Abstract

Thin-film hydrogenated amorphous silicon (a-Si:H) solar cells that are free-standing over a 2x2 mm area have been fabricated with thicknesses of 150 nm, 100 nm, and 60 nm. Silver nanoparticles (NPs) created on the front and/or back surfaces of the solar cells led to improvement in performance measures such as current density, overall efficiency, and external quantum efficiency. The effect of changing silver nanoparticle size and incident light angle was tested. Finite-Difference Time-Domain simulations are presented as a way to understand the experimental results as well as guide future research efforts.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors

Seweryn Morawiec, Manuel J. Mendes, Sergej A. Filonovich, Tiago Mateus, Salvatore Mirabella, Hugo Águas, Isabel Ferreira, Francesca Simone, Elvira Fortunato, Rodrigo Martins, Francesco Priolo, and Isodiana Crupi
Opt. Express 22(S4) A1059-A1070 (2014)

Spin-coated Ag nanoparticles for enhancing light absorption of thin film a-Si:H solar cells

Chan Il Yeo, Jang Hun Choi, Joon Beom Kim, Jeong Chul Lee, and Yong Tak Lee
Opt. Mater. Express 4(2) 346-351 (2014)

Periodic anti-ring back reflectors for hydrogenated amorphous silicon thin-film solar cells

Po-Yuan Chen, Hui-Hsin Hsiao, Chung-I Ho, Chi-Chih Ho, Wei-Li Lee, Hung-Chun Chang, Si-Chen Lee, Jian-Zhang Chen, and I-Chun Cheng
Opt. Express 22(S4) A1128-A1136 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
    [Crossref]
  2. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2011).
  3. H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
    [Crossref]
  4. K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
    [Crossref]
  5. H. Stuart and D. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
    [Crossref]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  8. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
    [Crossref]
  9. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [Crossref]
  10. M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101(22), 221110 (2012).
    [Crossref]
  11. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [Crossref]
  12. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [Crossref]
  13. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red- response in thin film a-si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
    [Crossref]
  14. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  15. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [Crossref]
  16. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for si solar cells using self-assembled, ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
    [Crossref]
  17. R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
    [Crossref]
  18. C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
    [Crossref]
  19. A. Basch, F. J. Beck, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100(24), 243903 (2012).
    [Crossref]
  20. H. R. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
    [Crossref] [PubMed]
  21. H. Stiebig, C. Haase, S. Jorke, P. Obermeyer, E. Moulin, and M. Schulte, “New light management concepts for thin-film silicon solar cells,” Mater. Res. Soc. Symp. Proc. 1101 1101–KK06–03 (2011).
  22. E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
    [Crossref]
  23. R. Santbergen, R. Liang, and M. Zeman, “A-si:H solar cells with embedded silver nanoparticles,” in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE (2010), pp. 748–753.
    [Crossref]
  24. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
    [Crossref] [PubMed]
  25. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
    [Crossref]
  26. Z. Ouyang, X. Zhao, S. Varlamov, Y. G. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
    [Crossref]
  27. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
    [Crossref]
  28. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
    [Crossref] [PubMed]
  29. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
    [Crossref] [PubMed]
  30. E. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys. 110(10), 104501 (2011).
    [Crossref]
  31. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [Crossref] [PubMed]
  32. Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
    [Crossref]
  33. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [Crossref]
  34. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
    [Crossref] [PubMed]
  35. J. P. Clarkson, J. Winans, and P. M. Fauchet, “On the scaling behavior of dipole and quadrupole modes in coupled plasmonic nanoparticle pairs,” Opt. Mater. Express 1(5), 970–979 (2011).
    [Crossref]
  36. A. Lin, S. M. Fu, Y. K. Chung, S. Y. Lai, and C. W. Tseng, “An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles,” Opt. Express 21(S1Suppl 1), A131–A145 (2013).
    [Crossref] [PubMed]
  37. http://www.lumerical.com
  38. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [Crossref]
  39. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
    [Crossref]
  40. C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, “Charge- and size-based separation of macromolecules using ultrathin silicon membranes,” Nature 445(7129), 749–753 (2007).
    [Crossref] [PubMed]
  41. O. Cubero, F. J. Haug, Y. Ziegler, L. Sansonnens, P. Couty, D. Fischer, and C. Ballif, “Reduction of the phosphorous cross-contamination in n–i–p solar cells prepared in a single-chamber pecvd reactor,” Sol. Energy Mater. Sol. Cells 95(2), 606–610 (2011).
    [Crossref]
  42. M. Ohring, The Materials Science of Thin Films (Academic Press, 1992).
  43. H. Zhao, B. Ozturk, E. A. Schiff, B. Yan, J. Yang, and S. Guha, “Plasmonic light-trapping and quantum efficiency measurements on nanocrystalline silicon solar cells and silicon-on-insulator devices,” MRS Proceedings 1245, 1245–A03–02 (2010).
    [Crossref]
  44. C. H. Fosli, A. Thøgersen, S. Karazhanov, and E. S. Marstein, “Plasmonics for light trapping in silicon solar cells,” Energy Procedia 10, 287–291 (2011).
    [Crossref]
  45. W. Rasband, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/ , “Imagej,” (1997–2014).
  46. A. A. Schmidt, J. Offermann, and R. Anton, “The role of neutral oxygen radicals in the oxidation of ag films,” Thin Solid Films 282, 105–107 (1996).
    [Crossref]
  47. Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21(23), 235201 (2010).
    [Crossref] [PubMed]
  48. Y. Yang, S. Pillai, H. Mehrvarz, and M. A. Green, “Plasmonic degradation and the importance of over-coating metal nanoparticles for a plasmonic solar cell,” Sol. Energy Mater. Sol. Cells 122, 208–216 (2014).
    [Crossref]
  49. F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant spp modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2Suppl 2), A146–A156 (2011).
    [Crossref] [PubMed]
  50. P. Spinelli and A. Polman, “Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded ag nanoparticles,” Opt. Express 20(S5Suppl 5), A641–A654 (2012).
    [Crossref] [PubMed]
  51. U. Rau and T. Kirchartz, “On the thermodynamics of light trapping in solar cells,” Nat. Mater. 13(2), 103–104 (2014).
    [Crossref] [PubMed]
  52. D. Wan, H.-L. Chen, T.-C. Tseng, C.-Y. Fang, Y.-S. Lai, and F.-Y. Yeh, “Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells,” Adv. Funct. Mater. 20(18), 3064–3075 (2010).
    [Crossref]
  53. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
    [Crossref] [PubMed]

2014 (2)

Y. Yang, S. Pillai, H. Mehrvarz, and M. A. Green, “Plasmonic degradation and the importance of over-coating metal nanoparticles for a plasmonic solar cell,” Sol. Energy Mater. Sol. Cells 122, 208–216 (2014).
[Crossref]

U. Rau and T. Kirchartz, “On the thermodynamics of light trapping in solar cells,” Nat. Mater. 13(2), 103–104 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (8)

P. Spinelli and A. Polman, “Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded ag nanoparticles,” Opt. Express 20(S5Suppl 5), A641–A654 (2012).
[Crossref] [PubMed]

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[Crossref]

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101(22), 221110 (2012).
[Crossref]

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[Crossref]

A. Basch, F. J. Beck, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100(24), 243903 (2012).
[Crossref]

H. R. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

2011 (11)

E. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys. 110(10), 104501 (2011).
[Crossref]

Z. Ouyang, X. Zhao, S. Varlamov, Y. G. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
[Crossref]

O. Cubero, F. J. Haug, Y. Ziegler, L. Sansonnens, P. Couty, D. Fischer, and C. Ballif, “Reduction of the phosphorous cross-contamination in n–i–p solar cells prepared in a single-chamber pecvd reactor,” Sol. Energy Mater. Sol. Cells 95(2), 606–610 (2011).
[Crossref]

C. H. Fosli, A. Thøgersen, S. Karazhanov, and E. S. Marstein, “Plasmonics for light trapping in silicon solar cells,” Energy Procedia 10, 287–291 (2011).
[Crossref]

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant spp modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2Suppl 2), A146–A156 (2011).
[Crossref] [PubMed]

J. P. Clarkson, J. Winans, and P. M. Fauchet, “On the scaling behavior of dipole and quadrupole modes in coupled plasmonic nanoparticle pairs,” Opt. Mater. Express 1(5), 970–979 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[Crossref] [PubMed]

2010 (7)

D. Wan, H.-L. Chen, T.-C. Tseng, C.-Y. Fang, Y.-S. Lai, and F.-Y. Yeh, “Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells,” Adv. Funct. Mater. 20(18), 3064–3075 (2010).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for si solar cells using self-assembled, ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[Crossref]

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21(23), 235201 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

2009 (4)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red- response in thin film a-si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref] [PubMed]

2008 (3)

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

2007 (3)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, “Charge- and size-based separation of macromolecules using ultrathin silicon membranes,” Nature 445(7129), 749–753 (2007).
[Crossref] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

2006 (2)

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

1996 (2)

H. Stuart and D. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

A. A. Schmidt, J. Offermann, and R. Anton, “The role of neutral oxygen radicals in the oxidation of ag films,” Thin Solid Films 282, 105–107 (1996).
[Crossref]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

1982 (1)

Akimov, Y. A.

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21(23), 235201 (2010).
[Crossref] [PubMed]

Anton, R.

A. A. Schmidt, J. Offermann, and R. Anton, “The role of neutral oxygen radicals in the oxidation of ag films,” Thin Solid Films 282, 105–107 (1996).
[Crossref]

Atwater, H. A.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red- response in thin film a-si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Ballif, C.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

O. Cubero, F. J. Haug, Y. Ziegler, L. Sansonnens, P. Couty, D. Fischer, and C. Ballif, “Reduction of the phosphorous cross-contamination in n–i–p solar cells prepared in a single-chamber pecvd reactor,” Sol. Energy Mater. Sol. Cells 95(2), 606–610 (2011).
[Crossref]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Basch, A.

A. Basch, F. J. Beck, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100(24), 243903 (2012).
[Crossref]

Beck, F. J.

A. Basch, F. J. Beck, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100(24), 243903 (2012).
[Crossref]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant spp modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2Suppl 2), A146–A156 (2011).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for si solar cells using self-assembled, ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Callahan, D. M.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Catchpole, K. R.

A. Basch, F. J. Beck, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100(24), 243903 (2012).
[Crossref]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[Crossref] [PubMed]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant spp modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2Suppl 2), A146–A156 (2011).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for si solar cells using self-assembled, ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[Crossref]

Chen, H.-L.

D. Wan, H.-L. Chen, T.-C. Tseng, C.-Y. Fang, Y.-S. Lai, and F.-Y. Yeh, “Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells,” Adv. Funct. Mater. 20(18), 3064–3075 (2010).
[Crossref]

Chung, Y. K.

Clarkson, J. P.

Couty, P.

O. Cubero, F. J. Haug, Y. Ziegler, L. Sansonnens, P. Couty, D. Fischer, and C. Ballif, “Reduction of the phosphorous cross-contamination in n–i–p solar cells prepared in a single-chamber pecvd reactor,” Sol. Energy Mater. Sol. Cells 95(2), 606–610 (2011).
[Crossref]

Cubero, O.

O. Cubero, F. J. Haug, Y. Ziegler, L. Sansonnens, P. Couty, D. Fischer, and C. Ballif, “Reduction of the phosphorous cross-contamination in n–i–p solar cells prepared in a single-chamber pecvd reactor,” Sol. Energy Mater. Sol. Cells 95(2), 606–610 (2011).
[Crossref]

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

El-Sayed, M. A.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref] [PubMed]

Eminian, C.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Fang, C.-Y.

D. Wan, H.-L. Chen, T.-C. Tseng, C.-Y. Fang, Y.-S. Lai, and F.-Y. Yeh, “Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells,” Adv. Funct. Mater. 20(18), 3064–3075 (2010).
[Crossref]

Fauchet, P. M.

J. P. Clarkson, J. Winans, and P. M. Fauchet, “On the scaling behavior of dipole and quadrupole modes in coupled plasmonic nanoparticle pairs,” Opt. Mater. Express 1(5), 970–979 (2011).
[Crossref]

C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, “Charge- and size-based separation of macromolecules using ultrathin silicon membranes,” Nature 445(7129), 749–753 (2007).
[Crossref] [PubMed]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red- response in thin film a-si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

Fischer, D.

O. Cubero, F. J. Haug, Y. Ziegler, L. Sansonnens, P. Couty, D. Fischer, and C. Ballif, “Reduction of the phosphorous cross-contamination in n–i–p solar cells prepared in a single-chamber pecvd reactor,” Sol. Energy Mater. Sol. Cells 95(2), 606–610 (2011).
[Crossref]

Fosli, C. H.

C. H. Fosli, A. Thøgersen, S. Karazhanov, and E. S. Marstein, “Plasmonics for light trapping in silicon solar cells,” Energy Procedia 10, 287–291 (2011).
[Crossref]

Franken, R. H.

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

Fu, S. M.

Gaborski, T. R.

C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, “Charge- and size-based separation of macromolecules using ultrathin silicon membranes,” Nature 445(7129), 749–753 (2007).
[Crossref] [PubMed]

Gordijn, A.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[Crossref]

Green, M. A.

Y. Yang, S. Pillai, H. Mehrvarz, and M. A. Green, “Plasmonic degradation and the importance of over-coating metal nanoparticles for a plasmonic solar cell,” Sol. Energy Mater. Sol. Cells 122, 208–216 (2014).
[Crossref]

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[Crossref]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Hall, D.

H. Stuart and D. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

Haug, F. J.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

O. Cubero, F. J. Haug, Y. Ziegler, L. Sansonnens, P. Couty, D. Fischer, and C. Ballif, “Reduction of the phosphorous cross-contamination in n–i–p solar cells prepared in a single-chamber pecvd reactor,” Sol. Energy Mater. Sol. Cells 95(2), 606–610 (2011).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Karazhanov, S.

C. H. Fosli, A. Thøgersen, S. Karazhanov, and E. S. Marstein, “Plasmonics for light trapping in silicon solar cells,” Energy Procedia 10, 287–291 (2011).
[Crossref]

Kirchartz, T.

U. Rau and T. Kirchartz, “On the thermodynamics of light trapping in solar cells,” Nat. Mater. 13(2), 103–104 (2014).
[Crossref] [PubMed]

Koh, W. S.

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21(23), 235201 (2010).
[Crossref] [PubMed]

Lai, S. Y.

Lai, Y.-S.

D. Wan, H.-L. Chen, T.-C. Tseng, C.-Y. Fang, Y.-S. Lai, and F.-Y. Yeh, “Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells,” Adv. Funct. Mater. 20(18), 3064–3075 (2010).
[Crossref]

Lenzmann, F.

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101(22), 221110 (2012).
[Crossref]

Li, H. B. T.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red- response in thin film a-si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

Liang, R.

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[Crossref]

R. Santbergen, R. Liang, and M. Zeman, “A-si:H solar cells with embedded silver nanoparticles,” in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE (2010), pp. 748–753.
[Crossref]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Lin, A.

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Mahmoud, M.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref] [PubMed]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Marstein, E. S.

C. H. Fosli, A. Thøgersen, S. Karazhanov, and E. S. Marstein, “Plasmonics for light trapping in silicon solar cells,” Energy Procedia 10, 287–291 (2011).
[Crossref]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

McGrath, J. L.

C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, “Charge- and size-based separation of macromolecules using ultrathin silicon membranes,” Nature 445(7129), 749–753 (2007).
[Crossref] [PubMed]

Mehrvarz, H.

Y. Yang, S. Pillai, H. Mehrvarz, and M. A. Green, “Plasmonic degradation and the importance of over-coating metal nanoparticles for a plasmonic solar cell,” Sol. Energy Mater. Sol. Cells 122, 208–216 (2014).
[Crossref]

Mokkapati, S.

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant spp modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2Suppl 2), A146–A156 (2011).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for si solar cells using self-assembled, ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

Moulin, E.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[Crossref]

Munday, J. N.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

Murali, R.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref] [PubMed]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Niquille, X.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

Offermann, J.

A. A. Schmidt, J. Offermann, and R. Anton, “The role of neutral oxygen radicals in the oxidation of ag films,” Thin Solid Films 282, 105–107 (1996).
[Crossref]

Ouyang, Z.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

Z. Ouyang, X. Zhao, S. Varlamov, Y. G. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Pillai, S.

Y. Yang, S. Pillai, H. Mehrvarz, and M. A. Green, “Plasmonic degradation and the importance of over-coating metal nanoparticles for a plasmonic solar cell,” Sol. Energy Mater. Sol. Cells 122, 208–216 (2014).
[Crossref]

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[Crossref]

Z. Ouyang, X. Zhao, S. Varlamov, Y. G. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[Crossref]

Polman, A.

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101(22), 221110 (2012).
[Crossref]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

P. Spinelli and A. Polman, “Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded ag nanoparticles,” Opt. Express 20(S5Suppl 5), A641–A654 (2012).
[Crossref] [PubMed]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant spp modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2Suppl 2), A146–A156 (2011).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red- response in thin film a-si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Rath, J. K.

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

Rau, U.

U. Rau and T. Kirchartz, “On the thermodynamics of light trapping in solar cells,” Nat. Mater. 13(2), 103–104 (2014).
[Crossref] [PubMed]

Royer, F.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[Crossref]

Sansonnens, L.

O. Cubero, F. J. Haug, Y. Ziegler, L. Sansonnens, P. Couty, D. Fischer, and C. Ballif, “Reduction of the phosphorous cross-contamination in n–i–p solar cells prepared in a single-chamber pecvd reactor,” Sol. Energy Mater. Sol. Cells 95(2), 606–610 (2011).
[Crossref]

Santbergen, R.

H. R. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[Crossref]

R. Santbergen, R. Liang, and M. Zeman, “A-si:H solar cells with embedded silver nanoparticles,” in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE (2010), pp. 748–753.
[Crossref]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Schiff, E.

E. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys. 110(10), 104501 (2011).
[Crossref]

Schmidt, A. A.

A. A. Schmidt, J. Offermann, and R. Anton, “The role of neutral oxygen radicals in the oxidation of ag films,” Thin Solid Films 282, 105–107 (1996).
[Crossref]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red- response in thin film a-si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Schulte, M.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[Crossref]

Smets, A. H. M.

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[Crossref]

H. R. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Soderstrom, T.

A. Basch, F. J. Beck, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100(24), 243903 (2012).
[Crossref]

Spinelli, P.

Stiebig, H.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[Crossref]

Striemer, C. C.

C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, “Charge- and size-based separation of macromolecules using ultrathin silicon membranes,” Nature 445(7129), 749–753 (2007).
[Crossref] [PubMed]

Stuart, H.

H. Stuart and D. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

Sukmanowski, J.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[Crossref]

Swaaij, R. A. C. M. M.

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[Crossref]

Tabor, C.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref] [PubMed]

Tan, H. R.

H. R. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Tao, Y. G.

Z. Ouyang, X. Zhao, S. Varlamov, Y. G. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

Temple, T. L.

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[Crossref]

Thøgersen, A.

C. H. Fosli, A. Thøgersen, S. Karazhanov, and E. S. Marstein, “Plasmonics for light trapping in silicon solar cells,” Energy Procedia 10, 287–291 (2011).
[Crossref]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Tseng, C. W.

Tseng, T.-C.

D. Wan, H.-L. Chen, T.-C. Tseng, C.-Y. Fang, Y.-S. Lai, and F.-Y. Yeh, “Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells,” Adv. Funct. Mater. 20(18), 3064–3075 (2010).
[Crossref]

van Lare, M.

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101(22), 221110 (2012).
[Crossref]

Varlamov, S.

A. Basch, F. J. Beck, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100(24), 243903 (2012).
[Crossref]

Z. Ouyang, X. Zhao, S. Varlamov, Y. G. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

Verhagen, E.

Verschuuren, M. A.

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101(22), 221110 (2012).
[Crossref]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red- response in thin film a-si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

Wan, D.

D. Wan, H.-L. Chen, T.-C. Tseng, C.-Y. Fang, Y.-S. Lai, and F.-Y. Yeh, “Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells,” Adv. Funct. Mater. 20(18), 3064–3075 (2010).
[Crossref]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Winans, J.

Wong, J.

Z. Ouyang, X. Zhao, S. Varlamov, Y. G. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

Yablonovitch, E.

Yang, Y.

Y. Yang, S. Pillai, H. Mehrvarz, and M. A. Green, “Plasmonic degradation and the importance of over-coating metal nanoparticles for a plasmonic solar cell,” Sol. Energy Mater. Sol. Cells 122, 208–216 (2014).
[Crossref]

Yeh, F.-Y.

D. Wan, H.-L. Chen, T.-C. Tseng, C.-Y. Fang, Y.-S. Lai, and F.-Y. Yeh, “Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells,” Adv. Funct. Mater. 20(18), 3064–3075 (2010).
[Crossref]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Zeman, M.

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[Crossref]

H. R. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

R. Santbergen, R. Liang, and M. Zeman, “A-si:H solar cells with embedded silver nanoparticles,” in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE (2010), pp. 748–753.
[Crossref]

Zhao, X.

Z. Ouyang, X. Zhao, S. Varlamov, Y. G. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

Ziegler, Y.

O. Cubero, F. J. Haug, Y. Ziegler, L. Sansonnens, P. Couty, D. Fischer, and C. Ballif, “Reduction of the phosphorous cross-contamination in n–i–p solar cells prepared in a single-chamber pecvd reactor,” Sol. Energy Mater. Sol. Cells 95(2), 606–610 (2011).
[Crossref]

Adv. Funct. Mater. (1)

D. Wan, H.-L. Chen, T.-C. Tseng, C.-Y. Fang, Y.-S. Lai, and F.-Y. Yeh, “Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells,” Adv. Funct. Mater. 20(18), 3064–3075 (2010).
[Crossref]

Adv. Mater. (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Appl. Phys. Lett. (9)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101(22), 221110 (2012).
[Crossref]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red- response in thin film a-si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

H. Stuart and D. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

A. Basch, F. J. Beck, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Appl. Phys. Lett. 100(24), 243903 (2012).
[Crossref]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process. 105(2), 329–339 (2011).
[Crossref]

Energy Procedia (1)

C. H. Fosli, A. Thøgersen, S. Karazhanov, and E. S. Marstein, “Plasmonics for light trapping in silicon solar cells,” Energy Procedia 10, 287–291 (2011).
[Crossref]

J. Appl. Phys. (6)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

E. Schiff, “Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals,” J. Appl. Phys. 110(10), 104501 (2011).
[Crossref]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[Crossref]

J. Opt. (1)

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. A (1)

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[Crossref] [PubMed]

Nano Lett. (3)

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

H. R. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21(23), 235201 (2010).
[Crossref] [PubMed]

Nat. Mater. (4)

U. Rau and T. Kirchartz, “On the thermodynamics of light trapping in solar cells,” Nat. Mater. 13(2), 103–104 (2014).
[Crossref] [PubMed]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[Crossref]

Nature (1)

C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, “Charge- and size-based separation of macromolecules using ultrathin silicon membranes,” Nature 445(7129), 749–753 (2007).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Mater. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (3)

Z. Ouyang, X. Zhao, S. Varlamov, Y. G. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for si solar cells using self-assembled, ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

Y. Yang, S. Pillai, H. Mehrvarz, and M. A. Green, “Plasmonic degradation and the importance of over-coating metal nanoparticles for a plasmonic solar cell,” Sol. Energy Mater. Sol. Cells 122, 208–216 (2014).
[Crossref]

O. Cubero, F. J. Haug, Y. Ziegler, L. Sansonnens, P. Couty, D. Fischer, and C. Ballif, “Reduction of the phosphorous cross-contamination in n–i–p solar cells prepared in a single-chamber pecvd reactor,” Sol. Energy Mater. Sol. Cells 95(2), 606–610 (2011).
[Crossref]

Thin Solid Films (2)

A. A. Schmidt, J. Offermann, and R. Anton, “The role of neutral oxygen radicals in the oxidation of ag films,” Thin Solid Films 282, 105–107 (1996).
[Crossref]

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[Crossref]

Other (7)

R. Santbergen, R. Liang, and M. Zeman, “A-si:H solar cells with embedded silver nanoparticles,” in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE (2010), pp. 748–753.
[Crossref]

H. Stiebig, C. Haase, S. Jorke, P. Obermeyer, E. Moulin, and M. Schulte, “New light management concepts for thin-film silicon solar cells,” Mater. Res. Soc. Symp. Proc. 1101 1101–KK06–03 (2011).

http://www.lumerical.com

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2011).

W. Rasband, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/ , “Imagej,” (1997–2014).

M. Ohring, The Materials Science of Thin Films (Academic Press, 1992).

H. Zhao, B. Ozturk, E. A. Schiff, B. Yan, J. Yang, and S. Guha, “Plasmonic light-trapping and quantum efficiency measurements on nanocrystalline silicon solar cells and silicon-on-insulator devices,” MRS Proceedings 1245, 1245–A03–02 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) A 2D drawing of a typical 3D model used in FDTD simulations. Light is incident from above and the monitors at the top and bottom record the total power reflected and transmitted. (b) Plot showing the absorptance for cells with the three designs: front only NPs, back only NPs, and both sides NPs. (c) Plot showing the calculated absorptance from simulation with monitors placed at the interfaces of each constituent film. The plot contains the amount of light reflected from the top and transmitted through the bottom of the simulation space. Absorptance of the front and rear NPs, ITO films, and SiO2 films are also included. The absorptance in the a-Si:H layer is separated into three parts to represent the n-, i-, and p- layers with thicknesses of 20 nm, 25 nm, and 15nm respectively. The dashed black line represents the absorptance of the i-a-Si:H of a cell without Ag NPs. (d) Plot showing the effect of various sizes for NPs located on the front and back of a solar cell.
Fig. 2
Fig. 2 Plots showing calculated absorptance from simulations investigating the effect of offsetting the center of a frontside NP from the center of the backside NP where the polarization is (a) perpendicular and (b) parallel to the direction of offset.
Fig. 3
Fig. 3 Fabrication steps: (a) The starting wafer, (b) patterning, (c) SiO2/a-Si:H/SiO2 stack deposited, (d) EDP etch, (e) BOE dip, (f) ITO deposition.
Fig. 4
Fig. 4 (a) Schematic showing the cross-section of a solar cell with SiO2 and Ag on the front and back side. Part of the ITO is masked off from the SiO2 and Ag depositions so that it remains exposed for uninhibited electrical contact. (b)-(d) Photographs of 150 nm solar cells with ITO, 10 nm silicon dioxide + 16 nm of Ag, and annealed, (e)-(g), 100 nm solar cells, and (h)-(j) 60 nm. (k) A SEM cross-section of a 150 nm a-Si:H solar cell with Ag NPs on the front and back.
Fig. 5
Fig. 5 (a) An SEM image of Ag NPs formed on the 10 nm SiO2 layer of a solar cell. The Ag film was initially 16 nm and the sample was heated in a ramp from 50 to 170 þC. (b) A histogram showing the size distribution of the Ag NPs from (a).
Fig. 6
Fig. 6 (a) A TEM image of a single Ag NP showing a thin film around the perimeter. (b), (c), and (d) STEM EDS image analyses for Ag, oxygen, and Si, respectively. Note that the detector is located to the right of these images. The left side of the NP appears to have less oxygen, but this is due to the location of the detector and the signal being blocked by the NP. Carbon also appeared in the scan, but this image is not shown because it is a known contaminate. (e) A plot of simulated absorptance of 120 nm diameter Ag NP with and without a 3 nm coating of Ag oxide.
Fig. 7
Fig. 7 A plot of EQE measurements for (a) 150 nm, (b) 100 nm, and (c) 60 nm thick a-Si:H absorber layers. Each cell has EQE data for ITO contact only, front oxide and Ag NPs, front and back oxide with Ag NPs and back only oxide and Ag NPs.
Fig. 8
Fig. 8 A plot of percent change in Jsc between the control sample and the sample with front-side NPs as a function of the light source’s angle of incidence. The percentage was calculated by taking the difference between the sample and control Jsc, then dividing that difference by the control Jsc to obtain a percent change.
Fig. 9
Fig. 9 A plot showing the effect of different Ag NP size distributions on the EQE of (a) 150 nm and (b) 100 nm thick solar cells.

Tables (2)

Tables Icon

Table 1 A summary of the thicknesses and measurement results of cells before enhancement. The thicknesses are calculated using deposition rates obtained from interferometric measurements and analysis of SEM cross sectional images.

Tables Icon

Table 2 A table of key performance parameters for solar cells annealed by ramping the temperature from 50 þC to final temperatures ranging from 160 to 200 þC.

Metrics