Abstract

We report perovskite solar cells with a new device structure that employ highly conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the top electrode replacing commonly used metal electrodes. The PEDOT:PSS top electrode is prepared from its aqueous solution through a transfer-lamination technique rather than direct spin-coating, which converts the CH3NH3PbI3 into PbI2. Perovskite solar cells with the structure of glass/FTO/c-TiO2/m-TiO2/CH3NH3PbI3/spiro-OMeTAD/PEDOT:PSS yield a maximum open-circuit voltage (VOC) of 1.02 V, and a maximum power conversion efficiency (PCE) of 11.29% under AM1.5 100 mW/cm2 illumination. The whole device was fabricated in air without high-vacuum deposition which simplifies the processing and lowers the threshold of both scientific research and industrial production of perovskite solar cells.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
TiO2 nanotube/TiO2 nanoparticle hybrid photoanode for hole-conductor-free perovskite solar cells based on carbon counter electrodes

Jing-hua Hu, Wen-hui Liu, Ying-ping Yang, Li Zhao, Yu Qiao, Shu-han Li, Pei-han Liu, and Meng-wei Chen
Opt. Mater. Express 7(9) 3322-3331 (2017)

Inverted polymer solar cells with amorphous indium zinc oxide as the electron-collecting electrode

Hyeunseok Cheun, Jungbae Kim, Yinhua Zhou, Yunnan Fang, Amir Dindar, Jaewon Shim, Canek Fuentes-Hernandez, Kenneth H. Sandhage, and Bernard Kippelen
Opt. Express 18(S4) A506-A512 (2010)

p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells

Ming-Hua Liu, Zheng-Ji Zhou, Pan-Pan Zhang, Qing-Wen Tian, Wen-Hui Zhou, Dong-Xing Kou, and Si-Xin Wu
Opt. Express 24(22) A1349-A1359 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
  2. M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
    [Crossref]
  3. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
    [Crossref] [PubMed]
  4. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
    [Crossref] [PubMed]
  5. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
    [Crossref] [PubMed]
  6. D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
    [Crossref]
  7. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat Commun 4, 2761 (2013).
    [Crossref] [PubMed]
  8. N.-G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett. 4(15), 2423–2429 (2013).
    [Crossref]
  9. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
    [Crossref] [PubMed]
  10. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
    [Crossref] [PubMed]
  11. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
    [Crossref]
  12. P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
    [Crossref] [PubMed]
  13. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25(27), 3727–3732 (2013).
    [Crossref] [PubMed]
  14. J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
    [Crossref] [PubMed]
  15. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
    [Crossref]
  16. D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
    [Crossref] [PubMed]
  17. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
    [Crossref] [PubMed]
  18. H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma, “Hole-conductor-free, metal-electrode-freeTiO2/ CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode,” J. Phys. Chem. Lett. 5(18), 3241–3246 (2014).
    [Crossref]
  19. Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
    [Crossref] [PubMed]
  20. S. Choi, S. J. Kim, C. Fuentes-Hernandez, and B. Kippelen, “ITO-free large-area organic light-emitting diodes with an integrated metal grid,” Opt. Express 19(S4), A793–A803 (2011).
    [Crossref] [PubMed]
  21. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
    [Crossref] [PubMed]
  22. J. Ouyang, “"Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices,” Displays 34(5), 423–436 (2013).
    [Crossref]
  23. W. F. Zhang, B. F. Zhao, Z. C. He, X. M. Zhao, H. T. Wang, S. F. Yang, H. B. Wu, and Y. Cao, “High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes,” Energy Environ. Sci. 6(6), 1956–1964 (2013).
    [Crossref]
  24. D. A. Mengistie, M. A. Ibrahem, P. C. Wang, and C. W. Chu, “Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells,” ACS Appl. Mater. Interfaces 6(4), 2292–2299 (2014).
    [Crossref] [PubMed]
  25. G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
    [Crossref]
  26. M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, and C.-K. Song, “Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs,” Org. Electron. 11(5), 854–859 (2010).
    [Crossref]
  27. Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. U.S.A. 99(16), 10252–10256 (2002).
    [Crossref] [PubMed]
  28. J. M. Mativetsky and Y.-L. Loo, “Modular construction and deconstruction of organic solar cells,” AlChE J. 58(11), 3280–3288 (2012).
    [Crossref]
  29. J. B. Kim, S. Lee, M. F. Toney, Z. Chen, A. Facchetti, Y. S. Kim, and Y.-L. Loo, “Reversible soft-contact lamination and delamination for non-invasive fabrication and characterization of bulk-heterojunction and bilayer organic solar cells,” Chem. Mater. 22(17), 4931–4938 (2010).
    [Crossref]
  30. Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez, and B. Kippelen, “All-plastic solar cells with a high photovoltaic dynamic range,” J. Mater. Chem. A 2(10), 3492–3497 (2014).
    [Crossref]
  31. D. Gupta, M. M. Wienk, and R. A. J. Janssen, “Efficient polymer solar cells on opaque substrates with a laminated pedot:pss top electrode,” Adv. Energy Mater. 3(6), 782–787 (2013).
    [Crossref]
  32. X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, “High-performance metal-free solar cells using stamp transfer printed vapor phase polymerized poly(3,4-ethylenedioxythiophene) top anodes,” Adv. Funct. Mater. 22(7), 1454–1460 (2012).
    [Crossref]
  33. Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
    [Crossref]
  34. Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
    [Crossref] [PubMed]
  35. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1(18), 5628 (2013).
    [Crossref]
  36. P. A. Beckmann, “A review of polytypism in lead iodide,” Cryst. Res. Technol. 45(5), 455–460 (2010).
    [Crossref]
  37. A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
    [Crossref] [PubMed]
  38. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
    [Crossref]
  39. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52(15), 9019–9038 (2013).
    [Crossref] [PubMed]

2014 (16)

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma, “Hole-conductor-free, metal-electrode-freeTiO2/ CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode,” J. Phys. Chem. Lett. 5(18), 3241–3246 (2014).
[Crossref]

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

D. A. Mengistie, M. A. Ibrahem, P. C. Wang, and C. W. Chu, “Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells,” ACS Appl. Mater. Interfaces 6(4), 2292–2299 (2014).
[Crossref] [PubMed]

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez, and B. Kippelen, “All-plastic solar cells with a high photovoltaic dynamic range,” J. Mater. Chem. A 2(10), 3492–3497 (2014).
[Crossref]

Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
[Crossref]

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

2013 (13)

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52(15), 9019–9038 (2013).
[Crossref] [PubMed]

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1(18), 5628 (2013).
[Crossref]

D. Gupta, M. M. Wienk, and R. A. J. Janssen, “Efficient polymer solar cells on opaque substrates with a laminated pedot:pss top electrode,” Adv. Energy Mater. 3(6), 782–787 (2013).
[Crossref]

J. Ouyang, “"Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices,” Displays 34(5), 423–436 (2013).
[Crossref]

W. F. Zhang, B. F. Zhao, Z. C. He, X. M. Zhao, H. T. Wang, S. F. Yang, H. B. Wu, and Y. Cao, “High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes,” Energy Environ. Sci. 6(6), 1956–1964 (2013).
[Crossref]

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25(27), 3727–3732 (2013).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat Commun 4, 2761 (2013).
[Crossref] [PubMed]

N.-G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett. 4(15), 2423–2429 (2013).
[Crossref]

2012 (5)

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, “High-performance metal-free solar cells using stamp transfer printed vapor phase polymerized poly(3,4-ethylenedioxythiophene) top anodes,” Adv. Funct. Mater. 22(7), 1454–1460 (2012).
[Crossref]

J. M. Mativetsky and Y.-L. Loo, “Modular construction and deconstruction of organic solar cells,” AlChE J. 58(11), 3280–3288 (2012).
[Crossref]

2011 (1)

2010 (3)

J. B. Kim, S. Lee, M. F. Toney, Z. Chen, A. Facchetti, Y. S. Kim, and Y.-L. Loo, “Reversible soft-contact lamination and delamination for non-invasive fabrication and characterization of bulk-heterojunction and bilayer organic solar cells,” Chem. Mater. 22(17), 4931–4938 (2010).
[Crossref]

P. A. Beckmann, “A review of polytypism in lead iodide,” Cryst. Res. Technol. 45(5), 455–460 (2010).
[Crossref]

M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, and C.-K. Song, “Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs,” Org. Electron. 11(5), 854–859 (2010).
[Crossref]

2002 (1)

Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. U.S.A. 99(16), 10252–10256 (2002).
[Crossref] [PubMed]

Abate, A.

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

Baikie, T.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1(18), 5628 (2013).
[Crossref]

Baldwin, K. W.

Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. U.S.A. 99(16), 10252–10256 (2002).
[Crossref] [PubMed]

Ball, J. M.

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat Commun 4, 2761 (2013).
[Crossref] [PubMed]

Bao, Z.

Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. U.S.A. 99(16), 10252–10256 (2002).
[Crossref] [PubMed]

Barlow, S.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Batabyal, S. K.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

Beckmann, P. A.

P. A. Beckmann, “A review of polytypism in lead iodide,” Cryst. Res. Technol. 45(5), 455–460 (2010).
[Crossref]

Bi, C.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Boix, P. P.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

Bolink, H. J.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Bradley, D. D. C.

X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, “High-performance metal-free solar cells using stamp transfer printed vapor phase polymerized poly(3,4-ethylenedioxythiophene) top anodes,” Adv. Funct. Mater. 22(7), 1454–1460 (2012).
[Crossref]

Brédas, J.-L.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Bryant, D.

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

Burschka, J.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Cai, M.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Campoy-Quiles, M.

X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, “High-performance metal-free solar cells using stamp transfer printed vapor phase polymerized poly(3,4-ethylenedioxythiophene) top anodes,” Adv. Funct. Mater. 22(7), 1454–1460 (2012).
[Crossref]

Cao, A.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

Cao, Y.

W. F. Zhang, B. F. Zhao, Z. C. He, X. M. Zhao, H. T. Wang, S. F. Yang, H. B. Wu, and Y. Cao, “High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes,” Energy Environ. Sci. 6(6), 1956–1964 (2013).
[Crossref]

Carnie, M.

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

Chen, C.-C.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Chen, J.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Chen, P.

J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25(27), 3727–3732 (2013).
[Crossref] [PubMed]

Chen, Q.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Chen, Z.

J. B. Kim, S. Lee, M. F. Toney, Z. Chen, A. Facchetti, Y. S. Kim, and Y.-L. Loo, “Reversible soft-contact lamination and delamination for non-invasive fabrication and characterization of bulk-heterojunction and bilayer organic solar cells,” Chem. Mater. 22(17), 4931–4938 (2010).
[Crossref]

Cheun, H.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Chiang, Y. F.

J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25(27), 3727–3732 (2013).
[Crossref] [PubMed]

Choi, J.-C.

M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, and C.-K. Song, “Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs,” Org. Electron. 11(5), 854–859 (2010).
[Crossref]

Choi, S.

Chu, C. W.

D. A. Mengistie, M. A. Ibrahem, P. C. Wang, and C. W. Chu, “Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells,” ACS Appl. Mater. Interfaces 6(4), 2292–2299 (2014).
[Crossref] [PubMed]

Chueh, C. C.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Darwich, M.

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat Commun 4, 2761 (2013).
[Crossref] [PubMed]

Davies, M.

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

Dindar, A.

Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez, and B. Kippelen, “All-plastic solar cells with a high photovoltaic dynamic range,” J. Mater. Chem. A 2(10), 3492–3497 (2014).
[Crossref]

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Docampo, P.

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat Commun 4, 2761 (2013).
[Crossref] [PubMed]

Dodabalapur, A.

Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. U.S.A. 99(16), 10252–10256 (2002).
[Crossref] [PubMed]

Dong, Q.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma, “Hole-conductor-free, metal-electrode-freeTiO2/ CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode,” J. Phys. Chem. Lett. 5(18), 3241–3246 (2014).
[Crossref]

Du, Y.

H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma, “Hole-conductor-free, metal-electrode-freeTiO2/ CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode,” J. Phys. Chem. Lett. 5(18), 3241–3246 (2014).
[Crossref]

Dualeh, A.

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

Duan, H. S.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Eperon, G. E.

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat Commun 4, 2761 (2013).
[Crossref] [PubMed]

Espallargas, G. M.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Facchetti, A.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

J. B. Kim, S. Lee, M. F. Toney, Z. Chen, A. Facchetti, Y. S. Kim, and Y.-L. Loo, “Reversible soft-contact lamination and delamination for non-invasive fabrication and characterization of bulk-heterojunction and bilayer organic solar cells,” Chem. Mater. 22(17), 4931–4938 (2010).
[Crossref]

Fang, Y.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1(18), 5628 (2013).
[Crossref]

Fenoll, M.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Fu, K.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

Fuentes-Hernandez, C.

Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez, and B. Kippelen, “All-plastic solar cells with a high photovoltaic dynamic range,” J. Mater. Chem. A 2(10), 3492–3497 (2014).
[Crossref]

Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
[Crossref]

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

S. Choi, S. J. Kim, C. Fuentes-Hernandez, and B. Kippelen, “ITO-free large-area organic light-emitting diodes with an integrated metal grid,” Opt. Express 19(S4), A793–A803 (2011).
[Crossref] [PubMed]

Gao, P.

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Gao, Y.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Giordano, A. J.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Gong, W.

X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, “High-performance metal-free solar cells using stamp transfer printed vapor phase polymerized poly(3,4-ethylenedioxythiophene) top anodes,” Adv. Funct. Mater. 22(7), 1454–1460 (2012).
[Crossref]

Graetzel, M.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1(18), 5628 (2013).
[Crossref]

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Graham, S.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Gratzel, M.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Grätzel, M.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

Greenwood, P.

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

Guo, T. F.

J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25(27), 3727–3732 (2013).
[Crossref] [PubMed]

Gupta, D.

D. Gupta, M. M. Wienk, and R. A. J. Janssen, “Efficient polymer solar cells on opaque substrates with a laminated pedot:pss top electrode,” Adv. Energy Mater. 3(6), 782–787 (2013).
[Crossref]

Haase, K.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Haidu, F.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Han, H.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Haske, W.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

He, Z. C.

W. F. Zhang, B. F. Zhao, Z. C. He, X. M. Zhao, H. T. Wang, S. F. Yang, H. B. Wu, and Y. Cao, “High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes,” Energy Environ. Sci. 6(6), 1956–1964 (2013).
[Crossref]

Ho, P.

Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. U.S.A. 99(16), 10252–10256 (2002).
[Crossref] [PubMed]

Ho-Baillie, A.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

Hoft, D.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Hong, Z.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Hsu, J.

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

Hu, M.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Huang, J.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Hubler, A. C.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Humphry-Baker, R.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Ibrahem, M. A.

D. A. Mengistie, M. A. Ibrahem, P. C. Wang, and C. W. Chu, “Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells,” ACS Appl. Mater. Interfaces 6(4), 2292–2299 (2014).
[Crossref] [PubMed]

Im, J. H.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Ishwara, T.

X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, “High-performance metal-free solar cells using stamp transfer printed vapor phase polymerized poly(3,4-ethylenedioxythiophene) top anodes,” Adv. Funct. Mater. 22(7), 1454–1460 (2012).
[Crossref]

Janssen, R. A. J.

D. Gupta, M. M. Wienk, and R. A. J. Janssen, “Efficient polymer solar cells on opaque substrates with a laminated pedot:pss top electrode,” Adv. Energy Mater. 3(6), 782–787 (2013).
[Crossref]

Jen, A. K.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Jeng, J. Y.

J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25(27), 3727–3732 (2013).
[Crossref] [PubMed]

Jeon, N. J.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Johnston, M. B.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

Kadro, J. M.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1(18), 5628 (2013).
[Crossref]

Kahn, A.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Kanatzidis, M. G.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52(15), 9019–9038 (2013).
[Crossref] [PubMed]

Karpov, E.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Katz, H. E.

Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. U.S.A. 99(16), 10252–10256 (2002).
[Crossref] [PubMed]

Kelly, T. L.

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

Khan, T. M.

Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez, and B. Kippelen, “All-plastic solar cells with a high photovoltaic dynamic range,” J. Mater. Chem. A 2(10), 3492–3497 (2014).
[Crossref]

Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
[Crossref]

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Kim, H. S.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Kim, J.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Kim, J. B.

J. B. Kim, S. Lee, M. F. Toney, Z. Chen, A. Facchetti, Y. S. Kim, and Y.-L. Loo, “Reversible soft-contact lamination and delamination for non-invasive fabrication and characterization of bulk-heterojunction and bilayer organic solar cells,” Chem. Mater. 22(17), 4931–4938 (2010).
[Crossref]

Kim, S. J.

Kim, Y. C.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Kim, Y. S.

J. B. Kim, S. Lee, M. F. Toney, Z. Chen, A. Facchetti, Y. S. Kim, and Y.-L. Loo, “Reversible soft-contact lamination and delamination for non-invasive fabrication and characterization of bulk-heterojunction and bilayer organic solar cells,” Chem. Mater. 22(17), 4931–4938 (2010).
[Crossref]

Kippelen, B.

Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez, and B. Kippelen, “All-plastic solar cells with a high photovoltaic dynamic range,” J. Mater. Chem. A 2(10), 3492–3497 (2014).
[Crossref]

Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
[Crossref]

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

S. Choi, S. J. Kim, C. Fuentes-Hernandez, and B. Kippelen, “ITO-free large-area organic light-emitting diodes with an integrated metal grid,” Opt. Express 19(S4), A793–A803 (2011).
[Crossref] [PubMed]

Kiriy, A.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Ku, Z.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Kulkarni, S. A.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

Lee, C. R.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Lee, K. B.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Lee, M. H.

J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25(27), 3727–3732 (2013).
[Crossref] [PubMed]

Lee, M. M.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Lee, M.-W.

M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, and C.-K. Song, “Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs,” Org. Electron. 11(5), 854–859 (2010).
[Crossref]

Lee, M.-Y.

M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, and C.-K. Song, “Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs,” Org. Electron. 11(5), 854–859 (2010).
[Crossref]

Lee, S.

J. B. Kim, S. Lee, M. F. Toney, Z. Chen, A. Facchetti, Y. S. Kim, and Y.-L. Loo, “Reversible soft-contact lamination and delamination for non-invasive fabrication and characterization of bulk-heterojunction and bilayer organic solar cells,” Chem. Mater. 22(17), 4931–4938 (2010).
[Crossref]

Lee, Y. H.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Leijtens, T.

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

Li, G.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Li, H.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Li, X.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

Liang, P. W.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Liao, C. Y.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Lin, J.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Liu, D.

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

Liu, J.-C.

Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
[Crossref]

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

Liu, L.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Liu, M.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

Liu, T.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Liu, Y.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Loo, Y.-L.

J. M. Mativetsky and Y.-L. Loo, “Modular construction and deconstruction of organic solar cells,” AlChE J. 58(11), 3280–3288 (2012).
[Crossref]

J. B. Kim, S. Lee, M. F. Toney, Z. Chen, A. Facchetti, Y. S. Kim, and Y.-L. Loo, “Reversible soft-contact lamination and delamination for non-invasive fabrication and characterization of bulk-heterojunction and bilayer organic solar cells,” Chem. Mater. 22(17), 4931–4938 (2010).
[Crossref]

Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. U.S.A. 99(16), 10252–10256 (2002).
[Crossref] [PubMed]

Lu, S.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Luo, S.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Ma, T.

H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma, “Hole-conductor-free, metal-electrode-freeTiO2/ CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode,” J. Phys. Chem. Lett. 5(18), 3241–3246 (2014).
[Crossref]

Malinkiewicz, O.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Malliakas, C. D.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52(15), 9019–9038 (2013).
[Crossref] [PubMed]

Marchioro, A.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Marder, S. R.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Mathews, N.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

Mativetsky, J. M.

J. M. Mativetsky and Y.-L. Loo, “Modular construction and deconstruction of organic solar cells,” AlChE J. 58(11), 3280–3288 (2012).
[Crossref]

Mei, A.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Mengistie, D. A.

D. A. Mengistie, M. A. Ibrahem, P. C. Wang, and C. W. Chu, “Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells,” ACS Appl. Mater. Interfaces 6(4), 2292–2299 (2014).
[Crossref] [PubMed]

Meyer, J.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Mhaisalkar, S. G.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1(18), 5628 (2013).
[Crossref]

Miyasaka, T.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Moehl, T.

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Moon, R. J.

Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
[Crossref]

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

Moon, S. J.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Moser, J. E.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Murakami, T. N.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Najafabadi, E.

Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
[Crossref]

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Nazeeruddin, M. K.

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Nelson, J.

X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, “High-performance metal-free solar cells using stamp transfer printed vapor phase polymerized poly(3,4-ethylenedioxythiophene) top anodes,” Adv. Funct. Mater. 22(7), 1454–1460 (2012).
[Crossref]

Noel, N. K.

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

Noh, J. H.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Ouyang, J.

J. Ouyang, “"Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices,” Displays 34(5), 423–436 (2013).
[Crossref]

Papadopoulos, T.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Park, J.-S.

M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, and C.-K. Song, “Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs,” Org. Electron. 11(5), 854–859 (2010).
[Crossref]

Park, N. G.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Park, N.-G.

N.-G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett. 4(15), 2423–2429 (2013).
[Crossref]

Pellet, N.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Peng, S. R.

J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25(27), 3727–3732 (2013).
[Crossref] [PubMed]

Rogers, J. A.

Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. U.S.A. 99(16), 10252–10256 (2002).
[Crossref] [PubMed]

Rong, Y.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Ryu, S.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Schmidt, G. C.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Schreyer, M.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1(18), 5628 (2013).
[Crossref]

Seok, S. I.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Shao, Y.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Shi, E.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

Shi, Y.

H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma, “Hole-conductor-free, metal-electrode-freeTiO2/ CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode,” J. Phys. Chem. Lett. 5(18), 3241–3246 (2014).
[Crossref]

Shim, J.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Shim, J. W.

Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
[Crossref]

Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez, and B. Kippelen, “All-plastic solar cells with a high photovoltaic dynamic range,” J. Mater. Chem. A 2(10), 3492–3497 (2014).
[Crossref]

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

Snaith, H. J.

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat Commun 4, 2761 (2013).
[Crossref] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Sojoudi, H.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Someya, T.

Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. U.S.A. 99(16), 10252–10256 (2002).
[Crossref] [PubMed]

Song, C.-K.

M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, and C.-K. Song, “Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs,” Org. Electron. 11(5), 854–859 (2010).
[Crossref]

Song, T. B.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Song, T.-B.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Stamm, M.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Stoumpos, C. C.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52(15), 9019–9038 (2013).
[Crossref] [PubMed]

Stranks, S. D.

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

Tétreault, N.

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

Teuscher, J.

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Tkachov, R.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Toney, M. F.

J. B. Kim, S. Lee, M. F. Toney, Z. Chen, A. Facchetti, Y. S. Kim, and Y.-L. Loo, “Reversible soft-contact lamination and delamination for non-invasive fabrication and characterization of bulk-heterojunction and bilayer organic solar cells,” Chem. Mater. 22(17), 4931–4938 (2010).
[Crossref]

Troughton, J.

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

Wang, C.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Wang, H. T.

W. F. Zhang, B. F. Zhao, Z. C. He, X. M. Zhao, H. T. Wang, S. F. Yang, H. B. Wu, and Y. Cao, “High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes,” Energy Environ. Sci. 6(6), 1956–1964 (2013).
[Crossref]

Wang, J. T.-W.

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

Wang, K.

H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma, “Hole-conductor-free, metal-electrode-freeTiO2/ CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode,” J. Phys. Chem. Lett. 5(18), 3241–3246 (2014).
[Crossref]

Wang, P. C.

D. A. Mengistie, M. A. Ibrahem, P. C. Wang, and C. W. Chu, “Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells,” ACS Appl. Mater. Interfaces 6(4), 2292–2299 (2014).
[Crossref] [PubMed]

Wang, Q.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Wang, X.

X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, “High-performance metal-free solar cells using stamp transfer printed vapor phase polymerized poly(3,4-ethylenedioxythiophene) top anodes,” Adv. Funct. Mater. 22(7), 1454–1460 (2012).
[Crossref]

Watson, T.

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

Wei, F.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1(18), 5628 (2013).
[Crossref]

Wen, T. C.

J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25(27), 3727–3732 (2013).
[Crossref] [PubMed]

White, T. J.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1(18), 5628 (2013).
[Crossref]

Wienk, M. M.

D. Gupta, M. M. Wienk, and R. A. J. Janssen, “Efficient polymer solar cells on opaque substrates with a laminated pedot:pss top electrode,” Adv. Energy Mater. 3(6), 782–787 (2013).
[Crossref]

Wijdekop, M.

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

Williams, S. T.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Winget, P.

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Wojciechowski, K.

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

Wong, L. H.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

Worsley, D.

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

Wu, H. B.

W. F. Zhang, B. F. Zhao, Z. C. He, X. M. Zhao, H. T. Wang, S. F. Yang, H. B. Wu, and Y. Cao, “High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes,” Energy Environ. Sci. 6(6), 1956–1964 (2013).
[Crossref]

Xiao, Z.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Xin, X. K.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Xing, Y.

H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma, “Hole-conductor-free, metal-electrode-freeTiO2/ CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode,” J. Phys. Chem. Lett. 5(18), 3241–3246 (2014).
[Crossref]

Xiong, Q.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

Xu, M.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Yan, H.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Yang, S. F.

W. F. Zhang, B. F. Zhao, Z. C. He, X. M. Zhao, H. T. Wang, S. F. Yang, H. B. Wu, and Y. Cao, “High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes,” Energy Environ. Sci. 6(6), 1956–1964 (2013).
[Crossref]

Yang, W. S.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Yang, Y.

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Yang, Y. M.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

Yella, A.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

You, J.

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Youngblood, J. P.

Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
[Crossref]

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

Yuan, Y.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Yum, J. H.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Zahn, D. R. T.

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

Zhang, H.

H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma, “Hole-conductor-free, metal-electrode-freeTiO2/ CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode,” J. Phys. Chem. Lett. 5(18), 3241–3246 (2014).
[Crossref]

Zhang, J.

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

Zhang, W.

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

Zhang, W. F.

W. F. Zhang, B. F. Zhao, Z. C. He, X. M. Zhao, H. T. Wang, S. F. Yang, H. B. Wu, and Y. Cao, “High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes,” Energy Environ. Sci. 6(6), 1956–1964 (2013).
[Crossref]

Zhao, B. F.

W. F. Zhang, B. F. Zhao, Z. C. He, X. M. Zhao, H. T. Wang, S. F. Yang, H. B. Wu, and Y. Cao, “High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes,” Energy Environ. Sci. 6(6), 1956–1964 (2013).
[Crossref]

Zhao, X. M.

W. F. Zhang, B. F. Zhao, Z. C. He, X. M. Zhao, H. T. Wang, S. F. Yang, H. B. Wu, and Y. Cao, “High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes,” Energy Environ. Sci. 6(6), 1956–1964 (2013).
[Crossref]

Zhou, H.

H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma, “Hole-conductor-free, metal-electrode-freeTiO2/ CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode,” J. Phys. Chem. Lett. 5(18), 3241–3246 (2014).
[Crossref]

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez, and B. Kippelen, “All-plastic solar cells with a high photovoltaic dynamic range,” J. Mater. Chem. A 2(10), 3492–3497 (2014).
[Crossref]

Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
[Crossref]

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Zuo, F.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

D. A. Mengistie, M. A. Ibrahem, P. C. Wang, and C. W. Chu, “Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells,” ACS Appl. Mater. Interfaces 6(4), 2292–2299 (2014).
[Crossref] [PubMed]

ACS Nano (3)

Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, “Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells,” ACS Nano 8(7), 6797–6804 (2014).
[Crossref] [PubMed]

J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8(2), 1674–1680 (2014).
[Crossref] [PubMed]

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

D. Gupta, M. M. Wienk, and R. A. J. Janssen, “Efficient polymer solar cells on opaque substrates with a laminated pedot:pss top electrode,” Adv. Energy Mater. 3(6), 782–787 (2013).
[Crossref]

Adv. Funct. Mater. (1)

X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, “High-performance metal-free solar cells using stamp transfer printed vapor phase polymerized poly(3,4-ethylenedioxythiophene) top anodes,” Adv. Funct. Mater. 22(7), 1454–1460 (2012).
[Crossref]

Adv. Mater. (3)

D. Bryant, P. Greenwood, J. Troughton, M. Wijdekop, M. Carnie, M. Davies, K. Wojciechowski, H. J. Snaith, T. Watson, and D. Worsley, “A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells,” Adv. Mater. 26(44), 7499–7504 (2014), doi:.
[Crossref] [PubMed]

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25(27), 3727–3732 (2013).
[Crossref] [PubMed]

AlChE J. (1)

J. M. Mativetsky and Y.-L. Loo, “Modular construction and deconstruction of organic solar cells,” AlChE J. 58(11), 3280–3288 (2012).
[Crossref]

Chem. Mater. (1)

J. B. Kim, S. Lee, M. F. Toney, Z. Chen, A. Facchetti, Y. S. Kim, and Y.-L. Loo, “Reversible soft-contact lamination and delamination for non-invasive fabrication and characterization of bulk-heterojunction and bilayer organic solar cells,” Chem. Mater. 22(17), 4931–4938 (2010).
[Crossref]

Cryst. Res. Technol. (1)

P. A. Beckmann, “A review of polytypism in lead iodide,” Cryst. Res. Technol. 45(5), 455–460 (2010).
[Crossref]

Displays (1)

J. Ouyang, “"Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices,” Displays 34(5), 423–436 (2013).
[Crossref]

Energy Environ. Sci. (2)

W. F. Zhang, B. F. Zhao, Z. C. He, X. M. Zhao, H. T. Wang, S. F. Yang, H. B. Wu, and Y. Cao, “High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes,” Energy Environ. Sci. 6(6), 1956–1964 (2013).
[Crossref]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Inorg. Chem. (1)

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52(15), 9019–9038 (2013).
[Crossref] [PubMed]

J. Mater. Chem. A (2)

Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez, and B. Kippelen, “All-plastic solar cells with a high photovoltaic dynamic range,” J. Mater. Chem. A 2(10), 3492–3497 (2014).
[Crossref]

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1(18), 5628 (2013).
[Crossref]

J. Mater. Chem. C (1)

G. C. Schmidt, D. Hoft, K. Haase, A. C. Hubler, E. Karpov, R. Tkachov, M. Stamm, A. Kiriy, F. Haidu, D. R. T. Zahn, H. Yan, and A. Facchetti, “Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors,” J. Mater. Chem. C 2(26), 5149–5154 (2014).
[Crossref]

J. Phys. Chem. Lett. (3)

H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, and T. Ma, “Hole-conductor-free, metal-electrode-freeTiO2/ CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode,” J. Phys. Chem. Lett. 5(18), 3241–3246 (2014).
[Crossref]

N.-G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett. 4(15), 2423–2429 (2013).
[Crossref]

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett. 5(9), 1511–1515 (2014).
[Crossref]

Nat Commun (1)

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat Commun 4, 2761 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Nature (2)

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Org. Electron. (2)

M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, and C.-K. Song, “Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs,” Org. Electron. 11(5), 854–859 (2010).
[Crossref]

Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15(3), 661–666 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. U.S.A. 99(16), 10252–10256 (2002).
[Crossref] [PubMed]

Sci Rep (1)

Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Sci Rep 3, 1536 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Science (4)

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014).
[Crossref] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, “A universal method to produce low-work function electrodes for organic electronics,” Science 336(6079), 327–332 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the perovskite solar cell employing PEDOT:PSS as the top electrode and the chemical structure of PEDOT:PSS; (c) Energy diagram (versus vacuum energy level) of each layer in the device. The unit of energy level is electron volts (eV).
Fig. 2
Fig. 2 (a) Preparation procedure of PEDOT:PSS top electrode using the film-transfer lamination method:(1)aqueous PEDOT:PSS solution is dropped onto air plasma-treated PDMS substrate (~1 mm) and spin-coated to form a film; (2) the PEDOT:PSS film is dried in air for about 10 min without thermal annealing; (3) PDMS with PEDOT:PSS films are peeled off from the glass substrate and put down onto the surface of air plasma-treated spiro-OMeTAD film; (4) PDMS substrate is peeled off to separate the PEDOT:PSS film from the PDMS substrate; (5) the PEDOT:PSS film is left on the spiro-OMeTAD as the top electrode; (b) SEM image of the surface of PEDOT:PSS top electrode of a fabricated device. The edge in the middle of the image is formed by the PEDOT:PSS top electrode, the left side with PEDOT:PSS and the right side without PEDOT:PSS film. The inset is a image of another sample of PEDOT:PSS film on top of spiro-OMeTAD in larger area. (c) cross-section image of the whole device obtained from the white square in (b) with Au and Pt nanoparticles on top, the left side is with PEDOT:PSS top electrode and the right side without PEDOT:PSS.
Fig. 3
Fig. 3 X-ray diffraction patterns of different samples: (a) CH3NH3PbI3; (b) CH3NH3PbI3/spiro-OMeTAD; (c) CH3NH3PbI3/spiro-OMeTAD with spin-coated PEDOT:PSS on top; (d) CH3NH3PbI3/spiro-OMeTAD with transfer-laminated PEDOT:PSS film on top. All the samples for XRD measurement are prepared on glass substrate.
Fig. 4
Fig. 4 (a) J-V characteristics of a fabricated device under 100 mW/cm2 AM 1.5 illumination measured from forward bias to short circuit (filled square) and the opposite direction (open circle) at a scan rate of 300 mV s−1. (b) Scattergram of the device photovoltaic performance measured from forward bias to short circuit over 20 cells.

Metrics