Abstract

We propose an algorithm based on fully computed holographic stereogram for calculating full-parallax computer-generated holograms (CGHs) with accurate depth cues. The proposed method integrates point source algorithm and holographic stereogram based algorithm to reconstruct the three-dimensional (3D) scenes. Precise accommodation cue and occlusion effect can be created, and computer graphics rendering techniques can be employed in the CGH generation to enhance the image fidelity. Optical experiments have been performed using a spatial light modulator (SLM) and a fabricated high-resolution hologram, the results show that our proposed algorithm can perform quality reconstructions of 3D scenes with arbitrary depth information.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Layered holographic stereogram based on inverse Fresnel diffraction

Hao Zhang, Yan Zhao, Liangcai Cao, and Guofan Jin
Appl. Opt. 55(3) A154-A159 (2016)

Computer-generated hologram with occlusion effect using layer-based processing

Hao Zhang, Liangcai Cao, and Guofan Jin
Appl. Opt. 56(13) F138-F143 (2017)

Three-dimensional computer-generated hologram with Fourier domain segmentation

Hao Zhang, Liangcai Cao, and Guofan Jin
Opt. Express 27(8) 11689-11697 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Benton and V. M. Bove, Holographic Imaging, Wiley, Hoboken (2007).
  2. M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 32–43 (1992).
    [Crossref]
  3. F. Yaras, H. Kang, and L. Onural, “State of the art in holographic display: A survey,” J. Display Technol. 6(10), 443–454 (2010).
    [Crossref]
  4. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  5. J.-N. Gillet and Y. Sheng, “Multiplexed computer-generated holograms with polygonal-aperture layouts optimized by genetic algorithm,” Appl. Opt. 42(20), 4156–4165 (2003).
    [Crossref] [PubMed]
  6. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44(22), 4607–4614 (2005).
    [Crossref] [PubMed]
  7. H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47(19), D117–D127 (2008).
    [Crossref] [PubMed]
  8. Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
    [Crossref] [PubMed]
  9. T. Fujii and H. Yoshikawa, “Improvement of hidden-surface removal for computer-generated holograms from CG,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2007), paper DBW3.
  10. J. Jia, J. Liu, G. Jin, and Y. Wang, “Fast and effective occlusion culling for 3D holographic displays by inverse orthographic projection with low angular sampling,” Appl. Opt. 53(27), 6287–6293 (2014).
    [Crossref] [PubMed]
  11. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
    [Crossref] [PubMed]
  12. K. Matsushima, M. Nakamura, and S. Nakahara, “Silhouette method for hidden surface removal in computer holography and its acceleration using the switch-back technique,” Opt. Express 22(20), 24450–24465 (2014).
    [Crossref] [PubMed]
  13. H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
    [Crossref]
  14. T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray-tracing method,” Appl. Opt. 52(1), A201–A209 (2013).
    [Crossref] [PubMed]
  15. T. Ichikawa, T. Yoneyama, and Y. Sakamoto, “CGH calculation with the ray tracing method for the Fourier transform optical system,” Opt. Express 21(26), 32019–32031 (2013).
    [Crossref] [PubMed]
  16. J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 1012 (1968).
    [Crossref]
  17. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15(11), 2722–2729 (1976).
    [Crossref] [PubMed]
  18. P. S. Hilaire, “Modulation transfer function and optimum sampling of holographic stereograms,” Appl. Opt. 33(5), 768–774 (1994).
    [Crossref] [PubMed]
  19. B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41(23), 4856–4865 (2002).
    [PubMed]
  20. K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
    [Crossref] [PubMed]
  21. J. S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28(16), 1421–1423 (2003).
    [Crossref] [PubMed]
  22. M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
    [Crossref]
  23. H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
    [Crossref] [PubMed]
  24. Q. Y. J. Smithwick, J. Barabas, D. Smalley, and V. M. Bove, Jr., “Interactive Holographic Stereograms with Accommodation Cues,” Proc. SPIE Practical Holography XXIV: Materials and Applications, 7619, 761903 (2010).
  25. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
    [Crossref] [PubMed]
  26. K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
    [Crossref] [PubMed]
  27. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  28. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41(29), 6187–6192 (2002).
    [Crossref] [PubMed]
  29. Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e135 (2014).
    [Crossref]

2014 (4)

2013 (3)

2011 (2)

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

2008 (2)

2005 (1)

2003 (2)

2002 (2)

1994 (1)

1993 (2)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

1992 (1)

M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 32–43 (1992).
[Crossref]

1976 (1)

1968 (1)

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 1012 (1968).
[Crossref]

Bertaux, N.

Chen, J.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Chu, D.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Collings, N.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Crossland, B.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Frauel, Y.

George, N.

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 1012 (1968).
[Crossref]

Gillet, J.-N.

Hahn, J.

Hilaire, P. S.

Honda, T.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Hong, J.

Hong, K.

Hoshino, H.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Ichihashi, Y.

Ichikawa, T.

Ito, T.

Jang, C.

Jang, J. S.

Javidi, B.

Jia, J.

Jin, F.

Jin, G.

Kang, H.

Kim, H.

Lee, B.

Liu, J.

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 32–43 (1992).
[Crossref]

Masuda, N.

Matoba, O.

Matsushima, K.

McCrickerd, J. T.

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 1012 (1968).
[Crossref]

Min, S.-W.

Nakahara, S.

Nakamura, M.

Nakayama, H.

Naughton, T. J.

Ohyama, N.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Onural, L.

Sakamoto, Y.

Sheng, Y.

Shimobaba, T.

Shiraki, A.

Sugie, T.

Wakunami, K.

Wang, Y.

Xie, J.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Yamaguchi, K.

Yamaguchi, M.

Yamaguchi, T.

Yamashita, H.

Yaras, F.

Yatagai, T.

Yeom, J.

Yoneyama, T.

Yoshikawa, H.

You, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

Zhang, H.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Zhang, Z.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

Appl. Opt. (11)

J.-N. Gillet and Y. Sheng, “Multiplexed computer-generated holograms with polygonal-aperture layouts optimized by genetic algorithm,” Appl. Opt. 42(20), 4156–4165 (2003).
[Crossref] [PubMed]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44(22), 4607–4614 (2005).
[Crossref] [PubMed]

H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47(19), D117–D127 (2008).
[Crossref] [PubMed]

J. Jia, J. Liu, G. Jin, and Y. Wang, “Fast and effective occlusion culling for 3D holographic displays by inverse orthographic projection with low angular sampling,” Appl. Opt. 53(27), 6287–6293 (2014).
[Crossref] [PubMed]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
[Crossref] [PubMed]

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray-tracing method,” Appl. Opt. 52(1), A201–A209 (2013).
[Crossref] [PubMed]

T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15(11), 2722–2729 (1976).
[Crossref] [PubMed]

P. S. Hilaire, “Modulation transfer function and optimum sampling of holographic stereograms,” Appl. Opt. 33(5), 768–774 (1994).
[Crossref] [PubMed]

B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41(23), 4856–4865 (2002).
[PubMed]

H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
[Crossref] [PubMed]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41(29), 6187–6192 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 1012 (1968).
[Crossref]

J. Display Technol. (1)

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Light Sci. Appl. (1)

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

Opt. Eng. (1)

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (2)

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 32–43 (1992).
[Crossref]

Other (4)

S. A. Benton and V. M. Bove, Holographic Imaging, Wiley, Hoboken (2007).

T. Fujii and H. Yoshikawa, “Improvement of hidden-surface removal for computer-generated holograms from CG,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2007), paper DBW3.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Q. Y. J. Smithwick, J. Barabas, D. Smalley, and V. M. Bove, Jr., “Interactive Holographic Stereograms with Accommodation Cues,” Proc. SPIE Practical Holography XXIV: Materials and Applications, 7619, 761903 (2010).

Supplementary Material (1)

» Media 1: MOV (3254 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Phase profiles of a point source on (a) point source hologram and (b) holographic stereogram.
Fig. 2
Fig. 2 Numerical reconstruction results on the object plane of (a) point source hologram and (b) holographic stereogram.
Fig. 3
Fig. 3 Spectrums of (a) point source hologram and (b) holographic stereogram.
Fig. 4
Fig. 4 Spatial and angular samplings of holographic stereogram based CGH: (a) overall view, (b) partial view.
Fig. 5
Fig. 5 (a) Diagram and (b) flow chart for calculating fully computed holographic stereogram.
Fig. 6
Fig. 6 Geometric transformation for calculating fully computed holographic stereogram: (a) overall view, (b) top view.
Fig. 7
Fig. 7 Reconstructed images by numerical simulations. (a) and (d) reconstructions of Stereogram 1; (b) and (e) reconstructions of Stereogram 2; (c) and (f) reconstructions of fully computed holographic stereogram.
Fig. 8
Fig. 8 Optical reconstruction results when focusing on the (a) bunny and (b) the wall.
Fig. 9
Fig. 9 Optical reconstruction results when focusing on different depths of a helix.
Fig. 10
Fig. 10 Fabricated CGH without illumination.
Fig. 11
Fig. 11 Optical reconstruction results when focusing on the (a) bunny and (b) the wall.
Fig. 12
Fig. 12 Optical reconstruction results when viewing from (a) left, (b) center, and (c) right.
Fig. 13
Fig. 13 Single-frame excerpts from video recordings of the generated 3D scene (Media 1).

Tables (3)

Tables Icon

Table 1 Parameters for calculating the CGHs

Tables Icon

Table 2 Parameters for calculating high-resolution hologram

Tables Icon

Table 3 Calculation time

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

s=nd,
Δθ=arcsin( Δfλ )=arcsin( λ nd )=arcsin( λ s ),
sin θ max = f max λ= 1 2d λ,
z o = z p ,
x o = z o tan θ x ,
y o = z o tan θ y ,
h hogel ( x,y )= j=1 N A j r j exp[ i( k r j + ϕ j ) ] ,
r j = ( x x j ) 2 + ( y y j ) 2 + z j 2 .
I( x,y )=2Re[ h( x,y ) r * ( x,y ) ]+Δ,

Metrics