Abstract

In present study, the intense sensitized three photon near-infrared quantum cutting luminescence of Tm3+ ion activator in Tm3+Bi3+:YNbO4 powder phosphor is reported. It is induced both by [{1G43H4, 3H63H5} or {1G43H5, 3H63H4}] and {3H43F4, 3H63F4} cross-energy transfer. We found that the 1820.0 nm 3F43H6 luminescence intensity of Tm0.08Bi0.01Y0.91NbO4 powder phosphor excited by 302.0 nm is 151 and 8.38 times larger, compared to Tm0.005Y0.995NbO4 excited by 302.0 and 468.0 nm, in which the quantum cutting takes place between Tm3+ ions and Bi3+ ion only acts as sensitizer. To the knowledge of the authors, it is the first time that the effective Bi3+ sensitized near-infrared quantum cutting of Tm3+ ion activator has been reported. It can facilitate the probing of the next-generation environmentally friendly germanium solar cell.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiphoton near-infrared quantum cutting luminescence phenomena of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor

Xiaobo Chen, Gregory J. Salamo, Guojian Yang, Yongliang Li, Xianlin Ding, Yan Gao, Quanlin Liu, and Jinghua Guo
Opt. Express 21(S5) A829-A840 (2013)

Two-photon, three-photon, and four-photon near-infrared quantum cutting luminescence of an Er3+ activator in tellurium glass phosphor

Xiaobo Chen, Song Li, Kezhi Wang, Zhenglong Wu, Guoying Zhao, Jingfu Tao, Hui Ma, Wei Lin, Hailing Liu, Lili Hu, Ping Guo, and Gregory J. Salamo
Appl. Opt. 55(12) 3343-3350 (2016)

Sequential three-photon near-infrared quantum cutting in transparent fluorogermanate glass-ceramics containing LaF3:Tm3+ nanocrystals

J. P. Zhang, D. C. Yu, F. F. Zhang, M. Y. Peng, and Q. Y. Zhang
Opt. Mater. Express 4(1) 111-120 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van Der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
  2. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4: Eu3+ through downconversion,” Science. 283(5402), 663-666 (1999).
    [Crossref]
  3. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
    [Crossref]
  4. M. M. Hung, H. V. Han, C. Y. Hong, K. H. Hong, T. T. Yang, P. C. Yu, Y. R. Wu, H. Y. Yeh, and H. C. Huang, “Compound biomimetic structures for efficiency enhancement of Ga₀.₅In₀.₅P/GaAs/Ge triple-junction solar cells,” Opt. Express 22(5Suppl 2), A295–A300 (2014).
    [Crossref] [PubMed]
  5. D. Q. Chen, Y. S. Wang, and M. C. Hong, “Lanthanide nanomaterials with photon management characteristics for photovoltaic application,” Nano Energy 1(1), 73–90 (2012).
    [Crossref]
  6. W. J. Zhu, D. Q. Chen, L. Lei, J. Xu, and Y. S. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
    [Crossref] [PubMed]
  7. J. J. Zhou, Y. Teng, X. F. Liu, S. Ye, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Intense infrared emission of Er3+ in Ca8Mg(SiO4)4Cl2 phosphor from energy transfer of Eu2+ by broadband down-conversion,” Opt. Express 18(21), 21663–21668 (2010).
    [Crossref] [PubMed]
  8. X. B. Chen, G. J. Salamo, G. J. Yang, Y. L. Li, X. L. Ding, Y. Gao, Q. L. Liu, and J. H. Guo, “Multiphoton near-infrared quantum cutting luminescence phenomena of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor,” Opt. Express 21(18Suppl 5), A829–A840 (2013).
    [Crossref] [PubMed]
  9. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
    [Crossref]
  10. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
    [Crossref]
  11. H. T. Sun, J. J. Zhou, and J. R. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
    [Crossref]
  12. J. J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma, and J. Qiu, “Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped yttrium aluminium garnet,” Phys. Chem. Chem. Phys. 12(41), 13759–13762 (2010).
    [Crossref] [PubMed]
  13. G. W. Shu, J. Y. Lin, H. T. Jian, J. L. Shen, S. C. Wang, C. L. Chou, W. C. Chou, C. H. Wu, C. H. Chiu, and H. C. Kuo, “Optical coupling from InGaAs subcell to InGaP subcell in InGaP/InGaAs/Ge multi-junction solar cells,” Opt. Express 21(S1Suppl 1), A123–A130 (2013).
    [Crossref] [PubMed]
  14. D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in beta-NaYF4:Tm3+,” Appl. Phys. Lett. 100(19), 191911 (2012).
    [Crossref]
  15. D. K. G. De Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, R. Cees, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).
  16. R. Reisfeld, Lasers and Excited States of Rare-Earth (Springer-Verlag, 1977).
  17. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1–2), 55–75 (1948).
    [Crossref]
  18. G. X. Xu, Rare Earth (Metallurgical Industry, 1995) (in Chinese).
  19. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
    [Crossref] [PubMed]
  20. X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
    [Crossref] [PubMed]
  21. S. V. Eliseeva and J. C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2009).
    [Crossref] [PubMed]
  22. M. V. Shestakov, V. K. Tikhomirov, D. Kirilenko, A. S. Kuznetsov, L. F. Chibotaru, A. N. Baranov, G. Van Tendeloo, and V. V. Moshchalkov, “Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host,” Opt. Express 19(17), 15955–15964 (2011).
    [Crossref] [PubMed]
  23. W. L. Zhou, J. Yang, J. Wang, Y. Li, X. J. Kuang, J. K. Tang, and H. B. Liang, “Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5:Ce3+Yb3+,” Opt. Express 20(14), A510–A518 (2012).
  24. D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108(3), 630–633 (1957).
    [Crossref]
  25. R. Zhou, Y. Kou, X. Wei, C. Duan, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YNbO4:Bi3+Yb3+ phosphor,” Appl. Phys. B 107(2), 483–487 (2012).
    [Crossref]
  26. X. J. Wu, F. Z. Meng, Z. Z. Zhang, Y. N. Yu, X. J. Liu, and J. Meng, “Broadband down-conversion for silicon solar cell by ZnSe/phosphor heterostructure,” Opt. Express 22(S3), A735–A741 (2014).
    [Crossref] [PubMed]
  27. Y. Z. Wang, D. C. Yu, H. H. Lin, S. Ye, M. Y. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 203510 (2013).
    [Crossref]
  28. X. B. Chen, J. G. Wu, X. L. Xu, Y. Z. Zhang, N. Sawanobori, C. L. Zhang, Q. H. Pan, and G. J. Salamo, “Three-photon infrared quantum cutting from single species of rare-earth Er3+ ions in Er0.3Gd0.7VO4 crystalline,” Opt. Lett. 34(7), 887–889 (2009).

2014 (4)

M. M. Hung, H. V. Han, C. Y. Hong, K. H. Hong, T. T. Yang, P. C. Yu, Y. R. Wu, H. Y. Yeh, and H. C. Huang, “Compound biomimetic structures for efficiency enhancement of Ga₀.₅In₀.₅P/GaAs/Ge triple-junction solar cells,” Opt. Express 22(5Suppl 2), A295–A300 (2014).
[Crossref] [PubMed]

W. J. Zhu, D. Q. Chen, L. Lei, J. Xu, and Y. S. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

H. T. Sun, J. J. Zhou, and J. R. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

X. J. Wu, F. Z. Meng, Z. Z. Zhang, Y. N. Yu, X. J. Liu, and J. Meng, “Broadband down-conversion for silicon solar cell by ZnSe/phosphor heterostructure,” Opt. Express 22(S3), A735–A741 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (6)

D. Q. Chen, Y. S. Wang, and M. C. Hong, “Lanthanide nanomaterials with photon management characteristics for photovoltaic application,” Nano Energy 1(1), 73–90 (2012).
[Crossref]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in beta-NaYF4:Tm3+,” Appl. Phys. Lett. 100(19), 191911 (2012).
[Crossref]

D. K. G. De Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, R. Cees, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[Crossref] [PubMed]

R. Zhou, Y. Kou, X. Wei, C. Duan, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YNbO4:Bi3+Yb3+ phosphor,” Appl. Phys. B 107(2), 483–487 (2012).
[Crossref]

W. L. Zhou, J. Yang, J. Wang, Y. Li, X. J. Kuang, J. K. Tang, and H. B. Liang, “Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5:Ce3+Yb3+,” Opt. Express 20(14), A510–A518 (2012).

2011 (1)

2010 (2)

J. J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma, and J. Qiu, “Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped yttrium aluminium garnet,” Phys. Chem. Chem. Phys. 12(41), 13759–13762 (2010).
[Crossref] [PubMed]

J. J. Zhou, Y. Teng, X. F. Liu, S. Ye, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Intense infrared emission of Er3+ in Ca8Mg(SiO4)4Cl2 phosphor from energy transfer of Eu2+ by broadband down-conversion,” Opt. Express 18(21), 21663–21668 (2010).
[Crossref] [PubMed]

2009 (4)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

S. V. Eliseeva and J. C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2009).
[Crossref] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

X. B. Chen, J. G. Wu, X. L. Xu, Y. Z. Zhang, N. Sawanobori, C. L. Zhang, Q. H. Pan, and G. J. Salamo, “Three-photon infrared quantum cutting from single species of rare-earth Er3+ ions in Er0.3Gd0.7VO4 crystalline,” Opt. Lett. 34(7), 887–889 (2009).

2006 (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

2005 (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van Der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71(1), 014119 (2005).

2002 (1)

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

1957 (1)

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108(3), 630–633 (1957).
[Crossref]

1948 (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1–2), 55–75 (1948).
[Crossref]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

Baranov, A. N.

Broer, D. J.

Bünzli, J. C. G.

S. V. Eliseeva and J. C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2009).
[Crossref] [PubMed]

Cees, R.

Chen, D. Q.

W. J. Zhu, D. Q. Chen, L. Lei, J. Xu, and Y. S. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

D. Q. Chen, Y. S. Wang, and M. C. Hong, “Lanthanide nanomaterials with photon management characteristics for photovoltaic application,” Nano Energy 1(1), 73–90 (2012).
[Crossref]

Chen, X. B.

Chen, Y.

R. Zhou, Y. Kou, X. Wei, C. Duan, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YNbO4:Bi3+Yb3+ phosphor,” Appl. Phys. B 107(2), 483–487 (2012).
[Crossref]

Chibotaru, L. F.

Chiu, C. H.

Chou, C. L.

Chou, W. C.

De Boer, D. K. G.

Debije, M. G.

Den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van Der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71(1), 014119 (2005).

Dexter, D. L.

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108(3), 630–633 (1957).
[Crossref]

Ding, X. L.

Duan, C.

R. Zhou, Y. Kou, X. Wei, C. Duan, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YNbO4:Bi3+Yb3+ phosphor,” Appl. Phys. B 107(2), 483–487 (2012).
[Crossref]

Eliseeva, S. V.

S. V. Eliseeva and J. C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2009).
[Crossref] [PubMed]

Förster, T.

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1–2), 55–75 (1948).
[Crossref]

Gao, Y.

Green, M. A.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Guo, J. H.

Han, H. V.

Han, S. Y.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[Crossref] [PubMed]

Hong, C. Y.

Hong, K. H.

Hong, M. C.

D. Q. Chen, Y. S. Wang, and M. C. Hong, “Lanthanide nanomaterials with photon management characteristics for photovoltaic application,” Nano Energy 1(1), 73–90 (2012).
[Crossref]

Huang, H. C.

Huang, W.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[Crossref] [PubMed]

Huang, X. Y.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[Crossref] [PubMed]

Hung, M. M.

Jian, H. T.

Keur, W.

Kirilenko, D.

Kou, Y.

R. Zhou, Y. Kou, X. Wei, C. Duan, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YNbO4:Bi3+Yb3+ phosphor,” Appl. Phys. B 107(2), 483–487 (2012).
[Crossref]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van Der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71(1), 014119 (2005).

Kuang, X. J.

Kuo, H. C.

Kuznetsov, A. S.

Lei, L.

W. J. Zhu, D. Q. Chen, L. Lei, J. Xu, and Y. S. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

Li, Y.

Li, Y. L.

Liang, H. B.

Lin, H. H.

Y. Z. Wang, D. C. Yu, H. H. Lin, S. Ye, M. Y. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 203510 (2013).
[Crossref]

Lin, J. Y.

Liu, Q. L.

Liu, X.

J. J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma, and J. Qiu, “Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped yttrium aluminium garnet,” Phys. Chem. Chem. Phys. 12(41), 13759–13762 (2010).
[Crossref] [PubMed]

Liu, X. F.

Liu, X. G.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[Crossref] [PubMed]

Liu, X. J.

Ma, Z.

J. J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma, and J. Qiu, “Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped yttrium aluminium garnet,” Phys. Chem. Chem. Phys. 12(41), 13759–13762 (2010).
[Crossref] [PubMed]

Ma, Z. J.

Meijerink, A.

D. K. G. De Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, R. Cees, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van Der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71(1), 014119 (2005).

Meng, F. Z.

Meng, J.

Moshchalkov, V. V.

Pan, Q. H.

Peng, M. Y.

Y. Z. Wang, D. C. Yu, H. H. Lin, S. Ye, M. Y. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 203510 (2013).
[Crossref]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in beta-NaYF4:Tm3+,” Appl. Phys. Lett. 100(19), 191911 (2012).
[Crossref]

Qiu, J.

J. J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma, and J. Qiu, “Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped yttrium aluminium garnet,” Phys. Chem. Chem. Phys. 12(41), 13759–13762 (2010).
[Crossref] [PubMed]

Qiu, J. R.

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

Ronda, C. R.

Salamo, G. J.

Sawanobori, N.

Shen, J. L.

Shestakov, M. V.

Shu, G. W.

Sun, H. T.

H. T. Sun, J. J. Zhou, and J. R. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

Tang, J. K.

Teng, Y.

J. J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma, and J. Qiu, “Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped yttrium aluminium garnet,” Phys. Chem. Chem. Phys. 12(41), 13759–13762 (2010).
[Crossref] [PubMed]

J. J. Zhou, Y. Teng, X. F. Liu, S. Ye, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Intense infrared emission of Er3+ in Ca8Mg(SiO4)4Cl2 phosphor from energy transfer of Eu2+ by broadband down-conversion,” Opt. Express 18(21), 21663–21668 (2010).
[Crossref] [PubMed]

Tikhomirov, V. K.

Trupke, T.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Van Der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van Der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71(1), 014119 (2005).

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

Van Tendeloo, G.

Verbunt, P. P. C.

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van Der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71(1), 014119 (2005).

Vlugt, T. J. H.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van Der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71(1), 014119 (2005).

Wang, J.

Wang, S. C.

Wang, Y. S.

W. J. Zhu, D. Q. Chen, L. Lei, J. Xu, and Y. S. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

D. Q. Chen, Y. S. Wang, and M. C. Hong, “Lanthanide nanomaterials with photon management characteristics for photovoltaic application,” Nano Energy 1(1), 73–90 (2012).
[Crossref]

Wang, Y. Z.

Y. Z. Wang, D. C. Yu, H. H. Lin, S. Ye, M. Y. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 203510 (2013).
[Crossref]

Wei, X.

R. Zhou, Y. Kou, X. Wei, C. Duan, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YNbO4:Bi3+Yb3+ phosphor,” Appl. Phys. B 107(2), 483–487 (2012).
[Crossref]

Wondraczek, L.

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in beta-NaYF4:Tm3+,” Appl. Phys. Lett. 100(19), 191911 (2012).
[Crossref]

Wu, C. H.

Wu, J. G.

Wu, X. J.

Wu, Y. R.

Wurfel, P.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Xu, J.

W. J. Zhu, D. Q. Chen, L. Lei, J. Xu, and Y. S. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

Xu, X. L.

Xu, X. Q.

Yang, G. J.

Yang, J.

Yang, T. T.

Ye, S.

Y. Z. Wang, D. C. Yu, H. H. Lin, S. Ye, M. Y. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 203510 (2013).
[Crossref]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in beta-NaYF4:Tm3+,” Appl. Phys. Lett. 100(19), 191911 (2012).
[Crossref]

J. J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma, and J. Qiu, “Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped yttrium aluminium garnet,” Phys. Chem. Chem. Phys. 12(41), 13759–13762 (2010).
[Crossref] [PubMed]

J. J. Zhou, Y. Teng, X. F. Liu, S. Ye, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Intense infrared emission of Er3+ in Ca8Mg(SiO4)4Cl2 phosphor from energy transfer of Eu2+ by broadband down-conversion,” Opt. Express 18(21), 21663–21668 (2010).
[Crossref] [PubMed]

Yeh, H. Y.

Yin, M.

R. Zhou, Y. Kou, X. Wei, C. Duan, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YNbO4:Bi3+Yb3+ phosphor,” Appl. Phys. B 107(2), 483–487 (2012).
[Crossref]

Yu, D. C.

Y. Z. Wang, D. C. Yu, H. H. Lin, S. Ye, M. Y. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 203510 (2013).
[Crossref]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in beta-NaYF4:Tm3+,” Appl. Phys. Lett. 100(19), 191911 (2012).
[Crossref]

Yu, P. C.

Yu, Y. N.

Zhang, C. L.

Zhang, Q. Y.

Y. Z. Wang, D. C. Yu, H. H. Lin, S. Ye, M. Y. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 203510 (2013).
[Crossref]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in beta-NaYF4:Tm3+,” Appl. Phys. Lett. 100(19), 191911 (2012).
[Crossref]

Zhang, Y. Z.

Zhang, Z. Z.

Zhou, J. J.

H. T. Sun, J. J. Zhou, and J. R. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

J. J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma, and J. Qiu, “Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped yttrium aluminium garnet,” Phys. Chem. Chem. Phys. 12(41), 13759–13762 (2010).
[Crossref] [PubMed]

J. J. Zhou, Y. Teng, X. F. Liu, S. Ye, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Intense infrared emission of Er3+ in Ca8Mg(SiO4)4Cl2 phosphor from energy transfer of Eu2+ by broadband down-conversion,” Opt. Express 18(21), 21663–21668 (2010).
[Crossref] [PubMed]

Zhou, R.

R. Zhou, Y. Kou, X. Wei, C. Duan, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YNbO4:Bi3+Yb3+ phosphor,” Appl. Phys. B 107(2), 483–487 (2012).
[Crossref]

Zhou, W. L.

Zhu, W. J.

W. J. Zhu, D. Q. Chen, L. Lei, J. Xu, and Y. S. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

Ann. Phys. (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1–2), 55–75 (1948).
[Crossref]

Appl. Phys. B (1)

R. Zhou, Y. Kou, X. Wei, C. Duan, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YNbO4:Bi3+Yb3+ phosphor,” Appl. Phys. B 107(2), 483–487 (2012).
[Crossref]

Appl. Phys. Lett. (1)

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in beta-NaYF4:Tm3+,” Appl. Phys. Lett. 100(19), 191911 (2012).
[Crossref]

Chem. Soc. Rev. (2)

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2012).
[Crossref] [PubMed]

S. V. Eliseeva and J. C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (2)

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Y. Z. Wang, D. C. Yu, H. H. Lin, S. Ye, M. Y. Peng, and Q. Y. Zhang, “Broadband three-photon near-infrared quantum cutting in Tm3+ singly doped YVO4,” J. Appl. Phys. 114(20), 203510 (2013).
[Crossref]

Nano Energy (1)

D. Q. Chen, Y. S. Wang, and M. C. Hong, “Lanthanide nanomaterials with photon management characteristics for photovoltaic application,” Nano Energy 1(1), 73–90 (2012).
[Crossref]

Nanoscale (1)

W. J. Zhu, D. Q. Chen, L. Lei, J. Xu, and Y. S. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

Opt. Express (8)

J. J. Zhou, Y. Teng, X. F. Liu, S. Ye, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Intense infrared emission of Er3+ in Ca8Mg(SiO4)4Cl2 phosphor from energy transfer of Eu2+ by broadband down-conversion,” Opt. Express 18(21), 21663–21668 (2010).
[Crossref] [PubMed]

M. V. Shestakov, V. K. Tikhomirov, D. Kirilenko, A. S. Kuznetsov, L. F. Chibotaru, A. N. Baranov, G. Van Tendeloo, and V. V. Moshchalkov, “Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host,” Opt. Express 19(17), 15955–15964 (2011).
[Crossref] [PubMed]

D. K. G. De Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, R. Cees, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).

W. L. Zhou, J. Yang, J. Wang, Y. Li, X. J. Kuang, J. K. Tang, and H. B. Liang, “Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5:Ce3+Yb3+,” Opt. Express 20(14), A510–A518 (2012).

G. W. Shu, J. Y. Lin, H. T. Jian, J. L. Shen, S. C. Wang, C. L. Chou, W. C. Chou, C. H. Wu, C. H. Chiu, and H. C. Kuo, “Optical coupling from InGaAs subcell to InGaP subcell in InGaP/InGaAs/Ge multi-junction solar cells,” Opt. Express 21(S1Suppl 1), A123–A130 (2013).
[Crossref] [PubMed]

X. B. Chen, G. J. Salamo, G. J. Yang, Y. L. Li, X. L. Ding, Y. Gao, Q. L. Liu, and J. H. Guo, “Multiphoton near-infrared quantum cutting luminescence phenomena of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor,” Opt. Express 21(18Suppl 5), A829–A840 (2013).
[Crossref] [PubMed]

M. M. Hung, H. V. Han, C. Y. Hong, K. H. Hong, T. T. Yang, P. C. Yu, Y. R. Wu, H. Y. Yeh, and H. C. Huang, “Compound biomimetic structures for efficiency enhancement of Ga₀.₅In₀.₅P/GaAs/Ge triple-junction solar cells,” Opt. Express 22(5Suppl 2), A295–A300 (2014).
[Crossref] [PubMed]

X. J. Wu, F. Z. Meng, Z. Z. Zhang, Y. N. Yu, X. J. Liu, and J. Meng, “Broadband down-conversion for silicon solar cell by ZnSe/phosphor heterostructure,” Opt. Express 22(S3), A735–A741 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (2)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

J. J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma, and J. Qiu, “Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped yttrium aluminium garnet,” Phys. Chem. Chem. Phys. 12(41), 13759–13762 (2010).
[Crossref] [PubMed]

Phys. Rev. (1)

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108(3), 630–633 (1957).
[Crossref]

Phys. Rev. B (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van Der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B 71(1), 014119 (2005).

Prog. Mater. Sci. (1)

H. T. Sun, J. J. Zhou, and J. R. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 64, 1–72 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[Crossref]

Other (3)

G. X. Xu, Rare Earth (Metallurgical Industry, 1995) (in Chinese).

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4: Eu3+ through downconversion,” Science. 283(5402), 663-666 (1999).
[Crossref]

R. Reisfeld, Lasers and Excited States of Rare-Earth (Springer-Verlag, 1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) XRD pattern (red) and (b) the absorption spectrum (blue) of the Tm0.08Bi0.01Y0.91NbO4 powder phosphor sample.
Fig. 2
Fig. 2 (a) Visible and (b) infrared excitation spectra of the (A) Tm0.08Bi0.01Y0.91NbO4 (blue) and (B) Tm0.005Y0.995NbO4 (red) powder phosphors, when the fluorescence received wavelength is positioned at 802.5 nm (a) and 1820.0nm (b) wavelength.
Fig. 3
Fig. 3 Luminescence spectra of (A) Tm0.08Bi0.01Y0.91NbO4 (blue), (B) Tm0.005Y0.995NbO4 (red) and (C) Bi0.01Y0.99NbO4 (green) powder phosphors, when the 302.0 nm 1S03P1 absorption transition of the Bi3+ ion is selected as the excitation wavelength.
Fig. 4
Fig. 4 Luminescence spectra of (A) Tm0.08Bi0.01Y0.91NbO4 (blue) and (B) Tm0.005Y0.995NbO4 (red) powder phosphors, when the 461.0 nm 3H61G4 excitation peak of the Tm3+ ion is selected as the excitation wavelength.
Fig. 5
Fig. 5 Fluorescence lifetime of the (a) 648.0 nm(left) visible luminescence of (A) Tm0.08Bi0.01Y0.91NbO4 (blue) and (B) Tm0.005Y0.995NbO4 (red), and (b) 458.5 nm(right) visible luminescence of (A) Tm0.08Bi0.01Y0.91NbO4 (blue) and (C) Bi0.01Y0.99NbO4 (red) powder phosphor, when excited by (a) 461.0 nm (left) and (b) 302.0 nm (right) pulsed light respectively.
Fig. 6
Fig. 6 Schematic diagram of the energy level structure and quantum cutting process of Tm3+Bi3+:YNbO4 powder phosphor. The blue line, red line and lake-blue line represent the absorption, energy transfer and luminescence respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η tr,x%Tm 1 I x%Tm dt I 0%Tm dt .
η CR,x%Tm ( 1 G 4 )={ η 1 G 4 ·[1 η tr,x%Tm ( 1 G 4 )]+ η 3 H 4 η tr,x%Tm ( 1 G 4 )} ·{ η 3 H 4 ·[1 η tr,x%Tm ( 3 H 4 )]+2 η 3 F 4 η tr,x%Tm ( 3 H 4 )} + η 3 H 5 3 F 4 · η 3 F 4 η tr,x%Tm ( 1 G 4 ),
η CR,x%Tm ( 1 G 4 )=1+ η tr,x%Tm ( 1 G 4 )+ η tr,x%Tm ( 3 H 4 ).

Metrics