Abstract

We demonstrated the improved conversion efficiency (η) of dye-sensitized solar cells (DSSCs) using the textile-patterned polydimethylsiloxane (PDMS) antireflection layers prepared by metal-coated textile master molds by a simple soft imprint lithography. When light propagates through the textile-patterned surface of PDMS (i.e., textile PDMS) laminated on the outer glass surface deposited with fluorine-doped tin oxide (i.e., FTO/glass), both the transmitted and diffused lights into the photo-anode of DSSCs were simultaneously enhanced. Compared to the bare FTO/glass, the textile PDMS increased the total transmittance from 82.3 to 85.1% and its diffuse transmittance was significantly increased from 5.9 to 78.1% at 550 nm of wavelength. The optical property of textile PDMS was also theoretically analyzed by the finite-difference time-domain simulation. By laminating the textile PDMS onto the outer glass surface of DSSCs, the η was enhanced from 6.04 to 6.51%. Additionally, the fabricated textile PDMS exhibited a hydrophobic surface with water contact angle of ~123.15°.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Method to Protect Charge Recombination in the Back-Contact Dye-Sensitized Solar Cell

Beomjin Yoo, Kang-Jin Kim, Doh-Kwon Lee, Kyungkon Kim, Min Jae Ko, Yong Hyun Kim, Won Mok Kim, and Nam-Gyu Park
Opt. Express 18(S3) A395-A402 (2010)

Plasmonic effects of quantum size metal nanoparticles on dye-sensitized solar cell

S. Shah, I.M. Noor, J. Pitawala, I. Albinson, T. M. W. J. Bandara, B. -E. Mellander, and A. K. Arof
Opt. Mater. Express 7(6) 2069-2083 (2017)

Inexpensive graded-index antireflective surfaces for silicon-based optoelectronic devices

Arpita Haldar, M. Srinivas Reddy, and R. Vijaya
J. Opt. Soc. Am. B 33(11) 2331-2338 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
    [Crossref]
  2. B. O’Regan, J. Moser, M. Anderson, and M. Grätzel, “Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation,” J. Phys. Chem. 94(24), 8720–8726 (1990).
    [Crossref]
  3. N. G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
    [Crossref]
  4. E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez, “All‐solid‐state dye‐sensitized nanoporous TiO2 hybrid solar cells with high energy‐conversion efficiency,” Adv. Mater. 18(19), 2579–2582 (2006).
    [Crossref]
  5. A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chem. Rev. 110(1), 527–546 (2010).
    [Crossref] [PubMed]
  6. J. F. Wishart, “Energy applications of ionic liquids,” Energy Environ. Sci. 2(9), 956–961 (2009).
    [Crossref]
  7. J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, “Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells,” Nanotechnology 17(11), S304–S312 (2006).
    [Crossref]
  8. R. Jose, A. Kumar, V. Thavasi, K. Fujihara, S. Uchida, and S. Ramakrishna, “Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells,” Appl. Phys. Lett. 93(2), 023125 (2008).
    [Crossref]
  9. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  10. J. W. Leem, J. S. Yu, J. Heo, W. K. Park, J. H. Park, W. J. Cho, and D. E. Kim, “Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications,” Sol. Energy Mater. Sol. Cells 120, 555–560 (2014).
    [Crossref]
  11. X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
    [Crossref] [PubMed]
  12. S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(9), 1176–1188 (2006).
    [Crossref]
  13. J. Kim, J. K. Koh, B. Kim, J. H. Kim, and E. Kim, “Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 51(28), 6864–6869 (2012).
    [Crossref] [PubMed]
  14. S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25(22), 3111–3116 (2013).
    [Crossref] [PubMed]
  15. D. Barettin, A. D. Carlo, R. D. Angelis, M. Casalboni, and P. Prosposito, “Effect of dielectric Bragg grating nanostructuring on dye sensitized solar cells,” Opt. Express 20(S6), A888–A897 (2012).
    [Crossref]
  16. J. Lee and M. Lee, “Diffraction‐grating‐embedded dye‐sensitized solar cells with good light harvesting,” Adv. Energy Mater. 4(4), 1300978 (2014).
    [Crossref]
  17. C. Lopez, S. Colodrero, A. Jimenez Solano, G. Lozano, R. Ortiz, M. E. Calvo, and H. Míguez, “Multidirectional light‐harvesting enhancement in dye solar cells by surface patterning,” Adv. Optical Mater. 2(9), 879–884 (2014).
  18. P. Sasanpour and R. Mohammadpour, “Theoretical calculation of scattering efficiency of isotropic and anisotropic scattering particles employed in nanostructured solar cells,” J. Opt. 16(5), 055703 (2014).
    [Crossref]
  19. F. E. Gálvez, P. R. F. Barnes, J. Halme, and H. Míguez, “Dye sensitized solar cells as optically random photovoltaic media,” Energy Environ. Sci. 7(2), 689–697 (2014).
    [Crossref]
  20. S. Foster and S. John, “Light-trapping in dye-sensitized solar cells,” Energy Environ. Sci. 6(10), 2972–2983 (2013).
    [Crossref]
  21. F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
    [Crossref]
  22. J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films,” Adv. Energy Mater. 4(8), 1301315 (2014).
    [Crossref]
  23. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
    [Crossref] [PubMed]
  24. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
    [Crossref]
  25. S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
    [Crossref] [PubMed]
  26. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
    [Crossref] [PubMed]
  27. S. Y. Heo, J. K. Koh, G. Kang, S. H. Ahn, W. S. Chi, K. Kim, and J. H. Kim, “Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects,” Adv. Energy Mater. 4(3), 1300632 (2014).
  28. J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
    [Crossref]
  29. Y. H. Ko and J. S. Yu, “Highly transparent sapphire micro-grating structures with large diffuse light scattering,” Opt. Express 19(16), 15574–15583 (2011).
    [Crossref] [PubMed]
  30. S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
    [Crossref]
  31. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express 19(15), 14200–14209 (2011).
    [Crossref] [PubMed]
  32. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
    [Crossref] [PubMed]
  33. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
    [Crossref] [PubMed]
  34. B. Arkles, “Hydrophobicity, Hydrophilicity and Silanes,” Paint & Coatings Industry Magazine 22, 114–135 (2006).
  35. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
    [Crossref]
  36. T. C. Hobæk, Nanostructured PDMS Surfaces with Patterned Wettability (Norwegian University of Science and Technology, 2011).
  37. G. R. Lin, Y. H. Lin, and F. S. Meng, “Haze and polarization scrambling of nonlinearly scattered light from antiglare Si nanorod surface,” IEEE Photon. J. 4(1), 163–173 (2012).
    [Crossref]
  38. S. S. Lo, D. Haung, and D. J. Jan, “Haze ratio enhancement using a closely packed ZnO monolayer structure,” Opt. Express 18(2), 662–669 (2010).
    [Crossref] [PubMed]

2015 (1)

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

2014 (8)

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

S. Y. Heo, J. K. Koh, G. Kang, S. H. Ahn, W. S. Chi, K. Kim, and J. H. Kim, “Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects,” Adv. Energy Mater. 4(3), 1300632 (2014).

J. W. Leem, J. S. Yu, J. Heo, W. K. Park, J. H. Park, W. J. Cho, and D. E. Kim, “Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications,” Sol. Energy Mater. Sol. Cells 120, 555–560 (2014).
[Crossref]

J. Lee and M. Lee, “Diffraction‐grating‐embedded dye‐sensitized solar cells with good light harvesting,” Adv. Energy Mater. 4(4), 1300978 (2014).
[Crossref]

C. Lopez, S. Colodrero, A. Jimenez Solano, G. Lozano, R. Ortiz, M. E. Calvo, and H. Míguez, “Multidirectional light‐harvesting enhancement in dye solar cells by surface patterning,” Adv. Optical Mater. 2(9), 879–884 (2014).

P. Sasanpour and R. Mohammadpour, “Theoretical calculation of scattering efficiency of isotropic and anisotropic scattering particles employed in nanostructured solar cells,” J. Opt. 16(5), 055703 (2014).
[Crossref]

F. E. Gálvez, P. R. F. Barnes, J. Halme, and H. Míguez, “Dye sensitized solar cells as optically random photovoltaic media,” Energy Environ. Sci. 7(2), 689–697 (2014).
[Crossref]

2013 (2)

S. Foster and S. John, “Light-trapping in dye-sensitized solar cells,” Energy Environ. Sci. 6(10), 2972–2983 (2013).
[Crossref]

S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25(22), 3111–3116 (2013).
[Crossref] [PubMed]

2012 (5)

J. Kim, J. K. Koh, B. Kim, J. H. Kim, and E. Kim, “Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 51(28), 6864–6869 (2012).
[Crossref] [PubMed]

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

G. R. Lin, Y. H. Lin, and F. S. Meng, “Haze and polarization scrambling of nonlinearly scattered light from antiglare Si nanorod surface,” IEEE Photon. J. 4(1), 163–173 (2012).
[Crossref]

D. Barettin, A. D. Carlo, R. D. Angelis, M. Casalboni, and P. Prosposito, “Effect of dielectric Bragg grating nanostructuring on dye sensitized solar cells,” Opt. Express 20(S6), A888–A897 (2012).
[Crossref]

2011 (3)

2010 (7)

A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chem. Rev. 110(1), 527–546 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

S. S. Lo, D. Haung, and D. J. Jan, “Haze ratio enhancement using a closely packed ZnO monolayer structure,” Opt. Express 18(2), 662–669 (2010).
[Crossref] [PubMed]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[Crossref]

2009 (1)

J. F. Wishart, “Energy applications of ionic liquids,” Energy Environ. Sci. 2(9), 956–961 (2009).
[Crossref]

2008 (1)

R. Jose, A. Kumar, V. Thavasi, K. Fujihara, S. Uchida, and S. Ramakrishna, “Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells,” Appl. Phys. Lett. 93(2), 023125 (2008).
[Crossref]

2006 (4)

J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, “Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells,” Nanotechnology 17(11), S304–S312 (2006).
[Crossref]

E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez, “All‐solid‐state dye‐sensitized nanoporous TiO2 hybrid solar cells with high energy‐conversion efficiency,” Adv. Mater. 18(19), 2579–2582 (2006).
[Crossref]

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(9), 1176–1188 (2006).
[Crossref]

B. Arkles, “Hydrophobicity, Hydrophilicity and Silanes,” Paint & Coatings Industry Magazine 22, 114–135 (2006).

2000 (1)

N. G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
[Crossref]

1999 (1)

1991 (1)

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[Crossref]

1990 (1)

B. O’Regan, J. Moser, M. Anderson, and M. Grätzel, “Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation,” J. Phys. Chem. 94(24), 8720–8726 (1990).
[Crossref]

1944 (1)

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[Crossref]

Agarwal, A. M.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Ahn, S. H.

S. Y. Heo, J. K. Koh, G. Kang, S. H. Ahn, W. S. Chi, K. Kim, and J. H. Kim, “Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects,” Adv. Energy Mater. 4(3), 1300632 (2014).

Anderson, M.

B. O’Regan, J. Moser, M. Anderson, and M. Grätzel, “Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation,” J. Phys. Chem. 94(24), 8720–8726 (1990).
[Crossref]

Angelis, R. D.

Arkles, B.

B. Arkles, “Hydrophobicity, Hydrophilicity and Silanes,” Paint & Coatings Industry Magazine 22, 114–135 (2006).

Aydil, E. S.

J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, “Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells,” Nanotechnology 17(11), S304–S312 (2006).
[Crossref]

Barettin, D.

Barnes, P. R. F.

F. E. Gálvez, P. R. F. Barnes, J. Halme, and H. Míguez, “Dye sensitized solar cells as optically random photovoltaic media,” Energy Environ. Sci. 7(2), 689–697 (2014).
[Crossref]

Baxter, J. B.

J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, “Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells,” Nanotechnology 17(11), S304–S312 (2006).
[Crossref]

Baxter, S.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[Crossref]

Belleville, P.

E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez, “All‐solid‐state dye‐sensitized nanoporous TiO2 hybrid solar cells with high energy‐conversion efficiency,” Adv. Mater. 18(19), 2579–2582 (2006).
[Crossref]

Boscher, C.

E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez, “All‐solid‐state dye‐sensitized nanoporous TiO2 hybrid solar cells with high energy‐conversion efficiency,” Adv. Mater. 18(19), 2579–2582 (2006).
[Crossref]

Buvat, P.

E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez, “All‐solid‐state dye‐sensitized nanoporous TiO2 hybrid solar cells with high energy‐conversion efficiency,” Adv. Mater. 18(19), 2579–2582 (2006).
[Crossref]

Calvo, M. E.

C. Lopez, S. Colodrero, A. Jimenez Solano, G. Lozano, R. Ortiz, M. E. Calvo, and H. Míguez, “Multidirectional light‐harvesting enhancement in dye solar cells by surface patterning,” Adv. Optical Mater. 2(9), 879–884 (2014).

Carlo, A. D.

Casalboni, M.

Cassie, A. B. D.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[Crossref]

Char, K.

S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25(22), 3111–3116 (2013).
[Crossref] [PubMed]

Chi, W. S.

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

S. Y. Heo, J. K. Koh, G. Kang, S. H. Ahn, W. S. Chi, K. Kim, and J. H. Kim, “Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects,” Adv. Energy Mater. 4(3), 1300632 (2014).

Cho, W. J.

J. W. Leem, J. S. Yu, J. Heo, W. K. Park, J. H. Park, W. J. Cho, and D. E. Kim, “Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications,” Sol. Energy Mater. Sol. Cells 120, 555–560 (2014).
[Crossref]

Choi, H. J.

Choi, M.

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

Colodrero, S.

C. Lopez, S. Colodrero, A. Jimenez Solano, G. Lozano, R. Ortiz, M. E. Calvo, and H. Míguez, “Multidirectional light‐harvesting enhancement in dye solar cells by surface patterning,” Adv. Optical Mater. 2(9), 879–884 (2014).

Demir, H. V.

Fan, S.

Foster, S.

S. Foster and S. John, “Light-trapping in dye-sensitized solar cells,” Energy Environ. Sci. 6(10), 2972–2983 (2013).
[Crossref]

Frank, A. J.

N. G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
[Crossref]

Fujihara, K.

R. Jose, A. Kumar, V. Thavasi, K. Fujihara, S. Uchida, and S. Ramakrishna, “Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells,” Appl. Phys. Lett. 93(2), 023125 (2008).
[Crossref]

Gálvez, F. E.

F. E. Gálvez, P. R. F. Barnes, J. Halme, and H. Míguez, “Dye sensitized solar cells as optically random photovoltaic media,” Energy Environ. Sci. 7(2), 689–697 (2014).
[Crossref]

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Grätzel, M.

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[Crossref]

B. O’Regan, J. Moser, M. Anderson, and M. Grätzel, “Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation,” J. Phys. Chem. 94(24), 8720–8726 (1990).
[Crossref]

Guan, X. Y.

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

Halme, J.

F. E. Gálvez, P. R. F. Barnes, J. Halme, and H. Míguez, “Dye sensitized solar cells as optically random photovoltaic media,” Energy Environ. Sci. 7(2), 689–697 (2014).
[Crossref]

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Hane, K.

Haung, D.

Heo, J.

J. W. Leem, J. S. Yu, J. Heo, W. K. Park, J. H. Park, W. J. Cho, and D. E. Kim, “Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications,” Sol. Energy Mater. Sol. Cells 120, 555–560 (2014).
[Crossref]

Heo, S. Y.

S. Y. Heo, J. K. Koh, G. Kang, S. H. Ahn, W. S. Chi, K. Kim, and J. H. Kim, “Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects,” Adv. Energy Mater. 4(3), 1300632 (2014).

Hinsch, A.

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(9), 1176–1188 (2006).
[Crossref]

Hochbaum, A. I.

A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chem. Rev. 110(1), 527–546 (2010).
[Crossref] [PubMed]

Hore, S.

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(9), 1176–1188 (2006).
[Crossref]

Jan, D. J.

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

Ji, S.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Jimenez Solano, A.

C. Lopez, S. Colodrero, A. Jimenez Solano, G. Lozano, R. Ortiz, M. E. Calvo, and H. Míguez, “Multidirectional light‐harvesting enhancement in dye solar cells by surface patterning,” Adv. Optical Mater. 2(9), 879–884 (2014).

John, S.

S. Foster and S. John, “Light-trapping in dye-sensitized solar cells,” Energy Environ. Sci. 6(10), 2972–2983 (2013).
[Crossref]

Jose, R.

R. Jose, A. Kumar, V. Thavasi, K. Fujihara, S. Uchida, and S. Ramakrishna, “Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells,” Appl. Phys. Lett. 93(2), 023125 (2008).
[Crossref]

Jung, J. H.

S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25(22), 3111–3116 (2013).
[Crossref] [PubMed]

Kanamori, Y.

Kang, G.

S. Y. Heo, J. K. Koh, G. Kang, S. H. Ahn, W. S. Chi, K. Kim, and J. H. Kim, “Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects,” Adv. Energy Mater. 4(3), 1300632 (2014).

Kang, Y. S.

S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25(22), 3111–3116 (2013).
[Crossref] [PubMed]

Kemppainen, E.

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Kern, R.

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(9), 1176–1188 (2006).
[Crossref]

Kim, B.

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

J. Kim, J. K. Koh, B. Kim, J. H. Kim, and E. Kim, “Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 51(28), 6864–6869 (2012).
[Crossref] [PubMed]

Kim, D. E.

J. W. Leem, J. S. Yu, J. Heo, W. K. Park, J. H. Park, W. J. Cho, and D. E. Kim, “Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications,” Sol. Energy Mater. Sol. Cells 120, 555–560 (2014).
[Crossref]

Kim, E.

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

J. Kim, J. K. Koh, B. Kim, J. H. Kim, and E. Kim, “Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 51(28), 6864–6869 (2012).
[Crossref] [PubMed]

Kim, J.

J. Kim, J. K. Koh, B. Kim, J. H. Kim, and E. Kim, “Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 51(28), 6864–6869 (2012).
[Crossref] [PubMed]

Kim, J. H.

S. Y. Heo, J. K. Koh, G. Kang, S. H. Ahn, W. S. Chi, K. Kim, and J. H. Kim, “Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects,” Adv. Energy Mater. 4(3), 1300632 (2014).

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

J. Kim, J. K. Koh, B. Kim, J. H. Kim, and E. Kim, “Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 51(28), 6864–6869 (2012).
[Crossref] [PubMed]

Kim, K.

S. Y. Heo, J. K. Koh, G. Kang, S. H. Ahn, W. S. Chi, K. Kim, and J. H. Kim, “Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects,” Adv. Energy Mater. 4(3), 1300632 (2014).

Kim, S.

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

Kim, Y.

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

Kimerling, L. C.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Ko, Y. H.

Koh, J. H.

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25(22), 3111–3116 (2013).
[Crossref] [PubMed]

Koh, J. K.

S. Y. Heo, J. K. Koh, G. Kang, S. H. Ahn, W. S. Chi, K. Kim, and J. H. Kim, “Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects,” Adv. Energy Mater. 4(3), 1300632 (2014).

J. Kim, J. K. Koh, B. Kim, J. H. Kim, and E. Kim, “Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 51(28), 6864–6869 (2012).
[Crossref] [PubMed]

Kozinsky, I.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Kumar, A.

R. Jose, A. Kumar, V. Thavasi, K. Fujihara, S. Uchida, and S. Ramakrishna, “Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells,” Appl. Phys. Lett. 93(2), 023125 (2008).
[Crossref]

Lancelle-Beltran, E.

E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez, “All‐solid‐state dye‐sensitized nanoporous TiO2 hybrid solar cells with high energy‐conversion efficiency,” Adv. Mater. 18(19), 2579–2582 (2006).
[Crossref]

Lee, B.

S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25(22), 3111–3116 (2013).
[Crossref] [PubMed]

Lee, J.

J. Lee and M. Lee, “Diffraction‐grating‐embedded dye‐sensitized solar cells with good light harvesting,” Adv. Energy Mater. 4(4), 1300978 (2014).
[Crossref]

Lee, M.

J. Lee and M. Lee, “Diffraction‐grating‐embedded dye‐sensitized solar cells with good light harvesting,” Adv. Energy Mater. 4(4), 1300978 (2014).
[Crossref]

Lee, S. H.

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

Lee, Y. G.

S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25(22), 3111–3116 (2013).
[Crossref] [PubMed]

Lee, Y. T.

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[Crossref]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[Crossref] [PubMed]

Leem, J. W.

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

J. W. Leem, J. S. Yu, J. Heo, W. K. Park, J. H. Park, W. J. Cho, and D. E. Kim, “Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications,” Sol. Energy Mater. Sol. Cells 120, 555–560 (2014).
[Crossref]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[Crossref]

Lim, H.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Lin, G. R.

G. R. Lin, Y. H. Lin, and F. S. Meng, “Haze and polarization scrambling of nonlinearly scattered light from antiglare Si nanorod surface,” IEEE Photon. J. 4(1), 163–173 (2012).
[Crossref]

Lin, Y. H.

G. R. Lin, Y. H. Lin, and F. S. Meng, “Haze and polarization scrambling of nonlinearly scattered light from antiglare Si nanorod surface,” IEEE Photon. J. 4(1), 163–173 (2012).
[Crossref]

Liu, J.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Lo, S. S.

Lopez, C.

C. Lopez, S. Colodrero, A. Jimenez Solano, G. Lozano, R. Ortiz, M. E. Calvo, and H. Míguez, “Multidirectional light‐harvesting enhancement in dye solar cells by surface patterning,” Adv. Optical Mater. 2(9), 879–884 (2014).

Lozano, G.

C. Lopez, S. Colodrero, A. Jimenez Solano, G. Lozano, R. Ortiz, M. E. Calvo, and H. Míguez, “Multidirectional light‐harvesting enhancement in dye solar cells by surface patterning,” Adv. Optical Mater. 2(9), 879–884 (2014).

Meng, F. S.

G. R. Lin, Y. H. Lin, and F. S. Meng, “Haze and polarization scrambling of nonlinearly scattered light from antiglare Si nanorod surface,” IEEE Photon. J. 4(1), 163–173 (2012).
[Crossref]

Michel, J.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Míguez, H.

C. Lopez, S. Colodrero, A. Jimenez Solano, G. Lozano, R. Ortiz, M. E. Calvo, and H. Míguez, “Multidirectional light‐harvesting enhancement in dye solar cells by surface patterning,” Adv. Optical Mater. 2(9), 879–884 (2014).

F. E. Gálvez, P. R. F. Barnes, J. Halme, and H. Míguez, “Dye sensitized solar cells as optically random photovoltaic media,” Energy Environ. Sci. 7(2), 689–697 (2014).
[Crossref]

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Mohammadpour, R.

P. Sasanpour and R. Mohammadpour, “Theoretical calculation of scattering efficiency of isotropic and anisotropic scattering particles employed in nanostructured solar cells,” J. Opt. 16(5), 055703 (2014).
[Crossref]

Moser, J.

B. O’Regan, J. Moser, M. Anderson, and M. Grätzel, “Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation,” J. Phys. Chem. 94(24), 8720–8726 (1990).
[Crossref]

O’Regan, B.

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[Crossref]

B. O’Regan, J. Moser, M. Anderson, and M. Grätzel, “Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation,” J. Phys. Chem. 94(24), 8720–8726 (1990).
[Crossref]

Okyay, A. K.

Ortiz, R.

C. Lopez, S. Colodrero, A. Jimenez Solano, G. Lozano, R. Ortiz, M. E. Calvo, and H. Míguez, “Multidirectional light‐harvesting enhancement in dye solar cells by surface patterning,” Adv. Optical Mater. 2(9), 879–884 (2014).

Park, C.

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

Park, J.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Park, J. H.

J. W. Leem, J. S. Yu, J. Heo, W. K. Park, J. H. Park, W. J. Cho, and D. E. Kim, “Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications,” Sol. Energy Mater. Sol. Cells 120, 555–560 (2014).
[Crossref]

Park, N. G.

N. G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
[Crossref]

Park, W. K.

J. W. Leem, J. S. Yu, J. Heo, W. K. Park, J. H. Park, W. J. Cho, and D. E. Kim, “Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications,” Sol. Energy Mater. Sol. Cells 120, 555–560 (2014).
[Crossref]

Prené, P.

E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez, “All‐solid‐state dye‐sensitized nanoporous TiO2 hybrid solar cells with high energy‐conversion efficiency,” Adv. Mater. 18(19), 2579–2582 (2006).
[Crossref]

Prosposito, P.

Ramakrishna, S.

R. Jose, A. Kumar, V. Thavasi, K. Fujihara, S. Uchida, and S. Ramakrishna, “Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells,” Appl. Phys. Lett. 93(2), 023125 (2008).
[Crossref]

Raman, A.

Rogers, J. A.

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

Sanchez, C.

E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez, “All‐solid‐state dye‐sensitized nanoporous TiO2 hybrid solar cells with high energy‐conversion efficiency,” Adv. Mater. 18(19), 2579–2582 (2006).
[Crossref]

Sasaki, M.

Sasanpour, P.

P. Sasanpour and R. Mohammadpour, “Theoretical calculation of scattering efficiency of isotropic and anisotropic scattering particles employed in nanostructured solar cells,” J. Opt. 16(5), 055703 (2014).
[Crossref]

Sefunc, M. A.

Seo, S.

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

Sheng, X.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Smit, H.

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(9), 1176–1188 (2006).
[Crossref]

Song, Y. M.

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[Crossref] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[Crossref]

Thavasi, V.

R. Jose, A. Kumar, V. Thavasi, K. Fujihara, S. Uchida, and S. Ramakrishna, “Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells,” Appl. Phys. Lett. 93(2), 023125 (2008).
[Crossref]

Uchida, S.

R. Jose, A. Kumar, V. Thavasi, K. Fujihara, S. Uchida, and S. Ramakrishna, “Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells,” Appl. Phys. Lett. 93(2), 023125 (2008).
[Crossref]

van de Lagemaat, J.

N. G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
[Crossref]

van Ommering, K.

J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, “Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells,” Nanotechnology 17(11), S304–S312 (2006).
[Crossref]

Vetter, C.

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(9), 1176–1188 (2006).
[Crossref]

Walker, A. M.

J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, “Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells,” Nanotechnology 17(11), S304–S312 (2006).
[Crossref]

Wishart, J. F.

J. F. Wishart, “Energy applications of ionic liquids,” Energy Environ. Sci. 2(9), 956–961 (2009).
[Crossref]

Wooh, S.

S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25(22), 3111–3116 (2013).
[Crossref] [PubMed]

Yang, P.

A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chem. Rev. 110(1), 527–546 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Yang, X.

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

Yoon, H.

S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25(22), 3111–3116 (2013).
[Crossref] [PubMed]

Yu, J. S.

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

J. W. Leem, J. S. Yu, J. Heo, W. K. Park, J. H. Park, W. J. Cho, and D. E. Kim, “Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications,” Sol. Energy Mater. Sol. Cells 120, 555–560 (2014).
[Crossref]

Y. H. Ko and J. S. Yu, “Highly transparent sapphire micro-grating structures with large diffuse light scattering,” Opt. Express 19(16), 15574–15583 (2011).
[Crossref] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[Crossref]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[Crossref] [PubMed]

Yu, Z.

Adv. Energy Mater. (4)

J. Lee and M. Lee, “Diffraction‐grating‐embedded dye‐sensitized solar cells with good light harvesting,” Adv. Energy Mater. 4(4), 1300978 (2014).
[Crossref]

J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and J. S. Yu, “Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films,” Adv. Energy Mater. 4(8), 1301315 (2014).
[Crossref]

S. Y. Heo, J. K. Koh, G. Kang, S. H. Ahn, W. S. Chi, K. Kim, and J. H. Kim, “Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects,” Adv. Energy Mater. 4(3), 1300632 (2014).

S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, “Enhanced device efficiency of bilayered inverted organic solar cells based on photocurable P3HTs with a light-harvesting ZnO nanorod array,” Adv. Energy Mater. 4(6), 1301338 (2014).
[Crossref]

Adv. Mater. (3)

S. Wooh, H. Yoon, J. H. Jung, Y. G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25(22), 3111–3116 (2013).
[Crossref] [PubMed]

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez, “All‐solid‐state dye‐sensitized nanoporous TiO2 hybrid solar cells with high energy‐conversion efficiency,” Adv. Mater. 18(19), 2579–2582 (2006).
[Crossref]

Adv. Optical Mater. (1)

C. Lopez, S. Colodrero, A. Jimenez Solano, G. Lozano, R. Ortiz, M. E. Calvo, and H. Míguez, “Multidirectional light‐harvesting enhancement in dye solar cells by surface patterning,” Adv. Optical Mater. 2(9), 879–884 (2014).

Angew. Chem. Int. Ed. Engl. (1)

J. Kim, J. K. Koh, B. Kim, J. H. Kim, and E. Kim, “Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 51(28), 6864–6869 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[Crossref]

Appl. Phys. Lett. (1)

R. Jose, A. Kumar, V. Thavasi, K. Fujihara, S. Uchida, and S. Ramakrishna, “Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells,” Appl. Phys. Lett. 93(2), 023125 (2008).
[Crossref]

Chem. Rev. (1)

A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chem. Rev. 110(1), 527–546 (2010).
[Crossref] [PubMed]

Energy Environ. Sci. (3)

J. F. Wishart, “Energy applications of ionic liquids,” Energy Environ. Sci. 2(9), 956–961 (2009).
[Crossref]

F. E. Gálvez, P. R. F. Barnes, J. Halme, and H. Míguez, “Dye sensitized solar cells as optically random photovoltaic media,” Energy Environ. Sci. 7(2), 689–697 (2014).
[Crossref]

S. Foster and S. John, “Light-trapping in dye-sensitized solar cells,” Energy Environ. Sci. 6(10), 2972–2983 (2013).
[Crossref]

IEEE Photon. J. (1)

G. R. Lin, Y. H. Lin, and F. S. Meng, “Haze and polarization scrambling of nonlinearly scattered light from antiglare Si nanorod surface,” IEEE Photon. J. 4(1), 163–173 (2012).
[Crossref]

J. Opt. (1)

P. Sasanpour and R. Mohammadpour, “Theoretical calculation of scattering efficiency of isotropic and anisotropic scattering particles employed in nanostructured solar cells,” J. Opt. 16(5), 055703 (2014).
[Crossref]

J. Phys. Chem. (1)

B. O’Regan, J. Moser, M. Anderson, and M. Grätzel, “Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation,” J. Phys. Chem. 94(24), 8720–8726 (1990).
[Crossref]

J. Phys. Chem. B (1)

N. G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B 104(38), 8989–8994 (2000).
[Crossref]

J. Phys. Chem. C (1)

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Nano Lett. (1)

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Nanoscale (1)

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, “Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells,” Nanotechnology 17(11), S304–S312 (2006).
[Crossref]

Nature (1)

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Paint & Coatings Industry Magazine (1)

B. Arkles, “Hydrophobicity, Hydrophilicity and Silanes,” Paint & Coatings Industry Magazine 22, 114–135 (2006).

Small (1)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90(9), 1176–1188 (2006).
[Crossref]

J. W. Leem, J. S. Yu, J. Heo, W. K. Park, J. H. Park, W. J. Cho, and D. E. Kim, “Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications,” Sol. Energy Mater. Sol. Cells 120, 555–560 (2014).
[Crossref]

Trans. Faraday Soc. (1)

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[Crossref]

Other (1)

T. C. Hobæk, Nanostructured PDMS Surfaces with Patterned Wettability (Norwegian University of Science and Technology, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the fabrication process for the textile PDMS: Preparation of textile master molds, simple coating of the PDMS, and separation the textile PDMS from the master mold, and (b) (i) optical microscope image and (ii) tilted-view and (iii) high-magnification FE-SEM images of the fabricated textile PDMS.
Fig. 2
Fig. 2 (a) Photographs of a water droplet on the surface of (i) the bare glass, (ii) the flat PDMS, and (iii) the textile PDMS, including measured contact angles (θc), and (b) measured total transmittance and reflectance spectra of the FTO/glass, the flat PDMS on FTO/glass, and the textile PDMS on FTO/glass at normal incidence.
Fig. 3
Fig. 3 (a) Schematic diagram of a simple model for textile PDMS, (b) calculated total transmitted powers of flat PDMS and textile PDMS with 15 µm of period, and contour plots for the calculated (c) total and (d) high-order transmitted power as a function of period of textile PDMS.
Fig. 4
Fig. 4 (a) Measured diffuse transmittance (T) spectra of the FTO/glass, the flat PDMS on FTO/glass, and the textile PDMS on FTO/glass (i.e., diffuse T = total T - specular T) and (b) theoretical analysis of light propagation properties using the FDTD numerical calculation for (i) the flat PDMS and (ii) the textile PDMS. The inset of (a) also shows the photographic images of the flat and textile PDMS films on FTO glass.
Fig. 5
Fig. 5 (a) Measured total reflectance and transmittance spectra and (b) estimated absorption (1-R-T) spectra of the dye-sensitized photo-anode/FTO/glass with the bare surface, the flat PDMS, and the textile PDMS. Absorption enhancement percentage for the dye-sensitized photo-anode/FTO/glass with the flat PDMS and the textile PDMS relative to the one with the bare surface as a function of wavelength is also shown in (b), respectively.
Fig. 6
Fig. 6 (a) Measured J-V curves and (b) IPCE spectra of the bare DSSC, the flat PDMS on DSSC, and the textile PDMS on DSSC. The insets of (a) show the (i) schematic diagram and (ii) photographic image of the textile PDMS on DSSC. IPCE enhancement percentages for the flat PDMS on DSSC and the textile PDMS on DSSC relative to the bare DSSC as a function of wavelength are also shown in (b), respectively.
Fig. 7
Fig. 7 (a) Measured J-V curves of the textile PDMS on DSSCs for different textile PDMS areas from 0.3 × 0.3 to 1.3 × 1.3 cm2 and (b) calculated electric field distribution of the textile PDMS on glass. The inset of (a) also shows the η of the textile PDMS on DSSC as a function of area of textile PDMS.

Tables (2)

Tables Icon

Table 1 Device characteristics of the bare DSSC, the flat PDMS on DSSC, and the textile PDMS on DSSC at 0.5 × 0.5 cm2 of PDMS area.

Tables Icon

Table 2 Device characteristics of DSSCs with different textile PDMS areas.

Metrics