Abstract

We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm−2 at temperature T = 1660 K when implementing both the optimized two-dimensional (2D) tantalum photonic crystal (PhC) selective emitter, and the optimized 1D tantalum pentoxide – silicon dioxide PhC cold-side selective filter. In addition, we have developed an experimental large area TPV test setup that enables accurate measurement of radiative heat-to-electricity efficiency for any emitter-filter-TPV cell combination of interest. In fact, the experimental results match extremely well with predictions of our numerical models. Our experimental setup achieved a maximum output electrical power density of 0.10W cm−2 and radiative heat-to-electricity efficiency of 1.18% at T = 1380 K using commercial wafer size back-contacted silicon solar cells.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems

Yi Xiang Yeng, Walker R. Chan, Veronika Rinnerbauer, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic
Opt. Express 21(S6) A1035-A1051 (2013)

High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array

Wei Gu, Guihua Tang, and Wenquan Tao
Opt. Express 23(24) 30681-30694 (2015)

Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals

Yi Xiang Yeng, Jeffrey B. Chou, Veronika Rinnerbauer, Yichen Shen, Sang-Gook Kim, John D. Joannopoulos, Marin Soljacic, and Ivan Čelanović
Opt. Express 22(18) 21711-21718 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. D. Wedlockt, “Thermo-Photo-Voltaic energy conversion,” Proc. IEEE 51, 694–698 (1963).
    [Crossref]
  2. T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sust. Energ. Rev. 3, 77–184 (1999).
    [Crossref]
  3. M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron. Dev. 48, 367–376 (2001).
    [Crossref]
  4. W. E. Horne, M. D. Morgan, V. S. Sundaram, and T. Butcher, “500 Watt Diesel Fueled TPV Portable Power Supply,” AIP Conf. Proc. 653, 91–100 (2003).
    [Crossref]
  5. C. S. Murray, C. J. Crowley, S. Murray, N. A. Elkouh, R. W. Hill, and D. E. Chubb, “Thermophotovoltaic converter design for radioisotope power systems,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 123–132.
  6. C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” in Space Technology and Applications International Forum (AIP, 2005), pp. 601–614.
  7. R. W. Kaszeta, Y. X. Yeng, M. Ghebrebrhan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Advanced radiative emitters for radioisotope thermophotovoltaic power systems,” in 5th World Conference on Photovoltaic Energy Conversion / Ninth Thermophotovoltaic World Conference (2010).
  8. N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151–S157 (2003).
    [Crossref]
  9. V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Ener. Eng. 129, 298–303 (2007).
    [Crossref]
  10. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
    [Crossref] [PubMed]
  11. W. Yang, S. Chou, C. Shu, H. Xue, and Z. Li, “Design, Fabrication, and Testing of a Prototype Microthermophotovoltaic System,” J. Microelectromech. Syst. 13, 851–856 (2004).
    [Crossref]
  12. L. M. Fraas and L. Minkin, “TPV history from 1990 to present & future trends,” AIP Conf. Proc. 890, 17–23 (2007).
    [Crossref]
  13. B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
    [Crossref]
  14. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
    [Crossref] [PubMed]
  15. R. N. Bracewell and R. M. Swanson, “Silicon photovoltaic cells in thermophotovoltaic conversion,” Electric Power Research Institute Report, ER-633 (1978).
  16. K. Qiu and a. Hayden, “Development of a silicon concentrator solar cell based TPV power system,” Energ. Convers. Manage. 47, 365–376 (2006).
    [Crossref]
  17. B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energ. 105, 430–438 (2013).
    [Crossref]
  18. L. Ferguson and F. Dogan, “A highly efficient NiO-Doped MgO matched emitter for thermophotovoltaic energy conversion,” Mat. Sci. Eng. B 83, 35–41 (2001).
    [Crossref]
  19. B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 73, 221–234 (2002).
    [Crossref]
  20. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
    [Crossref]
  21. D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 16609 (2006).
    [Crossref]
  22. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
    [Crossref]
  23. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399–3401 (2004).
    [Crossref]
  24. R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
    [Crossref]
  25. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
    [Crossref] [PubMed]
  26. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
    [Crossref]
  27. T. A. Walsh, J. A. Bur, Y.-S. Kim, T.-M. Lu, and S. Y. Lin, “High-temperature metal coating for modification of photonic band edge position,” J. Opt. Soc. Am. B 26, 1450–1455 (2009).
    [Crossref]
  28. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
    [Crossref]
  29. Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
    [Crossref]
  30. V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
    [Crossref]
  31. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
    [Crossref] [PubMed]
  32. V. Liu and S. Fan, “A free electromagnetic solver for layered periodic structures,” Comput. Phys. Comm. 183, 2233–2244 (2012).
    [Crossref]
  33. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
    [Crossref]
  34. S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt .
  35. J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 42, 87–99 (1996).
    [Crossref]
  36. R. T. Kristensen, J. F. Beausang, and D. M. Depoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
    [Crossref]
  37. F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
    [Crossref]
  38. T. D. Rahmlow, D. M. Depoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” in 7th Thermophotovoltaic Generation of Electricity Conference (AIP, 2007), pp. 59–67.
  39. R. K. Huang, C. A. Wang, M. K. Connors, G. W. Turner, and M. W. Dashiell, “Hybrid back surface reflector GaInAsSb thermophotovoltaic devices,” AIP Conf. Proc. 738, 329–336 (2004).
    [Crossref]
  40. L. B. Karlina, M. M. Kulagina, N. K. Timoshina, A. S. Vlasov, and V. M. Andreev, “In0.53Ga0.47As/InP conventional and inverted thermophotovoltaic cells with back surface reflector,” AIP Conf. Proc. 890, 182–189 (2007).
    [Crossref]
  41. P. Wilkinson, “Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings,” Phys. Rev. E 65, 056616 (2002).
    [Crossref]
  42. H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50, 1053–1057 (1979).
    [Crossref]
  43. G. A. Al-Jumaily and S. M. Edlou, “Optical properties of tantalum pentoxide coatings deposited using ion beam processes,” Thin Solid Films 209, 223–229 (1992).
    [Crossref]
  44. A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
    [Crossref] [PubMed]
  45. NREL, “Best research-cell efficiencies chart,” http://www.nrel.gov/ncpv/images/efficiencychart.jpg .

2014 (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

2013 (5)

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref] [PubMed]

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energ. 105, 430–438 (2013).
[Crossref]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref] [PubMed]

2012 (1)

V. Liu and S. Fan, “A free electromagnetic solver for layered periodic structures,” Comput. Phys. Comm. 183, 2233–2244 (2012).
[Crossref]

2011 (1)

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

2009 (1)

2008 (1)

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[Crossref]

2007 (3)

L. B. Karlina, M. M. Kulagina, N. K. Timoshina, A. S. Vlasov, and V. M. Andreev, “In0.53Ga0.47As/InP conventional and inverted thermophotovoltaic cells with back surface reflector,” AIP Conf. Proc. 890, 182–189 (2007).
[Crossref]

L. M. Fraas and L. Minkin, “TPV history from 1990 to present & future trends,” AIP Conf. Proc. 890, 17–23 (2007).
[Crossref]

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Ener. Eng. 129, 298–303 (2007).
[Crossref]

2006 (2)

K. Qiu and a. Hayden, “Development of a silicon concentrator solar cell based TPV power system,” Energ. Convers. Manage. 47, 365–376 (2006).
[Crossref]

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 16609 (2006).
[Crossref]

2005 (1)

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[Crossref]

2004 (6)

R. K. Huang, C. A. Wang, M. K. Connors, G. W. Turner, and M. W. Dashiell, “Hybrid back surface reflector GaInAsSb thermophotovoltaic devices,” AIP Conf. Proc. 738, 329–336 (2004).
[Crossref]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399–3401 (2004).
[Crossref]

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

W. Yang, S. Chou, C. Shu, H. Xue, and Z. Li, “Design, Fabrication, and Testing of a Prototype Microthermophotovoltaic System,” J. Microelectromech. Syst. 13, 851–856 (2004).
[Crossref]

R. T. Kristensen, J. F. Beausang, and D. M. Depoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
[Crossref]

2003 (3)

W. E. Horne, M. D. Morgan, V. S. Sundaram, and T. Butcher, “500 Watt Diesel Fueled TPV Portable Power Supply,” AIP Conf. Proc. 653, 91–100 (2003).
[Crossref]

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151–S157 (2003).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

2002 (4)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

P. Wilkinson, “Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings,” Phys. Rev. E 65, 056616 (2002).
[Crossref]

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 73, 221–234 (2002).
[Crossref]

2001 (2)

L. Ferguson and F. Dogan, “A highly efficient NiO-Doped MgO matched emitter for thermophotovoltaic energy conversion,” Mat. Sci. Eng. B 83, 35–41 (2001).
[Crossref]

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron. Dev. 48, 367–376 (2001).
[Crossref]

1999 (1)

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sust. Energ. Rev. 3, 77–184 (1999).
[Crossref]

1996 (2)

J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 42, 87–99 (1996).
[Crossref]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
[Crossref] [PubMed]

1992 (1)

G. A. Al-Jumaily and S. M. Edlou, “Optical properties of tantalum pentoxide coatings deposited using ion beam processes,” Thin Solid Films 209, 223–229 (1992).
[Crossref]

1979 (1)

H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50, 1053–1057 (1979).
[Crossref]

1963 (1)

B. D. Wedlockt, “Thermo-Photo-Voltaic energy conversion,” Proc. IEEE 51, 694–698 (1963).
[Crossref]

Akiyama, S.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[Crossref]

Al-Jumaily, G. A.

G. A. Al-Jumaily and S. M. Edlou, “Optical properties of tantalum pentoxide coatings deposited using ion beam processes,” Thin Solid Films 209, 223–229 (1992).
[Crossref]

Altermatt, P. P.

J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 42, 87–99 (1996).
[Crossref]

Andreev, V. M.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Ener. Eng. 129, 298–303 (2007).
[Crossref]

L. B. Karlina, M. M. Kulagina, N. K. Timoshina, A. S. Vlasov, and V. M. Andreev, “In0.53Ga0.47As/InP conventional and inverted thermophotovoltaic cells with back surface reflector,” AIP Conf. Proc. 890, 182–189 (2007).
[Crossref]

Beausang, J. F.

R. T. Kristensen, J. F. Beausang, and D. M. Depoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
[Crossref]

Bermel, P.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

Biswas, R.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Bitnar, B.

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energ. 105, 430–438 (2013).
[Crossref]

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 73, 221–234 (2002).
[Crossref]

Bracewell, R. N.

R. N. Bracewell and R. M. Swanson, “Silicon photovoltaic cells in thermophotovoltaic conversion,” Electric Power Research Institute Report, ER-633 (1978).

Bur, J. A.

Butcher, T.

W. E. Horne, M. D. Morgan, V. S. Sundaram, and T. Butcher, “500 Watt Diesel Fueled TPV Portable Power Supply,” AIP Conf. Proc. 653, 91–100 (2003).
[Crossref]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref] [PubMed]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[Crossref]

R. W. Kaszeta, Y. X. Yeng, M. Ghebrebrhan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Advanced radiative emitters for radioisotope thermophotovoltaic power systems,” in 5th World Conference on Photovoltaic Energy Conversion / Ninth Thermophotovoltaic World Conference (2010).

Chan, D. L. C.

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 16609 (2006).
[Crossref]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref] [PubMed]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref] [PubMed]

Chen, G.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Chou, S.

W. Yang, S. Chou, C. Shu, H. Xue, and Z. Li, “Design, Fabrication, and Testing of a Prototype Microthermophotovoltaic System,” J. Microelectromech. Syst. 13, 851–856 (2004).
[Crossref]

Chubb, D. E.

C. S. Murray, C. J. Crowley, S. Murray, N. A. Elkouh, R. W. Hill, and D. E. Chubb, “Thermophotovoltaic converter design for radioisotope power systems,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 123–132.

Chubb, D. L.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” in Space Technology and Applications International Forum (AIP, 2005), pp. 601–614.

Connors, M. K.

R. K. Huang, C. A. Wang, M. K. Connors, G. W. Turner, and M. W. Dashiell, “Hybrid back surface reflector GaInAsSb thermophotovoltaic devices,” AIP Conf. Proc. 738, 329–336 (2004).
[Crossref]

Coutts, T. J.

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sust. Energ. Rev. 3, 77–184 (1999).
[Crossref]

Crowley, C. J.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” in Space Technology and Applications International Forum (AIP, 2005), pp. 601–614.

C. S. Murray, C. J. Crowley, S. Murray, N. A. Elkouh, R. W. Hill, and D. E. Chubb, “Thermophotovoltaic converter design for radioisotope power systems,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 123–132.

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Dashiell, M. W.

R. K. Huang, C. A. Wang, M. K. Connors, G. W. Turner, and M. W. Dashiell, “Hybrid back surface reflector GaInAsSb thermophotovoltaic devices,” AIP Conf. Proc. 738, 329–336 (2004).
[Crossref]

Debell, G. W.

Depoy, D. M.

R. T. Kristensen, J. F. Beausang, and D. M. Depoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
[Crossref]

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

T. D. Rahmlow, D. M. Depoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” in 7th Thermophotovoltaic Generation of Electricity Conference (AIP, 2007), pp. 59–67.

Dogan, F.

L. Ferguson and F. Dogan, “A highly efficient NiO-Doped MgO matched emitter for thermophotovoltaic energy conversion,” Mat. Sci. Eng. B 83, 35–41 (2001).
[Crossref]

Durisch, W.

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energ. 105, 430–438 (2013).
[Crossref]

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 73, 221–234 (2002).
[Crossref]

Edlou, S. M.

G. A. Al-Jumaily and S. M. Edlou, “Optical properties of tantalum pentoxide coatings deposited using ion beam processes,” Thin Solid Films 209, 223–229 (1992).
[Crossref]

Ehsani, H.

T. D. Rahmlow, D. M. Depoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” in 7th Thermophotovoltaic Generation of Electricity Conference (AIP, 2007), pp. 59–67.

El-Kady, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Elkouh, N. A.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” in Space Technology and Applications International Forum (AIP, 2005), pp. 601–614.

C. S. Murray, C. J. Crowley, S. Murray, N. A. Elkouh, R. W. Hill, and D. E. Chubb, “Thermophotovoltaic converter design for radioisotope power systems,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 123–132.

Fan, S.

V. Liu and S. Fan, “A free electromagnetic solver for layered periodic structures,” Comput. Phys. Comm. 183, 2233–2244 (2012).
[Crossref]

Ferber, J.

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron. Dev. 48, 367–376 (2001).
[Crossref]

Ferguson, L.

L. Ferguson and F. Dogan, “A highly efficient NiO-Doped MgO matched emitter for thermophotovoltaic energy conversion,” Mat. Sci. Eng. B 83, 35–41 (2001).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Fourspring, P. M.

T. D. Rahmlow, D. M. Depoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” in 7th Thermophotovoltaic Generation of Electricity Conference (AIP, 2007), pp. 59–67.

Fraas, L. M.

L. M. Fraas and L. Minkin, “TPV history from 1990 to present & future trends,” AIP Conf. Proc. 890, 17–23 (2007).
[Crossref]

Gazaryan, P. Y.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Ener. Eng. 129, 298–303 (2007).
[Crossref]

Geil, R. D.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[Crossref]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Ghebrebrhan, M.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

R. W. Kaszeta, Y. X. Yeng, M. Ghebrebrhan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Advanced radiative emitters for radioisotope thermophotovoltaic power systems,” in 5th World Conference on Photovoltaic Energy Conversion / Ninth Thermophotovoltaic World Conference (2010).

Gratrix, E. J.

T. D. Rahmlow, D. M. Depoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” in 7th Thermophotovoltaic Generation of Electricity Conference (AIP, 2007), pp. 59–67.

Green, M. A.

J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 42, 87–99 (1996).
[Crossref]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Harder, N. P.

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151–S157 (2003).
[Crossref]

Hayden, a.

K. Qiu and a. Hayden, “Development of a silicon concentrator solar cell based TPV power system,” Energ. Convers. Manage. 47, 365–376 (2006).
[Crossref]

Heinzel, A.

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron. Dev. 48, 367–376 (2001).
[Crossref]

Hill, R. W.

C. S. Murray, C. J. Crowley, S. Murray, N. A. Elkouh, R. W. Hill, and D. E. Chubb, “Thermophotovoltaic converter design for radioisotope power systems,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 123–132.

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Holzner, R.

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energ. 105, 430–438 (2013).
[Crossref]

Horne, W. E.

W. E. Horne, M. D. Morgan, V. S. Sundaram, and T. Butcher, “500 Watt Diesel Fueled TPV Portable Power Supply,” AIP Conf. Proc. 653, 91–100 (2003).
[Crossref]

Huang, R. K.

R. K. Huang, C. A. Wang, M. K. Connors, G. W. Turner, and M. W. Dashiell, “Hybrid back surface reflector GaInAsSb thermophotovoltaic devices,” AIP Conf. Proc. 738, 329–336 (2004).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Jensen, K. F.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[Crossref]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Joannopoulos, J. D.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref] [PubMed]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 16609 (2006).
[Crossref]

R. W. Kaszeta, Y. X. Yeng, M. Ghebrebrhan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Advanced radiative emitters for radioisotope thermophotovoltaic power systems,” in 5th World Conference on Photovoltaic Energy Conversion / Ninth Thermophotovoltaic World Conference (2010).

Johnson, E.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[Crossref]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Jovanovic, N.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[Crossref]

Karlina, L. B.

L. B. Karlina, M. M. Kulagina, N. K. Timoshina, A. S. Vlasov, and V. M. Andreev, “In0.53Ga0.47As/InP conventional and inverted thermophotovoltaic cells with back surface reflector,” AIP Conf. Proc. 890, 182–189 (2007).
[Crossref]

Kassakian, J.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[Crossref]

Kaszeta, R. W.

R. W. Kaszeta, Y. X. Yeng, M. Ghebrebrhan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Advanced radiative emitters for radioisotope thermophotovoltaic power systems,” in 5th World Conference on Photovoltaic Energy Conversion / Ninth Thermophotovoltaic World Conference (2010).

Khvostikov, V. P.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Ener. Eng. 129, 298–303 (2007).
[Crossref]

Khvostikova, O. A.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Ener. Eng. 129, 298–303 (2007).
[Crossref]

Kim, Y.-S.

Kristensen, R. T.

R. T. Kristensen, J. F. Beausang, and D. M. Depoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
[Crossref]

Kulagina, M. M.

L. B. Karlina, M. M. Kulagina, N. K. Timoshina, A. S. Vlasov, and V. M. Andreev, “In0.53Ga0.47As/InP conventional and inverted thermophotovoltaic cells with back surface reflector,” AIP Conf. Proc. 890, 182–189 (2007).
[Crossref]

Lazo-Wasem, J. E.

T. D. Rahmlow, D. M. Depoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” in 7th Thermophotovoltaic Generation of Electricity Conference (AIP, 2007), pp. 59–67.

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

Li, Z.

W. Yang, S. Chou, C. Shu, H. Xue, and Z. Li, “Design, Fabrication, and Testing of a Prototype Microthermophotovoltaic System,” J. Microelectromech. Syst. 13, 851–856 (2004).
[Crossref]

Lin, S. Y.

T. A. Walsh, J. A. Bur, Y.-S. Kim, T.-M. Lu, and S. Y. Lin, “High-temperature metal coating for modification of photonic band edge position,” J. Opt. Soc. Am. B 26, 1450–1455 (2009).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Link, S. D.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Liu, V.

V. Liu and S. Fan, “A free electromagnetic solver for layered periodic structures,” Comput. Phys. Comm. 183, 2233–2244 (2012).
[Crossref]

Lu, T.-M.

Luther, J.

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron. Dev. 48, 367–376 (2001).
[Crossref]

Mahorter, R. G.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Marton, C. H.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref] [PubMed]

Mayor, J.-C.

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 73, 221–234 (2002).
[Crossref]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Messham, R. L.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Minkin, L.

L. M. Fraas and L. Minkin, “TPV history from 1990 to present & future trends,” AIP Conf. Proc. 890, 17–23 (2007).
[Crossref]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

Morgan, M. D.

W. E. Horne, M. D. Morgan, V. S. Sundaram, and T. Butcher, “500 Watt Diesel Fueled TPV Portable Power Supply,” AIP Conf. Proc. 653, 91–100 (2003).
[Crossref]

Murray, C. S.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

C. S. Murray, C. J. Crowley, S. Murray, N. A. Elkouh, R. W. Hill, and D. E. Chubb, “Thermophotovoltaic converter design for radioisotope power systems,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 123–132.

Murray, S.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

C. S. Murray, C. J. Crowley, S. Murray, N. A. Elkouh, R. W. Hill, and D. E. Chubb, “Thermophotovoltaic converter design for radioisotope power systems,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 123–132.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” in Space Technology and Applications International Forum (AIP, 2005), pp. 601–614.

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

Ndao, S.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[Crossref]

Newman, F.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

O’Sullivan, F.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Palmisiano, M. N.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Philipp, H. R.

H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50, 1053–1057 (1979).
[Crossref]

Pilawa-Podgurski, R. C. N.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref] [PubMed]

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Puscasu, I.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[Crossref]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

Qiu, K.

K. Qiu and a. Hayden, “Development of a silicon concentrator solar cell based TPV power system,” Energ. Convers. Manage. 47, 365–376 (2006).
[Crossref]

Rahmlow, T.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Rahmlow, T. D.

T. D. Rahmlow, D. M. Depoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” in 7th Thermophotovoltaic Generation of Electricity Conference (AIP, 2007), pp. 59–67.

Rinnerbauer, V.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Sadchikov, N. A.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Ener. Eng. 129, 298–303 (2007).
[Crossref]

Sai, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399–3401 (2004).
[Crossref]

Schmuck, G. P.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Schultz, R. W.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Senkevich, J. J.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref] [PubMed]

Shu, C.

W. Yang, S. Chou, C. Shu, H. Xue, and Z. Li, “Design, Fabrication, and Testing of a Prototype Microthermophotovoltaic System,” J. Microelectromech. Syst. 13, 851–856 (2004).
[Crossref]

Siergiej, R. R.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Sigg, H.

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 73, 221–234 (2002).
[Crossref]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref] [PubMed]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 16609 (2006).
[Crossref]

R. W. Kaszeta, Y. X. Yeng, M. Ghebrebrhan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Advanced radiative emitters for radioisotope thermophotovoltaic power systems,” in 5th World Conference on Photovoltaic Energy Conversion / Ninth Thermophotovoltaic World Conference (2010).

Sorokina, S. V.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Ener. Eng. 129, 298–303 (2007).
[Crossref]

Stollwerck, G.

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron. Dev. 48, 367–376 (2001).
[Crossref]

Sundaram, V. S.

W. E. Horne, M. D. Morgan, V. S. Sundaram, and T. Butcher, “500 Watt Diesel Fueled TPV Portable Power Supply,” AIP Conf. Proc. 653, 91–100 (2003).
[Crossref]

Swanson, R. M.

R. N. Bracewell and R. M. Swanson, “Silicon photovoltaic cells in thermophotovoltaic conversion,” Electric Power Research Institute Report, ER-633 (1978).

Taylor, A.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[Crossref]

Taylor, D.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Tikhonravov, A. V.

Timoshina, N. K.

L. B. Karlina, M. M. Kulagina, N. K. Timoshina, A. S. Vlasov, and V. M. Andreev, “In0.53Ga0.47As/InP conventional and inverted thermophotovoltaic cells with back surface reflector,” AIP Conf. Proc. 890, 182–189 (2007).
[Crossref]

Trubetskov, M. K.

Tschudi, H.

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 73, 221–234 (2002).
[Crossref]

Turner, G. W.

R. K. Huang, C. A. Wang, M. K. Connors, G. W. Turner, and M. W. Dashiell, “Hybrid back surface reflector GaInAsSb thermophotovoltaic devices,” AIP Conf. Proc. 738, 329–336 (2004).
[Crossref]

Vlasov, A. S.

L. B. Karlina, M. M. Kulagina, N. K. Timoshina, A. S. Vlasov, and V. M. Andreev, “In0.53Ga0.47As/InP conventional and inverted thermophotovoltaic cells with back surface reflector,” AIP Conf. Proc. 890, 182–189 (2007).
[Crossref]

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Ener. Eng. 129, 298–303 (2007).
[Crossref]

Wada, K.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[Crossref]

Walsh, T. A.

Wang, A.

J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 42, 87–99 (1996).
[Crossref]

Wang, C. A.

R. K. Huang, C. A. Wang, M. K. Connors, G. W. Turner, and M. W. Dashiell, “Hybrid back surface reflector GaInAsSb thermophotovoltaic devices,” AIP Conf. Proc. 738, 329–336 (2004).
[Crossref]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

Wedlockt, B. D.

B. D. Wedlockt, “Thermo-Photo-Voltaic energy conversion,” Proc. IEEE 51, 694–698 (1963).
[Crossref]

Wehrer, R. J.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Wenham, S. R.

J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 42, 87–99 (1996).
[Crossref]

Wernsman, B.

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

Wilkinson, P.

P. Wilkinson, “Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings,” Phys. Rev. E 65, 056616 (2002).
[Crossref]

Wurfel, P.

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151–S157 (2003).
[Crossref]

Xue, H.

W. Yang, S. Chou, C. Shu, H. Xue, and Z. Li, “Design, Fabrication, and Testing of a Prototype Microthermophotovoltaic System,” J. Microelectromech. Syst. 13, 851–856 (2004).
[Crossref]

Yang, W.

W. Yang, S. Chou, C. Shu, H. Xue, and Z. Li, “Design, Fabrication, and Testing of a Prototype Microthermophotovoltaic System,” J. Microelectromech. Syst. 13, 851–856 (2004).
[Crossref]

Yeng, Y. X.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[Crossref]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

R. W. Kaszeta, Y. X. Yeng, M. Ghebrebrhan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Advanced radiative emitters for radioisotope thermophotovoltaic power systems,” in 5th World Conference on Photovoltaic Energy Conversion / Ninth Thermophotovoltaic World Conference (2010).

Yugami, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399–3401 (2004).
[Crossref]

Zenker, M.

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron. Dev. 48, 367–376 (2001).
[Crossref]

Zhao, J.

J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 42, 87–99 (1996).
[Crossref]

Zhao, W.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[Crossref]

Zhou, D.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[Crossref]

AIP Conf. Proc. (4)

W. E. Horne, M. D. Morgan, V. S. Sundaram, and T. Butcher, “500 Watt Diesel Fueled TPV Portable Power Supply,” AIP Conf. Proc. 653, 91–100 (2003).
[Crossref]

L. M. Fraas and L. Minkin, “TPV history from 1990 to present & future trends,” AIP Conf. Proc. 890, 17–23 (2007).
[Crossref]

R. K. Huang, C. A. Wang, M. K. Connors, G. W. Turner, and M. W. Dashiell, “Hybrid back surface reflector GaInAsSb thermophotovoltaic devices,” AIP Conf. Proc. 738, 329–336 (2004).
[Crossref]

L. B. Karlina, M. M. Kulagina, N. K. Timoshina, A. S. Vlasov, and V. M. Andreev, “In0.53Ga0.47As/InP conventional and inverted thermophotovoltaic cells with back surface reflector,” AIP Conf. Proc. 890, 182–189 (2007).
[Crossref]

Appl. Energ. (1)

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energ. 105, 430–438 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[Crossref]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399–3401 (2004).
[Crossref]

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[Crossref]

Comput. Phys. Comm. (2)

V. Liu and S. Fan, “A free electromagnetic solver for layered periodic structures,” Comput. Phys. Comm. 183, 2233–2244 (2012).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Energ. Convers. Manage. (1)

K. Qiu and a. Hayden, “Development of a silicon concentrator solar cell based TPV power system,” Energ. Convers. Manage. 47, 365–376 (2006).
[Crossref]

IEEE Trans. Electron. Dev. (2)

B. Wernsman, R. R. Siergiej, S. D. Link, R. G. Mahorter, M. N. Palmisiano, R. J. Wehrer, R. W. Schultz, G. P. Schmuck, R. L. Messham, S. Murray, C. S. Murray, F. Newman, D. Taylor, D. M. Depoy, and T. Rahmlow, “Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control,” IEEE Trans. Electron. Dev. 51, 512–515 (2004).
[Crossref]

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron. Dev. 48, 367–376 (2001).
[Crossref]

J. Appl. Phys. (3)

H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50, 1053–1057 (1979).
[Crossref]

R. T. Kristensen, J. F. Beausang, and D. M. Depoy, “Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control,” J. Appl. Phys. 95, 4845–4851 (2004).
[Crossref]

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[Crossref]

J. Microelectromech. Syst. (1)

W. Yang, S. Chou, C. Shu, H. Xue, and Z. Li, “Design, Fabrication, and Testing of a Prototype Microthermophotovoltaic System,” J. Microelectromech. Syst. 13, 851–856 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Sol. Ener. Eng. (1)

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Ener. Eng. 129, 298–303 (2007).
[Crossref]

J. Vac. Sci. Technol. B (1)

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[Crossref]

Mat. Sci. Eng. B (1)

L. Ferguson and F. Dogan, “A highly efficient NiO-Doped MgO matched emitter for thermophotovoltaic energy conversion,” Mat. Sci. Eng. B 83, 35–41 (2001).
[Crossref]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

Nature (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. A (1)

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[Crossref]

Phys. Rev. B (1)

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

Phys. Rev. E (2)

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 16609 (2006).
[Crossref]

P. Wilkinson, “Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings,” Phys. Rev. E 65, 056616 (2002).
[Crossref]

Proc. IEEE (1)

B. D. Wedlockt, “Thermo-Photo-Voltaic energy conversion,” Proc. IEEE 51, 694–698 (1963).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. USA 110, 5309–5314 (2013).
[Crossref] [PubMed]

Renew. Sust. Energ. Rev. (1)

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sust. Energ. Rev. 3, 77–184 (1999).
[Crossref]

Semicond. Sci. Technol. (1)

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18, S151–S157 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Sol. Energy Mater. Sol. Cells 73, 221–234 (2002).
[Crossref]

J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 42, 87–99 (1996).
[Crossref]

Thin Solid Films (1)

G. A. Al-Jumaily and S. M. Edlou, “Optical properties of tantalum pentoxide coatings deposited using ion beam processes,” Thin Solid Films 209, 223–229 (1992).
[Crossref]

Other (7)

NREL, “Best research-cell efficiencies chart,” http://www.nrel.gov/ncpv/images/efficiencychart.jpg .

T. D. Rahmlow, D. M. Depoy, P. M. Fourspring, H. Ehsani, J. E. Lazo-Wasem, and E. J. Gratrix, “Development of front surface, spectral control filters with greater temperature stability for thermophotovoltaic energy conversion,” in 7th Thermophotovoltaic Generation of Electricity Conference (AIP, 2007), pp. 59–67.

S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt .

C. S. Murray, C. J. Crowley, S. Murray, N. A. Elkouh, R. W. Hill, and D. E. Chubb, “Thermophotovoltaic converter design for radioisotope power systems,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 123–132.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” in Space Technology and Applications International Forum (AIP, 2005), pp. 601–614.

R. W. Kaszeta, Y. X. Yeng, M. Ghebrebrhan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Advanced radiative emitters for radioisotope thermophotovoltaic power systems,” in 5th World Conference on Photovoltaic Energy Conversion / Ninth Thermophotovoltaic World Conference (2010).

R. N. Bracewell and R. M. Swanson, “Silicon photovoltaic cells in thermophotovoltaic conversion,” Electric Power Research Institute Report, ER-633 (1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Spectral hemispherical emittance ɛ H (at temperature T = 1500 K) of the optimized 2D tantalum photonic crystal (2D Ta PhC: r = 0.28 μm, d = 2.20 μm, a = 0.61 μm) shows excellent match with the external quantum efficiency (EQE) of the University of New South Wales’s (UNSW) silicon (Si) solar cells [35]. An optimized 85 nm anti-reflection coating of hafnium oxide on top of flat Ta (HfO2 ARC Flat Ta) is a simple alternative that also performs reasonably well.
Fig. 2
Fig. 2 Effective spectral irradiance incident on photovoltaic (PV) cell for various selective emitter and cold-side filter combinations of interest at T = 1500 K.
Fig. 3
Fig. 3 η TPV as a function of T for various selective emitter and cold-side filter combinations of interest in Si-TPV systems with F = 0.99.
Fig. 4
Fig. 4 (a) Entire TPV efficiency measurement setup. (b) Close-up view of TPV cavity design. SS denotes stainless steel. (c) Close-up view of glowing emitter during operation at 1473 K.
Fig. 5
Fig. 5 Measured (a) η TPV and (b) P elec as a function of T using Sunpower Si cell with optimized 85 nm thick HfO2 ARC coating on flat Ta with emitter-PV cell separation s = 2.0 mm. The simulation results are represented as bands to account for an arbitrary temperature uncertainty of ± 30 K. Inset of (a) shows top view of 100 mm diameter HeatWave Labs 1200 °C UHV Heater. The heat shields are estimated to be ≈ 250 K cooler than the top surface of the emitter; this resulted in significant parasitic radiative heat loss absorbed by the PV cell, which negatively affects η TPV as shown by the green curve (the ’Current Setup’). The ’Ideal Setup’ simulations were performed without effects of the heat shields, i.e. only radiation from the emitter is considered. Inset of (b) shows the Sunpower Si cell IV curve measurement at the heater’s maximum temperature rating.

Tables (2)

Tables Icon

Table 1 Comparison of radiative heat-to-electricity efficiency η TPV and output electrical power density J elec between a greybody emitter (ɛ = 0.9), optimized HfO2 ARC Flat Ta, and optimized 2D Ta PhC (r = 0.28 μm, d = 2.20 μm, a = 0.61 μm) in UNSW Si cell based thermophotovoltaic (Si-TPV) systems at T = 1500 K with view factor F = 0.99 (achievable with 100 mm × 100 mm flat plate geometry with emitter-TPV cell separation of 500 μm).

Tables Icon

Table 2 Comparison of η TPV and J elec between a greybody emitter (ɛ = 0.9), flat Ta, optimized HfO2 ARC flat Ta (85nm of HfO2 on top of flat Ta), and optimized 2D Ta PhC (r = 0.28 μm, d = 2.20 μm, a = 0.61 μm) at T = 1500 K with or without the needle synthesis refined DBR filter in F = 0.99 Si-TPV systems.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

FOM = x η TPV + ( 1 - x ) J elec PhC J elec BB
a 1 = a 0 exp ( lB )
B = 1 l ln ( 1 + b 1 - b )
a 1 = a 0 1 + b 1 - b
a 0 = λ c 4 n 1 + λ c 4 n 2
FOM = x η spec + ( 1 - x ) η emit
η spec = 0 λ c i BB ( λ , T ) ɛ H ( λ ) R H ( λ ) d λ 0 i BB ( λ , T ) ɛ H ( λ ) R H ( λ ) d λ
η emit = 0 λ c i BB ( λ , T ) ɛ H ( λ ) R H ( λ ) d λ 0 λ c i BB ( λ , T ) d λ
η TPV = P elec P rad = P elec P in P cond

Metrics