Abstract

We report on an incidence angle influence on inscription of the Fiber Bragg Gratings in Polymethyl methacrylate (PMMA) microstructured polymer optical fibers. We have shown experimentally that there is a strong preference of certain angles, labeled ГK, over the other ones. Angles close to ГK showed fast start of inscription, rapid inscription and stronger gratings. We have also shown that gratings can be obtained at almost any angle but their quality will be lower if they are not around ГK angle. Our experimental results verify earlier numerical and experimental predictions of Marshall et al.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

Andrea Fasano, Getinet Woyessa, Pavol Stajanca, Christos Markos, Alessio Stefani, Kristian Nielsen, Henrik K. Rasmussen, Katerina Krebber, and Ole Bang
Opt. Mater. Express 6(2) 649-659 (2016)

Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes

Ivan-Lazar Bundalo, Kristian Nielsen, Christos Markos, and Ole Bang
Opt. Express 22(5) 5270-5276 (2014)

Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse

Luis Pereira, Rui Min, Xuehao Hu, Christophe Caucheteur, Ole Bang, Beatriz Ortega, Carlos Marques, Paulo Antunes, and João L. Pinto
Opt. Express 26(14) 18096-18104 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  2. K. O. Hill and G. Meltz, “Fiber Bragg Grating technology fundamentals and overview,” 15(8), 1263–1276 (1997).
    [Crossref]
  3. K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
    [Crossref]
  4. A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science, 2009).
  5. S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
    [Crossref]
  6. S. H. Law, J. D. Harvey, R. J. Kruhlak, M. Song, E. Wu, G. W. Barton, M. A. Van Eijkelenborg, and M. C. J. Large, “Cleaving of microstructured polymer optical fibres,” Opt. Commun. 258(2), 193–202 (2006).
    [Crossref]
  7. A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
    [Crossref]
  8. M. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibre, 1st ed. (Springer, 2008), p. 232.
  9. K. Krebber, S. Liehr, and J. Witt, “Smart technical textiles based on fibre optic sensors,” in OFS2012 22nd International Conference on Optical Fiber Sensors, Invited Paper, Y. Liao, W. Jin, D. D. Sampson, R. Yamauchi, Y. Chung, K. Nakamura, and Y. Rao, eds. (2012), Vol. 8421, p. 84212A–10.
    [Crossref]
  10. A. Argyros, R. Lwin, S. G. Leon-Saval, J. Poulin, L. Poladian, and M. C. J. Large, “Low loss and temperature stable microstructured polymer optical fibers,” J. Lightwave Technol. 30(1), 192–197 (2012).
    [Crossref]
  11. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  12. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  13. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
    [Crossref]
  14. C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
    [Crossref]
  15. G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
    [Crossref]
  16. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
    [Crossref] [PubMed]
  17. A. Stefani, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
    [Crossref]
  18. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [Crossref]
  19. D. Webb, K. Kalli, and C. Zhang, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. Soc. Photo-Optical Instrum. Eng. 6990, L9900 (2008).
  20. I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
    [Crossref] [PubMed]
  21. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
    [Crossref] [PubMed]
  22. T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
    [Crossref] [PubMed]
  23. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [Crossref]

2014 (1)

2013 (2)

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

2012 (4)

A. Argyros, R. Lwin, S. G. Leon-Saval, J. Poulin, L. Poladian, and M. C. J. Large, “Low loss and temperature stable microstructured polymer optical fibers,” J. Lightwave Technol. 30(1), 192–197 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

2011 (5)

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

A. Stefani, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

2008 (1)

D. Webb, K. Kalli, and C. Zhang, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. Soc. Photo-Optical Instrum. Eng. 6990, L9900 (2008).

2007 (1)

2006 (2)

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[Crossref]

S. H. Law, J. D. Harvey, R. J. Kruhlak, M. Song, E. Wu, G. W. Barton, M. A. Van Eijkelenborg, and M. C. J. Large, “Cleaving of microstructured polymer optical fibres,” Opt. Commun. 258(2), 193–202 (2006).
[Crossref]

2005 (1)

1999 (1)

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

1997 (1)

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Alberto, N. J.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Argyros, A.

Asatryan, A. A.

Askins, C. G.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Baghdasaryan, T.

Bang, O.

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

A. Stefani, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

Barton, G. W.

S. H. Law, J. D. Harvey, R. J. Kruhlak, M. Song, E. Wu, G. W. Barton, M. A. Van Eijkelenborg, and M. C. J. Large, “Cleaving of microstructured polymer optical fibres,” Opt. Commun. 258(2), 193–202 (2006).
[Crossref]

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[Crossref]

Berghmans, F.

Bilro, L. B.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Botten, L. C.

Bundalo, I.-L.

Chu, P. L.

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Davis, M.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Dobb, H.

Friebele, E. J.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Gan, J.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[Crossref]

Geernaert, T.

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Harvey, J. D.

S. H. Law, J. D. Harvey, R. J. Kruhlak, M. Song, E. Wu, G. W. Barton, M. A. Van Eijkelenborg, and M. C. J. Large, “Cleaving of microstructured polymer optical fibres,” Opt. Commun. 258(2), 193–202 (2006).
[Crossref]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Kalli, K.

Kan, D. J.

Kersey, A. D.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Khan, L.

Koo, K. P.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kruhlak, R. J.

S. H. Law, J. D. Harvey, R. J. Kruhlak, M. Song, E. Wu, G. W. Barton, M. A. Van Eijkelenborg, and M. C. J. Large, “Cleaving of microstructured polymer optical fibres,” Opt. Commun. 258(2), 193–202 (2006).
[Crossref]

Large, M. C. J.

Law, S. H.

S. H. Law, J. D. Harvey, R. J. Kruhlak, M. Song, E. Wu, G. W. Barton, M. A. Van Eijkelenborg, and M. C. J. Large, “Cleaving of microstructured polymer optical fibres,” Opt. Commun. 258(2), 193–202 (2006).
[Crossref]

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[Crossref]

LeBlanc, M.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Leon-Saval, S. G.

Lwin, R.

A. Argyros, R. Lwin, S. G. Leon-Saval, J. Poulin, L. Poladian, and M. C. J. Large, “Low loss and temperature stable microstructured polymer optical fibers,” J. Lightwave Technol. 30(1), 192–197 (2012).
[Crossref]

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[Crossref]

Markos, C.

Marques, C. A. F.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Marshall, G. D.

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Nielsen, K.

Nogueira, R. N.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Patrick, H. J.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Peng, G. D.

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Peters, K.

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Poladian, L.

Poulin, J.

Putnam, M.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Rasmussen, H. K.

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Song, M.

S. H. Law, J. D. Harvey, R. J. Kruhlak, M. Song, E. Wu, G. W. Barton, M. A. Van Eijkelenborg, and M. C. J. Large, “Cleaving of microstructured polymer optical fibres,” Opt. Commun. 258(2), 193–202 (2006).
[Crossref]

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Stefani, A.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

A. Stefani, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

Thienpont, H.

van Eijkelenborg, M. A.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[Crossref]

S. H. Law, J. D. Harvey, R. J. Kruhlak, M. Song, E. Wu, G. W. Barton, M. A. Van Eijkelenborg, and M. C. J. Large, “Cleaving of microstructured polymer optical fibres,” Opt. Commun. 258(2), 193–202 (2006).
[Crossref]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[Crossref] [PubMed]

Webb, D.

D. Webb, K. Kalli, and C. Zhang, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. Soc. Photo-Optical Instrum. Eng. 6990, L9900 (2008).

Webb, D. J.

Withford, M. J.

Wu, E.

S. H. Law, J. D. Harvey, R. J. Kruhlak, M. Song, E. Wu, G. W. Barton, M. A. Van Eijkelenborg, and M. C. J. Large, “Cleaving of microstructured polymer optical fibres,” Opt. Commun. 258(2), 193–202 (2006).
[Crossref]

Xiong, Z.

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Yan, C.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[Crossref]

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Zhang, C.

D. Webb, K. Kalli, and C. Zhang, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. Soc. Photo-Optical Instrum. Eng. 6990, L9900 (2008).

IEEE Photon. Technol. Lett. (1)

A. Stefani, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

IEEE Sens. J. (1)

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

J. Lightwave Technol. (2)

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

A. Argyros, R. Lwin, S. G. Leon-Saval, J. Poulin, L. Poladian, and M. C. J. Large, “Low loss and temperature stable microstructured polymer optical fibers,” J. Lightwave Technol. 30(1), 192–197 (2012).
[Crossref]

Opt. Commun. (5)

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006).
[Crossref]

S. H. Law, J. D. Harvey, R. J. Kruhlak, M. Song, E. Wu, G. W. Barton, M. A. Van Eijkelenborg, and M. C. J. Large, “Cleaving of microstructured polymer optical fibres,” Opt. Commun. 258(2), 193–202 (2006).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Opt. Lett. (1)

Photonics Technol. Lett. IEEE (1)

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

Proc. Soc. Photo-Optical Instrum. Eng. (1)

D. Webb, K. Kalli, and C. Zhang, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. Soc. Photo-Optical Instrum. Eng. 6990, L9900 (2008).

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Other (4)

A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science, 2009).

K. O. Hill and G. Meltz, “Fiber Bragg Grating technology fundamentals and overview,” 15(8), 1263–1276 (1997).
[Crossref]

M. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibre, 1st ed. (Springer, 2008), p. 232.

K. Krebber, S. Liehr, and J. Witt, “Smart technical textiles based on fibre optic sensors,” in OFS2012 22nd International Conference on Optical Fiber Sensors, Invited Paper, Y. Liao, W. Jin, D. D. Sampson, R. Yamauchi, Y. Chung, K. Nakamura, and Y. Rao, eds. (2012), Vol. 8421, p. 84212A–10.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Microstructured fiber with marked symmetry directions ГM and ГK.
Fig. 2
Fig. 2 Fiber with a normal, non-destructive grating visible in the cladding area from above, after 15 minutes of 325 nm UV laser irradiation (arrows are showing the direction of inscription and grating position).
Fig. 3
Fig. 3 Fiber after 30 min of 325 nm UV laser FBG inscription on 3 different fiber sections.
Fig. 4
Fig. 4 Fibers and their cross-sections revealing inscription directions when burned with the strong UV laser radiation.
Fig. 5
Fig. 5 The microstructure area has a 6-fold symmetry in addition to mirror symmetry of the unit segment which enabled mapping of the inscription angles to the first 30°. Green lines represent fibers having FBG reflectivities of 12-20 dB, orange 1-6 dB, and red represent fibers where no FBG formed in 30 min of inscription.
Fig. 6
Fig. 6 FBG final grating strengths (red full-color bars) and their corresponding inscription times (blue patterned bars) shown on a bar chart for the mapped 30° angle. For the fibers where FBGs were not written or the inscription time was not recorded there are no blue bars. FBG 13 (14°), 6 (23°) and 19 (28°) experienced two saturations which are depicted with stripped and empty bars. FBGs 20 and 23 (both positioned at 8°) have same strength but their respective inscription times were different. Inscription times were not recorded for the FBGs 2 (19°) and 4 (4°).
Fig. 7
Fig. 7 The FBG reflection spectra showing slower growth of the a) weak grating no. 13 and b) faster growth of the strong grating no. 15 . The growth dynamic of the strong grating (b) shows destruction of the grating after about 30 minutes with the formation of the strong sidepaks while the main peak diminishes. The weak grating has not been destroyed after 30 minutes of irradiation as probably not enough light has entered the core to induce such a destructive change.

Tables (3)

Tables Icon

Table 1 Fibers with strong gratings (12-20 dB in reflection) after 30 min of FBG inscription. Some gratings have exhibited growths after the first apparent saturation, both times are recorded with the first saturation time in brackets. Fiber numbers refer to Fig. 4.

Tables Icon

Table 2 a) Fibers with weak gratings (1-6 dB in reflection) after 30 min of FBG inscription. Some gratings have exhibited growths after the first apparent saturation, both times are recorded with the first saturation time in brackets. Fiber numbers refer to Fig. 4. b) Fibers with weak gratings (1-6 dB in reflection) after 30 min of FBG inscription. Fiber numbers refer to Fig. 4.

Tables Icon

Table 3 Fibers with no gratings after 30 min of FBG inscription. Fiber numbers refer to Fig. 4.

Metrics