Abstract

α-BaTeMo2O9 is a novel biaxial crystal with wide-band transmittance spectrum. The refractive index dispersion curves and birefringence of the α-BaTeMo2O9 crystal were obtained in spectral range of 0.4~5 μm. The origin of the birefringence for the crystal has been calculated and interpreted on the basis of the crystal structure combined with theoretical studies. The polarized directions and formulations of refractive index of optical waves in biaxial α-BaTeMo2O9 were investigated by solving the refractive index ellipsoid equations. Furthermore, polarized prisms based on the α-BaTeMo2O9 crystal used in spectral ranges of 0.4~2.7 μm and 0.48~4.5 μm were designed and characterized. The extinction ratios of both prisms were determined to be larger than 10000:1, which would satisfy the practical requirements. The impacts on extinction ratio for biaxial and uniaxial crystals were also discussed. To our knowledge, it is the first report about biaxial crystals for the polarized prisms, and the results show that the α-BaTeMo2O9 crystal is a promising material for polarized optical components, especially in the range of 3~5 μm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of polarizer made of the deep-UV birefringent crystal Ba2Mg(B3O6)2

Jing Zhao, Yingying Ma, and Rukang Li
Appl. Opt. 54(33) 9949-9953 (2015)

Optical Activity in Nonenantiomorphous Biaxial Crystals: (C9H12O4)2 and NaNO2*

Mao-Jin Chern and Richard A. Phillips
J. Opt. Soc. Am. 60(9) 1230-1232 (1970)

References

  • View by:
  • |
  • |
  • |

  1. V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh., “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett. 24(15), 1044–1046 (1999).
    [Crossref] [PubMed]
  2. G. Le Tolguenec, F. Devaux, and E. Lantz, “Two-dimensional time-resolved direct imaging through thick biological Tissues: a new step toward noninvasive medical imaging,” Opt. Lett. 24(15), 1047–1049 (1999).
    [Crossref] [PubMed]
  3. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31(30), 6535–6546 (1992).
    [Crossref] [PubMed]
  4. Z. L. Gao, X. Yin, W. G. Zhang, S. P. Wang, M. H. Jiang, and X. T. Tao, “Electro-optic properties of BaTeMo2O9 single crystal,” Appl. Phys. Lett. 95(15), 151107 (2009).
    [Crossref]
  5. P. Kumar, A. I. Maydykovskiy, M. Levy, N. V. Dubrovin, and O. A. Aktsipetrov, “Second harmonic generation study of internally-generated strain in bismuth-substituted iron garnet films,” Opt. Express 18(2), 1076–1084 (2010).
    [Crossref] [PubMed]
  6. C. M. Zhang, X. Bai, C. Y. Jing, and H. Y. Wu, “Transmission ratio of the Glan-Taylor prism with deviated optical axes in the static polarization interference imaging spectrometer,” Optik (Stuttg.) 122(19), 1770–1775 (2011).
    [Crossref]
  7. R. Appel, C. D. Dyer, and J. N. Lockwood, “Design of a broadband UV-visible alpha-barium borate polarizer,” Appl. Opt. 41(13), 2470–2480 (2002).
    [Crossref] [PubMed]
  8. F. Q. Wu, G. H. Li, J. Y. Huang, and D. H. Yu, “Calcite/barium fluoride ultraviolet polarizing prism,” Appl. Opt. 34(19), 3668–3670 (1995).
    [Crossref] [PubMed]
  9. C. H. Huang, G. Zhang, M. Wei, L. X. Huang, X. J. Huang, and H. Y. Shen, “Investigation of several parameters in the design of YVO4 polarizing prism,” Opt. Commun. 224(1-3), 1–4 (2003).
    [Crossref]
  10. I. C. Olson, R. A. Metzler, N. Tamura, M. Kunz, C. E. Killian, and P. U. Gilbert, “Crystal lattice tilting in prismatic calcite,” J. Struct. Biol. 183(2), 180–190 (2013).
    [Crossref] [PubMed]
  11. J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Polymorphism of BaTeMo2O9: A New Polar Polymorph and the Phase Transformation,” Chem. Mater. 23(16), 3752–3761 (2011).
    [Crossref]
  12. J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: a-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
    [Crossref]
  13. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-Principles Simulation: Ideas, Illustrations and the Castep Code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
    [Crossref]
  14. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, “First Principles Methods Using Castep,” Z. Kristallogr. 220(5/6/2005), 567–570 (2005).
    [Crossref]
  15. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
    [Crossref] [PubMed]
  16. D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-Conserving Pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
    [Crossref]
  17. A. Kato and H. Rikukawa, “First-Principles Studies of Large Birefringences in Alkaline-Earth Orthoborate Crystals,” Phys. Rev. B 72(4), 041101 (2005).
    [Crossref]
  18. R. W. Godby, M. Schlüter, and L. J. Sham, “Self-Energy Operators and Exchange-Correlation Potentials in Semiconductors,” Phys. Rev. B Condens. Matter 37(17), 10159–10175 (1988).
    [Crossref] [PubMed]
  19. C. S. Wang and B. M. Klein, “First-Principles Electronic Structure of Si, Ge, Gap, GaAs, ZnS, and ZnSe. Ii. Optical Properties,” Phys. Rev. B 24(6), 3417–3429 (1981).
    [Crossref]
  20. X. Yin, “Evaluating refractive indices of optical waves in biaxial crystals from refractive indices ellipsoid equation,” Chin. J. Lasers 17(11), 692–695 (1988).

2013 (1)

I. C. Olson, R. A. Metzler, N. Tamura, M. Kunz, C. E. Killian, and P. U. Gilbert, “Crystal lattice tilting in prismatic calcite,” J. Struct. Biol. 183(2), 180–190 (2013).
[Crossref] [PubMed]

2011 (3)

J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Polymorphism of BaTeMo2O9: A New Polar Polymorph and the Phase Transformation,” Chem. Mater. 23(16), 3752–3761 (2011).
[Crossref]

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: a-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

C. M. Zhang, X. Bai, C. Y. Jing, and H. Y. Wu, “Transmission ratio of the Glan-Taylor prism with deviated optical axes in the static polarization interference imaging spectrometer,” Optik (Stuttg.) 122(19), 1770–1775 (2011).
[Crossref]

2010 (1)

2009 (1)

Z. L. Gao, X. Yin, W. G. Zhang, S. P. Wang, M. H. Jiang, and X. T. Tao, “Electro-optic properties of BaTeMo2O9 single crystal,” Appl. Phys. Lett. 95(15), 151107 (2009).
[Crossref]

2008 (1)

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref] [PubMed]

2005 (2)

A. Kato and H. Rikukawa, “First-Principles Studies of Large Birefringences in Alkaline-Earth Orthoborate Crystals,” Phys. Rev. B 72(4), 041101 (2005).
[Crossref]

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, “First Principles Methods Using Castep,” Z. Kristallogr. 220(5/6/2005), 567–570 (2005).
[Crossref]

2003 (1)

C. H. Huang, G. Zhang, M. Wei, L. X. Huang, X. J. Huang, and H. Y. Shen, “Investigation of several parameters in the design of YVO4 polarizing prism,” Opt. Commun. 224(1-3), 1–4 (2003).
[Crossref]

2002 (2)

R. Appel, C. D. Dyer, and J. N. Lockwood, “Design of a broadband UV-visible alpha-barium borate polarizer,” Appl. Opt. 41(13), 2470–2480 (2002).
[Crossref] [PubMed]

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-Principles Simulation: Ideas, Illustrations and the Castep Code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

1999 (2)

1995 (1)

1992 (1)

1988 (2)

R. W. Godby, M. Schlüter, and L. J. Sham, “Self-Energy Operators and Exchange-Correlation Potentials in Semiconductors,” Phys. Rev. B Condens. Matter 37(17), 10159–10175 (1988).
[Crossref] [PubMed]

X. Yin, “Evaluating refractive indices of optical waves in biaxial crystals from refractive indices ellipsoid equation,” Chin. J. Lasers 17(11), 692–695 (1988).

1981 (1)

C. S. Wang and B. M. Klein, “First-Principles Electronic Structure of Si, Ge, Gap, GaAs, ZnS, and ZnSe. Ii. Optical Properties,” Phys. Rev. B 24(6), 3417–3429 (1981).
[Crossref]

1979 (1)

D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-Conserving Pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
[Crossref]

Aktsipetrov, O. A.

Appel, R.

Bai, X.

C. M. Zhang, X. Bai, C. Y. Jing, and H. Y. Wu, “Transmission ratio of the Glan-Taylor prism with deviated optical axes in the static polarization interference imaging spectrometer,” Optik (Stuttg.) 122(19), 1770–1775 (2011).
[Crossref]

Bonner, R. F.

Burke, K.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref] [PubMed]

Chiang, C.

D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-Conserving Pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
[Crossref]

Clark, S. J.

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, “First Principles Methods Using Castep,” Z. Kristallogr. 220(5/6/2005), 567–570 (2005).
[Crossref]

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-Principles Simulation: Ideas, Illustrations and the Castep Code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Constantin, L. A.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref] [PubMed]

Csonka, G. I.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref] [PubMed]

Devaux, F.

Dubrovin, N. V.

Dyer, C. D.

Everett, M. J.

Gandjbakhche, A. H.

Gao, Z. L.

Z. L. Gao, X. Yin, W. G. Zhang, S. P. Wang, M. H. Jiang, and X. T. Tao, “Electro-optic properties of BaTeMo2O9 single crystal,” Appl. Phys. Lett. 95(15), 151107 (2009).
[Crossref]

Gilbert, P. U.

I. C. Olson, R. A. Metzler, N. Tamura, M. Kunz, C. E. Killian, and P. U. Gilbert, “Crystal lattice tilting in prismatic calcite,” J. Struct. Biol. 183(2), 180–190 (2013).
[Crossref] [PubMed]

Godby, R. W.

R. W. Godby, M. Schlüter, and L. J. Sham, “Self-Energy Operators and Exchange-Correlation Potentials in Semiconductors,” Phys. Rev. B Condens. Matter 37(17), 10159–10175 (1988).
[Crossref] [PubMed]

Hamann, D. R.

D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-Conserving Pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
[Crossref]

Hasnip, P. J.

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, “First Principles Methods Using Castep,” Z. Kristallogr. 220(5/6/2005), 567–570 (2005).
[Crossref]

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-Principles Simulation: Ideas, Illustrations and the Castep Code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Huang, C. H.

C. H. Huang, G. Zhang, M. Wei, L. X. Huang, X. J. Huang, and H. Y. Shen, “Investigation of several parameters in the design of YVO4 polarizing prism,” Opt. Commun. 224(1-3), 1–4 (2003).
[Crossref]

Huang, J. Y.

Huang, L. X.

C. H. Huang, G. Zhang, M. Wei, L. X. Huang, X. J. Huang, and H. Y. Shen, “Investigation of several parameters in the design of YVO4 polarizing prism,” Opt. Commun. 224(1-3), 1–4 (2003).
[Crossref]

Huang, X. J.

C. H. Huang, G. Zhang, M. Wei, L. X. Huang, X. J. Huang, and H. Y. Shen, “Investigation of several parameters in the design of YVO4 polarizing prism,” Opt. Commun. 224(1-3), 1–4 (2003).
[Crossref]

Jiang, M. H.

Z. L. Gao, X. Yin, W. G. Zhang, S. P. Wang, M. H. Jiang, and X. T. Tao, “Electro-optic properties of BaTeMo2O9 single crystal,” Appl. Phys. Lett. 95(15), 151107 (2009).
[Crossref]

Jing, C. Y.

C. M. Zhang, X. Bai, C. Y. Jing, and H. Y. Wu, “Transmission ratio of the Glan-Taylor prism with deviated optical axes in the static polarization interference imaging spectrometer,” Optik (Stuttg.) 122(19), 1770–1775 (2011).
[Crossref]

Kato, A.

A. Kato and H. Rikukawa, “First-Principles Studies of Large Birefringences in Alkaline-Earth Orthoborate Crystals,” Phys. Rev. B 72(4), 041101 (2005).
[Crossref]

Killian, C. E.

I. C. Olson, R. A. Metzler, N. Tamura, M. Kunz, C. E. Killian, and P. U. Gilbert, “Crystal lattice tilting in prismatic calcite,” J. Struct. Biol. 183(2), 180–190 (2013).
[Crossref] [PubMed]

Klein, B. M.

C. S. Wang and B. M. Klein, “First-Principles Electronic Structure of Si, Ge, Gap, GaAs, ZnS, and ZnSe. Ii. Optical Properties,” Phys. Rev. B 24(6), 3417–3429 (1981).
[Crossref]

Kumar, P.

Kunz, M.

I. C. Olson, R. A. Metzler, N. Tamura, M. Kunz, C. E. Killian, and P. U. Gilbert, “Crystal lattice tilting in prismatic calcite,” J. Struct. Biol. 183(2), 180–190 (2013).
[Crossref] [PubMed]

Lantz, E.

Le Tolguenec, G.

Levy, M.

Li, G. H.

Lindan, P. J. D.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-Principles Simulation: Ideas, Illustrations and the Castep Code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Lockwood, J. N.

Maitland, D. J.

Maydykovskiy, A. I.

Metzler, R. A.

I. C. Olson, R. A. Metzler, N. Tamura, M. Kunz, C. E. Killian, and P. U. Gilbert, “Crystal lattice tilting in prismatic calcite,” J. Struct. Biol. 183(2), 180–190 (2013).
[Crossref] [PubMed]

Olson, I. C.

I. C. Olson, R. A. Metzler, N. Tamura, M. Kunz, C. E. Killian, and P. U. Gilbert, “Crystal lattice tilting in prismatic calcite,” J. Struct. Biol. 183(2), 180–190 (2013).
[Crossref] [PubMed]

Payne, M. C.

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, “First Principles Methods Using Castep,” Z. Kristallogr. 220(5/6/2005), 567–570 (2005).
[Crossref]

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-Principles Simulation: Ideas, Illustrations and the Castep Code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Perdew, J. P.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref] [PubMed]

Pickard, C. J.

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, “First Principles Methods Using Castep,” Z. Kristallogr. 220(5/6/2005), 567–570 (2005).
[Crossref]

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-Principles Simulation: Ideas, Illustrations and the Castep Code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Probert, M. J.

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, “First Principles Methods Using Castep,” Z. Kristallogr. 220(5/6/2005), 567–570 (2005).
[Crossref]

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-Principles Simulation: Ideas, Illustrations and the Castep Code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Refson, K.

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, “First Principles Methods Using Castep,” Z. Kristallogr. 220(5/6/2005), 567–570 (2005).
[Crossref]

Rikukawa, H.

A. Kato and H. Rikukawa, “First-Principles Studies of Large Birefringences in Alkaline-Earth Orthoborate Crystals,” Phys. Rev. B 72(4), 041101 (2005).
[Crossref]

Ruzsinszky, A.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref] [PubMed]

Sankaran, V.

Schlüter, M.

R. W. Godby, M. Schlüter, and L. J. Sham, “Self-Energy Operators and Exchange-Correlation Potentials in Semiconductors,” Phys. Rev. B Condens. Matter 37(17), 10159–10175 (1988).
[Crossref] [PubMed]

D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-Conserving Pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
[Crossref]

Schmitt, J. M.

Scuseria, G. E.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref] [PubMed]

Segall, M. D.

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, “First Principles Methods Using Castep,” Z. Kristallogr. 220(5/6/2005), 567–570 (2005).
[Crossref]

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-Principles Simulation: Ideas, Illustrations and the Castep Code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

Sham, L. J.

R. W. Godby, M. Schlüter, and L. J. Sham, “Self-Energy Operators and Exchange-Correlation Potentials in Semiconductors,” Phys. Rev. B Condens. Matter 37(17), 10159–10175 (1988).
[Crossref] [PubMed]

Shen, H. Y.

C. H. Huang, G. Zhang, M. Wei, L. X. Huang, X. J. Huang, and H. Y. Shen, “Investigation of several parameters in the design of YVO4 polarizing prism,” Opt. Commun. 224(1-3), 1–4 (2003).
[Crossref]

Sun, Y. X.

J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Polymorphism of BaTeMo2O9: A New Polar Polymorph and the Phase Transformation,” Chem. Mater. 23(16), 3752–3761 (2011).
[Crossref]

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: a-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

Tamura, N.

I. C. Olson, R. A. Metzler, N. Tamura, M. Kunz, C. E. Killian, and P. U. Gilbert, “Crystal lattice tilting in prismatic calcite,” J. Struct. Biol. 183(2), 180–190 (2013).
[Crossref] [PubMed]

Tao, X. T.

J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Polymorphism of BaTeMo2O9: A New Polar Polymorph and the Phase Transformation,” Chem. Mater. 23(16), 3752–3761 (2011).
[Crossref]

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: a-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

Z. L. Gao, X. Yin, W. G. Zhang, S. P. Wang, M. H. Jiang, and X. T. Tao, “Electro-optic properties of BaTeMo2O9 single crystal,” Appl. Phys. Lett. 95(15), 151107 (2009).
[Crossref]

Vydrov, O. A.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref] [PubMed]

Walsh, J. T.

Wang, C. S.

C. S. Wang and B. M. Klein, “First-Principles Electronic Structure of Si, Ge, Gap, GaAs, ZnS, and ZnSe. Ii. Optical Properties,” Phys. Rev. B 24(6), 3417–3429 (1981).
[Crossref]

Wang, S. P.

Z. L. Gao, X. Yin, W. G. Zhang, S. P. Wang, M. H. Jiang, and X. T. Tao, “Electro-optic properties of BaTeMo2O9 single crystal,” Appl. Phys. Lett. 95(15), 151107 (2009).
[Crossref]

Wei, M.

C. H. Huang, G. Zhang, M. Wei, L. X. Huang, X. J. Huang, and H. Y. Shen, “Investigation of several parameters in the design of YVO4 polarizing prism,” Opt. Commun. 224(1-3), 1–4 (2003).
[Crossref]

Wu, F. Q.

Wu, H. Y.

C. M. Zhang, X. Bai, C. Y. Jing, and H. Y. Wu, “Transmission ratio of the Glan-Taylor prism with deviated optical axes in the static polarization interference imaging spectrometer,” Optik (Stuttg.) 122(19), 1770–1775 (2011).
[Crossref]

Yin, X.

Z. L. Gao, X. Yin, W. G. Zhang, S. P. Wang, M. H. Jiang, and X. T. Tao, “Electro-optic properties of BaTeMo2O9 single crystal,” Appl. Phys. Lett. 95(15), 151107 (2009).
[Crossref]

X. Yin, “Evaluating refractive indices of optical waves in biaxial crystals from refractive indices ellipsoid equation,” Chin. J. Lasers 17(11), 692–695 (1988).

Yu, D. H.

Zhang, C. M.

C. M. Zhang, X. Bai, C. Y. Jing, and H. Y. Wu, “Transmission ratio of the Glan-Taylor prism with deviated optical axes in the static polarization interference imaging spectrometer,” Optik (Stuttg.) 122(19), 1770–1775 (2011).
[Crossref]

Zhang, C. Q.

J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Polymorphism of BaTeMo2O9: A New Polar Polymorph and the Phase Transformation,” Chem. Mater. 23(16), 3752–3761 (2011).
[Crossref]

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: a-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

Zhang, G.

C. H. Huang, G. Zhang, M. Wei, L. X. Huang, X. J. Huang, and H. Y. Shen, “Investigation of several parameters in the design of YVO4 polarizing prism,” Opt. Commun. 224(1-3), 1–4 (2003).
[Crossref]

Zhang, J. J.

J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Polymorphism of BaTeMo2O9: A New Polar Polymorph and the Phase Transformation,” Chem. Mater. 23(16), 3752–3761 (2011).
[Crossref]

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: a-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

Zhang, W. G.

J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Polymorphism of BaTeMo2O9: A New Polar Polymorph and the Phase Transformation,” Chem. Mater. 23(16), 3752–3761 (2011).
[Crossref]

Z. L. Gao, X. Yin, W. G. Zhang, S. P. Wang, M. H. Jiang, and X. T. Tao, “Electro-optic properties of BaTeMo2O9 single crystal,” Appl. Phys. Lett. 95(15), 151107 (2009).
[Crossref]

Zhang, Z. H.

J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Polymorphism of BaTeMo2O9: A New Polar Polymorph and the Phase Transformation,” Chem. Mater. 23(16), 3752–3761 (2011).
[Crossref]

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: a-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

Zheng, Q. X.

J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Polymorphism of BaTeMo2O9: A New Polar Polymorph and the Phase Transformation,” Chem. Mater. 23(16), 3752–3761 (2011).
[Crossref]

Zhou, X. L.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Z. L. Gao, X. Yin, W. G. Zhang, S. P. Wang, M. H. Jiang, and X. T. Tao, “Electro-optic properties of BaTeMo2O9 single crystal,” Appl. Phys. Lett. 95(15), 151107 (2009).
[Crossref]

Chem. Mater. (1)

J. J. Zhang, Z. H. Zhang, W. G. Zhang, Q. X. Zheng, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Polymorphism of BaTeMo2O9: A New Polar Polymorph and the Phase Transformation,” Chem. Mater. 23(16), 3752–3761 (2011).
[Crossref]

Chin. J. Lasers (1)

X. Yin, “Evaluating refractive indices of optical waves in biaxial crystals from refractive indices ellipsoid equation,” Chin. J. Lasers 17(11), 692–695 (1988).

CrystEngComm (1)

J. J. Zhang, Z. H. Zhang, Y. X. Sun, C. Q. Zhang, and X. T. Tao, “Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: a-BaTeMo2O9,” CrystEngComm 13(23), 6985–6990 (2011).
[Crossref]

J. Phys. Condens. Matter (1)

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-Principles Simulation: Ideas, Illustrations and the Castep Code,” J. Phys. Condens. Matter 14(11), 2717–2744 (2002).
[Crossref]

J. Struct. Biol. (1)

I. C. Olson, R. A. Metzler, N. Tamura, M. Kunz, C. E. Killian, and P. U. Gilbert, “Crystal lattice tilting in prismatic calcite,” J. Struct. Biol. 183(2), 180–190 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

C. H. Huang, G. Zhang, M. Wei, L. X. Huang, X. J. Huang, and H. Y. Shen, “Investigation of several parameters in the design of YVO4 polarizing prism,” Opt. Commun. 224(1-3), 1–4 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optik (Stuttg.) (1)

C. M. Zhang, X. Bai, C. Y. Jing, and H. Y. Wu, “Transmission ratio of the Glan-Taylor prism with deviated optical axes in the static polarization interference imaging spectrometer,” Optik (Stuttg.) 122(19), 1770–1775 (2011).
[Crossref]

Phys. Rev. B (2)

A. Kato and H. Rikukawa, “First-Principles Studies of Large Birefringences in Alkaline-Earth Orthoborate Crystals,” Phys. Rev. B 72(4), 041101 (2005).
[Crossref]

C. S. Wang and B. M. Klein, “First-Principles Electronic Structure of Si, Ge, Gap, GaAs, ZnS, and ZnSe. Ii. Optical Properties,” Phys. Rev. B 24(6), 3417–3429 (1981).
[Crossref]

Phys. Rev. B Condens. Matter (1)

R. W. Godby, M. Schlüter, and L. J. Sham, “Self-Energy Operators and Exchange-Correlation Potentials in Semiconductors,” Phys. Rev. B Condens. Matter 37(17), 10159–10175 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref] [PubMed]

D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-Conserving Pseudopotentials,” Phys. Rev. Lett. 43(20), 1494–1497 (1979).
[Crossref]

Z. Kristallogr. (1)

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, “First Principles Methods Using Castep,” Z. Kristallogr. 220(5/6/2005), 567–570 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The calculated and experimental wavelength-dependent refractive indices n(λ) of α-BaTeMo2O9.
Fig. 2
Fig. 2 Electron band structures of α-BaTeMo2O9 (a) in the −40.0 - 6.0 eV range and (b) in the region around the band gap energy.
Fig. 3
Fig. 3 The partial density of states (PDOS) per atom of α-BaTeMo2O9.
Fig. 4
Fig. 4 Calculated HOMO (a) and LUMO (b) for α-BaTeMo2O9.
Fig. 5
Fig. 5 Electronic charge density distribution between (a) Ba-O, (b) Mo-O and (c) Te-O in α-BaTeMo2O9.
Fig. 6
Fig. 6 The incident light in different coordinate system.
Fig. 7
Fig. 7 Illustration of light propagation in α-BaTeMo2O9 prism.
Fig. 8
Fig. 8 The schematic of the extinction ratio determination.
Fig. 9
Fig. 9 The polarization variations of incident light in the uniaxial prisms.
Fig. 10
Fig. 10 The birefringence of the crystals in their transmission ranges.

Tables (2)

Tables Icon

Table 1 Refractive index of polarized light in α-BaTeMo2O9 crystal and total internal reflection angles total reflection angles (α)

Tables Icon

Table 2 Properties of widely used crystals for prism

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

n x 2 =3.887827+0.068626/( λ 2 0.051471)0.008588 λ 2
n y 2 =4.005194+0.072222/( λ 2 0.050957)0.009158 λ 2
n z 2 =4.711163+0.119856/( λ 2 0.061800)0.015226 λ 2
n(ω)= [ ε 1 2 (ω)+ ε 2 2 (ω) + ε 1 (ω) 2 ] 1/2
ε 2 (ω)= 2 e 2 π V ε 0 k,v,c | ψ k c | u r | ψ k c | 2 δ( E k c E k v ω)
X 2 n x 2 + Y 2 n y 2 + Z 2 n z 2 =1
( X Y Z )=( cosϕ sinϕ 0 sinϕ cosϕ 0 0 0 1 )( X ' Y ' Z ' )
( X ' Y ' Z ' )=( cosθ 0 sinθ 0 1 0 sinθ 0 cosθ )( X " Y " Z " )
X "2 [ ( cos 2 ϕ n x 2 + sin 2 ϕ n y 2 ) cos 2 θ+ sin 2 θ n z 2 ]+ Y "2 ( sin 2 ϕ n x 2 + cos 2 ϕ n y 2 ) + Z "2 [ ( cos 2 ϕ n x 2 + sin 2 ϕ n y 2 ) sin 2 θ+ cos 2 θ n z 2 ]+ X " Y " ( 1 n y 2 + 1 n x 2 )sin(2ϕ)cosθ + Y " Z " ( 1 n y 2 1 n x 2 )sin(2ϕ)sinθ+ X " Z " [ ( cos 2 ϕ n x 2 + sin 2 ϕ n y 2 ) 1 n z 2 ]=1
X "2 [ ( cos 2 ϕ n x 2 + sin 2 ϕ n y 2 ) cos 2 θ+ sin 2 θ n z 2 ]+ Y "2 ( sin 2 ϕ n x 2 + cos 2 ϕ n y 2 ) + X " Y " ( 1 n y 2 + 1 n x 2 )sin(2ϕ)cosθ=1 | θ=90°,ϕ=90° X "2 n z 2 + Y "2 n x 2 =1
α= sin 1 n 2 n 1
R= cosψ sinψ

Metrics