hu, and J. Zhang, “2.0 μm emission properties of transparent oxyfuoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

Tikhomirov, V. K.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett. 81, 1937 (2002).
[Crossref]

Toncelli, A.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Progress in Quantum Electronics 33, 61–109 (2009).
[Crossref]

Tonelli, M.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Progress in Quantum Electronics 33, 61–109 (2009).
[Crossref]

Tropf, W. J.

W. J. Tropf, M. F. Thomas, and T. J. Harris, Handbook of Optics (McGraw-Hill, 1995).

Tu, C.

Vivien, D.

G. Dantelle, M. Mortier, Ph. Goldner, and D. Vivien, “EPR and optical study of Yb3+-doped β-PbF2 single crystals and nanocrystals of glass-ceramics,” J. Phys. Condens. Matter 18, 7905–7922 (2006).
[Crossref]

Wang, G. N.

M. Wang, L. X. Yi, Y. K. Chen, C. L. Yu, G. N. Wang, L. L. Hu, and J. J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application,” Mater. Chem. Phys. 114, 295–299 (2009).
[Crossref]

Wang, J.

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfuoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

Wang, M.

M. Wang, L. X. Yi, Y. K. Chen, C. L. Yu, G. N. Wang, L. L. Hu, and J. J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application,” Mater. Chem. Phys. 114, 295–299 (2009).
[Crossref]

Wang, P.

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express. 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, and C. Tu, “Activation effect of Ho3+ at 2.84 μm MIR luminescence by Yb3+ ions in GGG crystal,” Opt. Lett. 38(20), 3988–3990 (2013).
[Crossref] [PubMed]

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Weagley, R. J.

S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5, 153 (1964).
[Crossref]

Xiao, J.

H. Zhang, D. Sun, J. Luo, J. Chen, H. Yang, J. Xiao, Q. Zhang, and S. Yin, “Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu:YAP laser crystal,” Opt. Mater. 36(8), 1361–1365 (2014).
[Crossref]

Xu, J.

Xu, R.

J. Pan, R. Xu, Y. Tian, K. Li, L. Hu, and J. Zhang, “2.0 μm emission properties of transparent oxyfuoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

Yang, H.

H. Zhang, D. Sun, J. Luo, J. Chen, H. Yang, J. Xiao, Q. Zhang, and S. Yin, “Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu:YAP laser crystal,” Opt. Mater. 36(8), 1361–1365 (2014).
[Crossref]

Yi, L. X.

M. Wang, L. X. Yi, Y. K. Chen, C. L. Yu, G. N. Wang, L. L. Hu, and J. J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application,” Mater. Chem. Phys. 114, 295–299 (2009).
[Crossref]

Yin, H.

Z. Chengchun, H. Yin, Z. Lianhan, Y. Jigang, H. Pengchao, and M. En, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater. 33(11), 1610–1615 (2011).
[Crossref]

Yin, J.

Yin, J. G.

Yin, S.

H. Zhang, D. Sun, J. Luo, J. Chen, H. Yang, J. Xiao, Q. Zhang, and S. Yin, “Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu:YAP laser crystal,” Opt. Mater. 36(8), 1361–1365 (2014).
[Crossref]

You, Z.

Yu, C. L.

M. Wang, L. X. Yi, Y. K. Chen, C. L. Yu, G. N. Wang, L. L. Hu, and J. J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application,” Mater. Chem. Phys. 114, 295–299 (2009).
[Crossref]

Zhang, B. T.

Zhang, G.

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germinate glasses with efficient energy transfer,” J. Appl. Phys. 106, 113102 (2009).
[Crossref]

Zhang, H.

H. Zhang, D. Sun, J. Luo, J. Chen, H. Yang, J. Xiao, Q. Zhang, and S. Yin, “Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu:YAP laser crystal,” Opt. Mater. 36(8), 1361–1365 (2014).
[Crossref]

Zhang, J.

Zhang, J. J.

M. Wang, L. X. Yi, Y. K. Chen, C. L. Yu, G. N. Wang, L. L. Hu, and J. J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application,” Mater. Chem. Phys. 114, 295–299 (2009).
[Crossref]

Zhang, L.

Zhang, L. H.

Zhang, P. X.

Zhang, Q.

H. Zhang, D. Sun, J. Luo, J. Chen, H. Yang, J. Xiao, Q. Zhang, and S. Yin, “Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu:YAP laser crystal,” Opt. Mater. 36(8), 1361–1365 (2014).
[Crossref]

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germinate glasses with efficient energy transfer,” J. Appl. Phys. 106, 113102 (2009).
[Crossref]

Zhang, X.

Zhao, C.

Zhu, Z.

Zou, K.

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

Appl. Phys. B. (1)

R. Lisiecki, W. R. Romanowski, L. Macalik, J. Komar, and M. Berkowski, “Optical study of La3Ga5.5Ta0.5O14 single crystal co-doped with Ho3+ and Yb3+,” Appl. Phys. B. 116, 183–194 (2014).
[Crossref]

Appl. Phys. Lett. (2)

S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5, 153 (1964).
[Crossref]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett. 81, 1937 (2002).
[Crossref]

Chin. Opt. Lett. (2)

IEEE J. Quantum Electron. (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

J. Appl. Phys. (3)

S. A. Payne, L. K. Smith, and W. F. Krupke, “Cross sections and quantum yields of the 3 μm emission for Er3+ and Ho3+ dopants in crystals,” J. Appl. Phys. 77(9), 4274–4279 (1995).
[Crossref]

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germinate glasses with efficient energy transfer,” J. Appl. Phys. 106, 113102 (2009).
[Crossref]

A. Dieninga and S. Kuck, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys. 87(9), 4063–4068 (2000).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

J. Less-Common Met. (1)

C. K. Jorgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less-Common Met. 93(1), 107–112 (1983).
[Crossref]

J. Lumin. (1)

L. Feng, J. Wang, Q. Tang, L. Liang, H. Liang, and Q. Su, “Optical properties of Ho3+-doped novel oxyfuoride glasses,” J. Lumin. 124(2), 187–194 (2007).
[Crossref]

J. Phys. Condens. Matter (1)

G. Dantelle, M. Mortier, Ph. Goldner, and D. Vivien, “EPR and optical study of Yb3+-doped β-PbF2 single crystals and nanocrystals of glass-ceramics,” J. Phys. Condens. Matter 18, 7905–7922 (2006).
[Crossref]

Mater. Chem. Phys. (1)

M. Wang, L. X. Yi, Y. K. Chen, C. L. Yu, G. N. Wang, L. L. Hu, and J. J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application,” Mater. Chem. Phys. 114, 295–299 (2009).
[Crossref]

Opt. Express. (2)

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express. 17(17), 15350–15358 (2009).
[Crossref] [PubMed]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express. 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. (3)

J. Pan, R. Xu, Y. Tian, K. Li, L. Hu, and J. Zhang, “2.0 μm emission properties of transparent oxyfuoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

H. Zhang, D. Sun, J. Luo, J. Chen, H. Yang, J. Xiao, Q. Zhang, and S. Yin, “Growth, thermal, and spectroscopic properties of a Cr, Yb, Ho, Eu:YAP laser crystal,” Opt. Mater. 36(8), 1361–1365 (2014).
[Crossref]

Z. Chengchun, H. Yin, Z. Lianhan, Y. Jigang, H. Pengchao, and M. En, “Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers,” Opt. Mater. 33(11), 1610–1615 (2011).
[Crossref]

OSA TOPS Advanced Solid State Lasers (1)

A. Diening, S. Kuck, and G. Huber, “Quasi-cw laser oscillation of Yb,Ho:YSGG at 3 μm under laser-diode excitation,” OSA TOPS Advanced Solid State Lasers 19, 221 (1998).

Photon. Res. (2)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Progress in Quantum Electronics (1)

F. Cornacchia, A. Toncelli, and M. Tonelli, “2 μm lasers with fluoride crystals: research and development,” Progress in Quantum Electronics 33, 61–109 (2009).
[Crossref]

Other (1)

W. J. Tropf, M. F. Thomas, and T. J. Harris, Handbook of Optics (McGraw-Hill, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Energy level scheme of Yb3+, Ho3+ in comparison to Er3+. UC: up-conversion, ESA: excited state absorption, NT: nonradiative transition, ET: energy transfer.
Fig. 2
Fig. 2 Absorption spectrum of Ho3+/Yb3+:PbF2 crystal in the range of 300–2300 nm.
Fig. 3
Fig. 3 Emission cross-section spectra of Ho3+ single doped and Ho3+/Yb3+ co-doped PbF2 crystals in the wavelength of 2700–3100 nm. The inset shows the fluorescence decay curve of Ho3+/Yb3+:PbF2 for the 5I6 mainfold.
Fig. 4
Fig. 4 (a)(b)Fluorescence decay curves of the Yb3+:2F5/2 energy level of Yb3+ single doped and Ho3+/Yb3+ codoped PbF2 crystals. (c)(d)Fluorescence decay curves of the 5I7 multiplet of the Ho3+ single doped and Ho3+/Yb3+ codoped PbF2 crystals. The inset of (a)(b)(c)(d) show the Ln of fluorescence intensity I versus time t.

Tables (1)

Tables Icon

Table 1 Judd-Ofelt parameters Ω2,4,6, branching ratio β, emission cross sections σ, lifetime of 5I6 level for Ho3+ ions (τmeas and τR are the measured and calculated radiative lifetime), and quantum efficiency η of different Ho3+ doped materials.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ em = β λ 5 I ( λ ) 8 π c n 2 τ R λ I ( λ ) d λ

Metrics