Abstract

An anti-glare luminaire design is proposed to reduce the effect of glare and the multi-shadow while preserving high optical efficiency, high illumination uniformity and low unified glare rating (UGR). Comparison to the traditional direct light emitting diode (LED) luminaire in optical simulations showed an enhancement of the illumination uniformity from 64.9% to 80.0%. The optical efficiency was 79.5%, and the UGR value was controlled under 18.8. For the actual measurement, the finished product had an illumination uniformity of 77.0%, optical efficiency of 76.0%, UGR value of 19.0, and efficacy of 81.4 lm/w. Through this design, the lighting performance was greatly enhanced.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Anti-glare LED lamps with adjustable illumination light field

Yung-Sheng Chen, Chung-Yi Lin, Chun-Ming Yeh, Chie-Tong Kuo, Chih-Wei Hsu, and Hsiang-Chen Wang
Opt. Express 22(5) 5183-5195 (2014)

Designing an LED luminaire with balance between uniformity of luminance and illuminance for non-Lambertian road surfaces

Tun-Chien Teng, Wen-Shing Sun, and Jhih-Li Lin
Appl. Opt. 56(10) 2604-2613 (2017)

Design of LED freeform optical system for road lighting with high luminance/illuminance ratio

Zexin Feng, Yi Luo, and Yanjun Han
Opt. Express 18(21) 22020-22031 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Tsuei, J. W. Pen, and W. S. Sun, “Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design,” Opt. Express 16(23), 18692–18701 (2008).
    [Crossref] [PubMed]
  2. CIE Technical Report 117. “Discomfort glare in interior lighting.” Vienna, Austria: CIE; 1995.
  3. Osram, “Sireco louver luminaire T8 ribbed matt 3x18W T8 M625 ALU RIB”, http://www.osram.com/ .
  4. X. H. Lee, I. Moreno, and C.-C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 21(9), 10612–10621 (2013).
    [Crossref] [PubMed]
  5. Cougar Led lighting, “PR48 - 2' x 2' Recessed Direct Panel Light,” http://www.cougar-lighting.com/
  6. Epoch lighting, “CL-R345-60W Database,” http://www.lighting-epoch.com/
  7. H. W. Lee and L. B. -S. Lin, “Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array,” Opt. Express 20(S6), A788–A798 (2012).
    [Crossref]
  8. P. Ngai and P. R. Boyce, “The effect of overhead glare on visual discomfort,” J. Illum. Eng. Soc. 29(2), 29–38 (2000).
    [Crossref]
  9. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [Crossref] [PubMed]
  10. K. Wang, D. Wu, Z. Qin, F. Chen, X. Luo, and S. Liu, “New reversing design method for LED uniform illumination,” Opt. Express 19(S4Suppl 4), A830–A840 (2011).
    [Crossref] [PubMed]
  11. Y. C. Su and Q. G. Wu, Numerical Solutions of Partial Differential Equations (Weather, 1989), Chap. 1.
  12. I. Moreno, “Illumination uniformity assessment based on human vision,” Opt. Lett. 35(23), 4030–4032 (2010).
    [Crossref] [PubMed]
  13. X. Xunli, M. Zhenqiang, and D. Yang, “The ghost of LED lighting and its solution,” China Light & Lighting (2010).
  14. E. R. Méndez, E. E. García-Guerrero, H. M. Escamilla, A. A. Maradudin, T. A. Leskova, and A. V. Shchegrov, “Photofabrication of random achromatic optical diffusers for uniform illumination,” Appl. Opt. 40(7), 1098–1108 (2001).
    [Crossref] [PubMed]
  15. H. Urey and K. D. Powell, “Microlens array-based exit pupil expander for full color display applications,” Proc. SPIE 5456, 227–236 (2005).
  16. J. Chaves, Introduction to Nonimaging Optics (CRC Press, 2008).
  17. F. D. Vanderwerf, Applied Prismatic and Reflective Optics (SPIE Press, 2010).
  18. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45(10), 2265–2272 (2006).
    [Crossref] [PubMed]
  19. R. J. Koshel, “Simplex optimization method for illumination design,” Opt. Lett. 30(6), 649–651 (2005).
    [Crossref] [PubMed]
  20. R. J. Koshel, Illumination Engineering: design with nonimaging optics (Wiley, 2013), Chap. 7.
  21. Osram, “Duris® S5 -GW PSLLS1.EC Datasheet,” http://www.osram-os.com/
  22. F. Yamaguchi, Curves and Surfaces in Computer Aided Geometric Design (Springer-Verlag, 1988).
  23. W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15(12), 7572–7577 (2007).
    [Crossref] [PubMed]
  24. Photo Research, “PR655 data sheet,” http://www.photoresearch.com/ .
  25. LMT, “GO-DS 1600 data sheet,” http://www.lmt.de/ .

2013 (1)

2012 (1)

2011 (1)

2010 (1)

2008 (2)

2007 (1)

2006 (1)

2005 (2)

R. J. Koshel, “Simplex optimization method for illumination design,” Opt. Lett. 30(6), 649–651 (2005).
[Crossref] [PubMed]

H. Urey and K. D. Powell, “Microlens array-based exit pupil expander for full color display applications,” Proc. SPIE 5456, 227–236 (2005).

2001 (1)

2000 (1)

P. Ngai and P. R. Boyce, “The effect of overhead glare on visual discomfort,” J. Illum. Eng. Soc. 29(2), 29–38 (2000).
[Crossref]

Avendaño-Alejo, M.

Boyce, P. R.

P. Ngai and P. R. Boyce, “The effect of overhead glare on visual discomfort,” J. Illum. Eng. Soc. 29(2), 29–38 (2000).
[Crossref]

Chen, F.

Chien, W. T.

Ding, Y.

Escamilla, H. M.

García-Guerrero, E. E.

Gu, P. F.

Koshel, R. J.

Lee, H. W.

Lee, X. H.

Leskova, T. A.

Lin, L. B. -S.

Liu, S.

Liu, X.

Luo, X.

Maradudin, A. A.

Méndez, E. R.

Moreno, I.

Ngai, P.

P. Ngai and P. R. Boyce, “The effect of overhead glare on visual discomfort,” J. Illum. Eng. Soc. 29(2), 29–38 (2000).
[Crossref]

Pen, J. W.

Powell, K. D.

H. Urey and K. D. Powell, “Microlens array-based exit pupil expander for full color display applications,” Proc. SPIE 5456, 227–236 (2005).

Qin, Z.

Shchegrov, A. V.

Sun, C. C.

Sun, C.-C.

Sun, W. S.

Tsuei, C. H.

Tzonchev, R. I.

Urey, H.

H. Urey and K. D. Powell, “Microlens array-based exit pupil expander for full color display applications,” Proc. SPIE 5456, 227–236 (2005).

Wang, K.

Wu, D.

Zheng, Z. R.

Appl. Opt. (2)

J. Illum. Eng. Soc. (1)

P. Ngai and P. R. Boyce, “The effect of overhead glare on visual discomfort,” J. Illum. Eng. Soc. 29(2), 29–38 (2000).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (1)

H. Urey and K. D. Powell, “Microlens array-based exit pupil expander for full color display applications,” Proc. SPIE 5456, 227–236 (2005).

Other (13)

J. Chaves, Introduction to Nonimaging Optics (CRC Press, 2008).

F. D. Vanderwerf, Applied Prismatic and Reflective Optics (SPIE Press, 2010).

R. J. Koshel, Illumination Engineering: design with nonimaging optics (Wiley, 2013), Chap. 7.

Osram, “Duris® S5 -GW PSLLS1.EC Datasheet,” http://www.osram-os.com/

F. Yamaguchi, Curves and Surfaces in Computer Aided Geometric Design (Springer-Verlag, 1988).

Cougar Led lighting, “PR48 - 2' x 2' Recessed Direct Panel Light,” http://www.cougar-lighting.com/

Epoch lighting, “CL-R345-60W Database,” http://www.lighting-epoch.com/

CIE Technical Report 117. “Discomfort glare in interior lighting.” Vienna, Austria: CIE; 1995.

Osram, “Sireco louver luminaire T8 ribbed matt 3x18W T8 M625 ALU RIB”, http://www.osram.com/ .

Y. C. Su and Q. G. Wu, Numerical Solutions of Partial Differential Equations (Weather, 1989), Chap. 1.

X. Xunli, M. Zhenqiang, and D. Yang, “The ghost of LED lighting and its solution,” China Light & Lighting (2010).

Photo Research, “PR655 data sheet,” http://www.photoresearch.com/ .

LMT, “GO-DS 1600 data sheet,” http://www.lmt.de/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Illustration of an anti-glare luminaire with anti-glare lens and diffuser sheet.
Fig. 2
Fig. 2 Geometric illustration of the anti-glare lens
Fig. 3
Fig. 3 Diagram showing (a) the light source passing through a diffuser sheet; (b) the luminance at different positions (1,2,3) of the diffuser sheet.
Fig. 4
Fig. 4 The flowchart of the anti-glare luminaire design process.
Fig. 5
Fig. 5 (a) Ray-path analysis of the anti-glare lens; (b) LIDC of the LED with the anti-glare lens.
Fig. 6
Fig. 6 Relationship between the FWHM angle and the luminance uniformity.
Fig. 7
Fig. 7 (a) The tolerance between the cylinder height and FWHM angle; (b) The tolerance between the position shift and luminance uniformity.
Fig. 8
Fig. 8 Illuminance chart of (a) the traditional direct LED panel light; (b) luminaire with the anti-glare lens; (c) the comparison between (a) and (b).
Fig. 9
Fig. 9 Luminance chart of (a) the anti-glare luminaire without a diffuser sheet; (b) anti-glare luminaire with a diffuser sheet; (c) comparison of (a) with (b).
Fig. 10
Fig. 10 (a) The finished product of the anti-glare lens; (b) Experimental results of a comparison of the anti-glare intensity distribution.
Fig. 11
Fig. 11 The finished diffuser sheet as viewed under SEM.
Fig. 12
Fig. 12 (a) The finished anti-glare luminaire without the diffuser (left part outlined in red) and with the diffuser (right part outlined in yellow); (b) Experimental comparison of the luminance chart with and without the diffuser.
Fig. 13
Fig. 13 (a) Multi-shadow effect of an anti-glare luminaire without the diffuser; (b) no multi-shadow effect with diffuser.
Fig. 14
Fig. 14 The finished anti-glare luminaire.
Fig. 15
Fig. 15 Comparison of LIDC with angles of (a) 0 degrees and (b) 90 degrees between the finished product and the simulation.
Fig. 16
Fig. 16 Comparison office space environment.

Tables (2)

Tables Icon

Table 1 Summary of the Anti-glare Luminaire Design Process

Tables Icon

Table 2 Comparison between an Anti-glare Luminaire and Commercial Luminaires

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

U E = E min / E avg ,
( AB ¯ ) 2 = R 2 + R 2 2 R 2 cos(2α)= ( A O ¯ ) 2 + ( A O ¯ ) 2 2 ( A O ¯ ) 2 cos(2β),
( A O ¯ ) 2 = R 2 + ( O O ¯ ) 2 2 R 2 ( O O ¯ ) 2 cosα,
β= cos 1 [1+ cos2α1 1+ ( O O ¯ ) 2 R 2 2 O O ¯ R cosα ],
γ=αβ,
N 1 sinγ= N 2 sinδ,
φ=90°( δ+αω ),
U L = L min / L max ,
NCC= i j ( A ij A ¯ )( B ij B ¯ ) [ i j ( A ij A ¯ ) 2 i j ( B ij B ¯ ) 2 ] 1 2

Metrics