Abstract

Ultra-compact waveguide electroabsorption optical switches and photodetectors with micron- and sub-micron lengths and compatible with silicon (Si) waveguides are demonstrated using the insulator-metal phase transition of vanadium dioxide (VO2). A 1 μm long hybrid Si-VO2 device is shown to achieve a high extinction ratio of 12 dB and a competitive insertion loss of 5 dB over a broad bandwidth of 100 nm near λ = 1550 nm. The device, operated as a photodetector, can measure optical powers less than 1 μW with a responsivity in excess of 10 A/W. With volumes that are about 100 to 1000 times smaller than today’s active Si photonic components, the hybrid Si-VO2 devices show the feasibility of integrating transition metal oxides on Si photonic platforms for nanoscale electro-optic elements.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters

Irene Olivares, Luis Sánchez, Jorge Parra, Roberto Larrea, Amadeu Griol, Mariela Menghini, Pía Homm, Lee-Woon Jang, Bart van Bilzen, Jin Won Seo, Jean-Pierre Locquet, and Pablo Sanchis
Opt. Express 26(10) 12387-12395 (2018)

Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches

Brett A. Kruger, Arash Joushaghani, and Joyce K. S. Poon
Opt. Express 20(21) 23598-23609 (2012)

Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators

Judson D. Ryckman, V. Diez-Blanco, Joyeeta Nag, Robert E. Marvel, B. K. Choi, Richard F. Haglund, and Sharon M. Weiss
Opt. Express 20(12) 13215-13225 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref] [PubMed]
  2. A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
    [Crossref]
  3. A. E.-J. Lim, T.-Y. Liow, F. Qing, N. Duan, L. Ding, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p-i-n photodetector,” Opt. Express 19, 5040–5046 (2011).
    [Crossref] [PubMed]
  4. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008).
    [Crossref]
  5. Y. Tang, H.-W. Chen, S. Jain, J. D. Peters, U. Westergren, and J. E. Bowers, “50 Gb/s hybrid silicon traveling-wave electroabsorption modulator,” Opt. Express 19, 5811–5816 (2011).
    [Crossref] [PubMed]
  6. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
    [Crossref] [PubMed]
  7. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
    [Crossref]
  8. V. J. Sorger, D. Lanzillotti-KimuraNorberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17—22 (2012).
    [Crossref]
  9. A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
    [Crossref]
  10. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
    [Crossref] [PubMed]
  11. J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20, 13215–13225 (2012).
    [Crossref] [PubMed]
  12. J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21, 10753–10763 (2013).
    [Crossref] [PubMed]
  13. A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
    [Crossref]
  14. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
    [Crossref] [PubMed]
  15. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
    [Crossref]
  16. C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).
    [Crossref]
  17. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. of Phys.: Cond. Matt. 12, 8837 (2000).
  18. M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
    [Crossref] [PubMed]
  19. A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Voltage-controlled switching and thermal effects in VO2 nano-gap junctions,” Appl. Phys. Lett. 104, 221904 (2014).
    [Crossref]
  20. P. Markov, J. D. Ryckman, R. E. Marvel, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon-VO2 hybrid electro-optic modulator,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2F.7.
  21. L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
    [Crossref] [PubMed]
  22. B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
    [Crossref] [PubMed]
  23. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref] [PubMed]
  24. A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Separating the carrier and thermally induced phase transitions in VO2 microwires,” (submitted) (2014).
  25. A. Joushaghani, “Micro- and nano-scale optoelectronic devices using vanadium dioxide,” Ph.D. thesis, University of Toronto (2014).
  26. C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-size ITO and graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quant. Electron. 20, 3400310 (2014).
  27. D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE,” 8265, 826507 (2012).
    [Crossref]
  28. Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
    [Crossref]
  29. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
    [Crossref] [PubMed]
  30. S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18, 11282–11291 (2010).
    [Crossref] [PubMed]
  31. A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions,” Appl. Phys. Lett. 105, 231904 (2014).
    [Crossref]
  32. S. Lysenko, V. Vikhnin, A. Rua, F. Fernandez, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B 82, 205425 (2010).
    [Crossref]
  33. M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection driven phase transitions,” Phys. Rev. B 86, 134101 (2012).
    [Crossref]
  34. K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
    [Crossref] [PubMed]
  35. Y. Zhang and S. Ramanathan, “Analysis of switching times for thermally driven VO2 metal-insulator transition nanoscale switching devices,” Solid-State Electron. 62, 161–164 (2011).
    [Crossref]
  36. J. M. Wu and W. E. Chang, “Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire,” ACS Appl. Mater. Interfaces 6, 14286–14292 (2014).
    [Crossref] [PubMed]
  37. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
    [Crossref]
  38. D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
    [Crossref]

2014 (7)

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Voltage-controlled switching and thermal effects in VO2 nano-gap junctions,” Appl. Phys. Lett. 104, 221904 (2014).
[Crossref]

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-size ITO and graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quant. Electron. 20, 3400310 (2014).

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions,” Appl. Phys. Lett. 105, 231904 (2014).
[Crossref]

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref] [PubMed]

J. M. Wu and W. E. Chang, “Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire,” ACS Appl. Mater. Interfaces 6, 14286–14292 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (10)

J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20, 13215–13225 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

V. J. Sorger, D. Lanzillotti-KimuraNorberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17—22 (2012).
[Crossref]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[Crossref]

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE,” 8265, 826507 (2012).
[Crossref]

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
[Crossref] [PubMed]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
[Crossref] [PubMed]

M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection driven phase transitions,” Phys. Rev. B 86, 134101 (2012).
[Crossref]

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

2011 (4)

Y. Zhang and S. Ramanathan, “Analysis of switching times for thermally driven VO2 metal-insulator transition nanoscale switching devices,” Solid-State Electron. 62, 161–164 (2011).
[Crossref]

A. E.-J. Lim, T.-Y. Liow, F. Qing, N. Duan, L. Ding, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p-i-n photodetector,” Opt. Express 19, 5040–5046 (2011).
[Crossref] [PubMed]

Y. Tang, H.-W. Chen, S. Jain, J. D. Peters, U. Westergren, and J. E. Bowers, “50 Gb/s hybrid silicon traveling-wave electroabsorption modulator,” Opt. Express 19, 5811–5816 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (1)

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

2008 (1)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

2004 (1)

2001 (1)

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

2000 (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. of Phys.: Cond. Matt. 12, 8837 (2000).

1969 (1)

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).
[Crossref]

Alain, D.

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Voltage-controlled switching and thermal effects in VO2 nano-gap junctions,” Appl. Phys. Lett. 104, 221904 (2014).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions,” Appl. Phys. Lett. 105, 231904 (2014).
[Crossref]

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Separating the carrier and thermally induced phase transitions in VO2 microwires,” (submitted) (2014).

Alic, N.

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Appavoo, K.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref] [PubMed]

Asghari, M.

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE,” 8265, 826507 (2012).
[Crossref]

Atwater, H. A.

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Beals, M.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008).
[Crossref]

Berglund, C. N.

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).
[Crossref]

Bernardis, S.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008).
[Crossref]

Biberman, A.

Bowers, J. E.

Brady, N. F.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref] [PubMed]

Briggs, R. M.

Cao, J.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Casandruc, A.

M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection driven phase transitions,” Phys. Rev. B 86, 134101 (2012).
[Crossref]

Cavalleri, A.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Chagnon, M.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Chang, W. E.

J. M. Wu and W. E. Chang, “Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire,” ACS Appl. Mater. Interfaces 6, 14286–14292 (2014).
[Crossref] [PubMed]

Chen, H.-W.

Chen, L.

Cheng, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008).
[Crossref]

Choi, B. K.

Cyr, M.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Davidson, C.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

DeRose, C.

Diest, K.

Diez-Blanco, V.

Ding, L.

Duan, N.

Ertekin, E.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Fan, W.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Fedeli, J.-M.

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Feng, D.

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE,” 8265, 826507 (2012).
[Crossref]

Fernandez, F.

S. Lysenko, V. Vikhnin, A. Rua, F. Fernandez, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B 82, 205425 (2010).
[Crossref]

Forget, P.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Gagné, J.-F.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Gardes, F.

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Grossman, J. C.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Guggenheim, H. J.

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).
[Crossref]

Guy, M.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Hada, M.

M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection driven phase transitions,” Phys. Rev. B 86, 134101 (2012).
[Crossref]

Haglund, R. F.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref] [PubMed]

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21, 10753–10763 (2013).
[Crossref] [PubMed]

J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20, 13215–13225 (2012).
[Crossref] [PubMed]

M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection driven phase transitions,” Phys. Rev. B 86, 134101 (2012).
[Crossref]

P. Markov, J. D. Ryckman, R. E. Marvel, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon-VO2 hybrid electro-optic modulator,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2F.7.

Hallman, K. A.

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21, 10753–10763 (2013).
[Crossref] [PubMed]

P. Markov, J. D. Ryckman, R. E. Marvel, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon-VO2 hybrid electro-optic modulator,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2F.7.

Hatano, T.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Hilton, D. J.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref] [PubMed]

Hontani, Y.

M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection driven phase transitions,” Phys. Rev. B 86, 134101 (2012).
[Crossref]

Hu, Y.

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Huang, S.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Itabashi, S.

Iwasa, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Jain, S.

Jeong, J.

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Voltage-controlled switching and thermal effects in VO2 nano-gap junctions,” Appl. Phys. Lett. 104, 221904 (2014).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions,” Appl. Phys. Lett. 105, 231904 (2014).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Separating the carrier and thermally induced phase transitions in VO2 microwires,” (submitted) (2014).

Joushaghani, A.

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Voltage-controlled switching and thermal effects in VO2 nano-gap junctions,” Appl. Phys. Lett. 104, 221904 (2014).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions,” Appl. Phys. Lett. 105, 231904 (2014).
[Crossref]

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
[Crossref] [PubMed]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Separating the carrier and thermally induced phase transitions in VO2 microwires,” (submitted) (2014).

A. Joushaghani, “Micro- and nano-scale optoelectronic devices using vanadium dioxide,” Ph.D. thesis, University of Toronto (2014).

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Kawasaki, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Khan, S.

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-size ITO and graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quant. Electron. 20, 3400310 (2014).

Khanal, D. R.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Kieffer, J. C.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Kimerling, L. C.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008).
[Crossref]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Kou, R.

Kruger, B. A.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
[Crossref] [PubMed]

Kuo, B. P. P.

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Kwong, D.-L.

Lanzillotti-KimuraNorberto, D.

V. J. Sorger, D. Lanzillotti-KimuraNorberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17—22 (2012).
[Crossref]

Latrasse, C.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Li, Z. R.

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-size ITO and graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quant. Electron. 20, 3400310 (2014).

Lim, A. E.-J.

Liow, T.-Y.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Liu, H.

S. Lysenko, V. Vikhnin, A. Rua, F. Fernandez, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B 82, 205425 (2010).
[Crossref]

Liu, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008).
[Crossref]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Lo, G.-Q.

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Luff, B. J.

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE,” 8265, 826507 (2012).
[Crossref]

Lysenko, S.

S. Lysenko, V. Vikhnin, A. Rua, F. Fernandez, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B 82, 205425 (2010).
[Crossref]

Ma, R.-M.

V. J. Sorger, D. Lanzillotti-KimuraNorberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17—22 (2012).
[Crossref]

Markov, P.

P. Markov, J. D. Ryckman, R. E. Marvel, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon-VO2 hybrid electro-optic modulator,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2F.7.

Marvel, R. E.

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21, 10753–10763 (2013).
[Crossref] [PubMed]

J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20, 13215–13225 (2012).
[Crossref] [PubMed]

M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection driven phase transitions,” Phys. Rev. B 86, 134101 (2012).
[Crossref]

P. Markov, J. D. Ryckman, R. E. Marvel, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon-VO2 hybrid electro-optic modulator,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2F.7.

Mashanovich, G.

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Matsuo, J.

M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection driven phase transitions,” Phys. Rev. B 86, 134101 (2012).
[Crossref]

McNab, S.

Michel, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008).
[Crossref]

Miller, R. J. D.

M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection driven phase transitions,” Phys. Rev. B 86, 134101 (2012).
[Crossref]

Morsy-Osman, M.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Myslivets, E.

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Nag, J.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref] [PubMed]

J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20, 13215–13225 (2012).
[Crossref] [PubMed]

Nakano, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Nielson, G. N.

Nishi, H.

Ogletree, D. F.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Okuyama, D.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Ono, S.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Painchaud, Y.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Pantelides, S. T.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref] [PubMed]

Paquet, C.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Paquet, S.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Paradis, S.

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions,” Appl. Phys. Lett. 105, 231904 (2014).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Voltage-controlled switching and thermal effects in VO2 nano-gap junctions,” Appl. Phys. Lett. 104, 221904 (2014).
[Crossref]

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Separating the carrier and thermally induced phase transitions in VO2 microwires,” (submitted) (2014).

Park, S.

Pelletier, F.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Pelletier, M.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Pergament, A.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. of Phys.: Cond. Matt. 12, 8837 (2000).

Peters, J. D.

Picard, M.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Plant, D. V.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Pomerene, A.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008).
[Crossref]

Poon, J. K. S.

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Voltage-controlled switching and thermal effects in VO2 nano-gap junctions,” Appl. Phys. Lett. 104, 221904 (2014).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions,” Appl. Phys. Lett. 105, 231904 (2014).
[Crossref]

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
[Crossref] [PubMed]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Separating the carrier and thermally induced phase transitions in VO2 microwires,” (submitted) (2014).

Poulin, M.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Prasankumar, R. P.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref] [PubMed]

Pryce, I. M.

Qing, F.

Radic, S.

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Raksi, F.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Ramanathan, S.

Y. Zhang and S. Ramanathan, “Analysis of switching times for thermally driven VO2 metal-insulator transition nanoscale switching devices,” Solid-State Electron. 62, 161–164 (2011).
[Crossref]

Reano, R. M.

Reed, G.

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Robidoux, G.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Rua, A.

S. Lysenko, V. Vikhnin, A. Rua, F. Fernandez, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B 82, 205425 (2010).
[Crossref]

Ryckman, J. D.

Savard, S.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Seo, M.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref] [PubMed]

Shibuya, K.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Shinojima, H.

Siders, C. W.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Simsek, E.

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-size ITO and graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quant. Electron. 20, 3400310 (2014).

Sorger, V. J.

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-size ITO and graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quant. Electron. 20, 3400310 (2014).

V. J. Sorger, D. Lanzillotti-KimuraNorberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17—22 (2012).
[Crossref]

Squier, J. A.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Srinivasan, V.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Stefanovich, D.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. of Phys.: Cond. Matt. 12, 8837 (2000).

Stefanovich, G.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. of Phys.: Cond. Matt. 12, 8837 (2000).

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Stewart Aitchison, J.

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Voltage-controlled switching and thermal effects in VO2 nano-gap junctions,” Appl. Phys. Lett. 104, 221904 (2014).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions,” Appl. Phys. Lett. 105, 231904 (2014).
[Crossref]

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Separating the carrier and thermally induced phase transitions in VO2 microwires,” (submitted) (2014).

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Sun, J.

Sun, R.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008).
[Crossref]

Sweatlock, L. A.

Tang, Y.

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Thomson, D.

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Timurdogan, E.

Tokura, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Toth, C.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Trotter, D. C.

Tsuchizawa, T.

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Vikhnin, V.

S. Lysenko, V. Vikhnin, A. Rua, F. Fernandez, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B 82, 205425 (2010).
[Crossref]

Vlasov, Y.

Wang, B.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref] [PubMed]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Watanabe, T.

Watts, M. R.

Weiss, S. M.

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Westergren, U.

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

Wood, M. G.

Wu, J.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Wu, J. M.

J. M. Wu and W. E. Chang, “Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire,” ACS Appl. Mater. Interfaces 6, 14286–14292 (2014).
[Crossref] [PubMed]

Xu, Q.

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Yamada, K.

Ye, C.

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-size ITO and graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quant. Electron. 20, 3400310 (2014).

Yim, J. W. L.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Young, R. W.

Yu, M.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Zhang, D.

M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection driven phase transitions,” Phys. Rev. B 86, 134101 (2012).
[Crossref]

Zhang, X.

V. J. Sorger, D. Lanzillotti-KimuraNorberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17—22 (2012).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang and S. Ramanathan, “Analysis of switching times for thermally driven VO2 metal-insulator transition nanoscale switching devices,” Solid-State Electron. 62, 161–164 (2011).
[Crossref]

Zheng, H.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Zlatanovic, S.

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

Zortman, W. A.

ACS Appl. Mater. Interfaces (1)

J. M. Wu and W. E. Chang, “Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire,” ACS Appl. Mater. Interfaces 6, 14286–14292 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Electronic and thermal effects in the insulator-metal phase transition in VO2 nano-gap junctions,” Appl. Phys. Lett. 105, 231904 (2014).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Voltage-controlled switching and thermal effects in VO2 nano-gap junctions,” Appl. Phys. Lett. 104, 221904 (2014).
[Crossref]

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

IEEE J. Sel. Top. Quant. Electron. (1)

C. Ye, S. Khan, Z. R. Li, E. Simsek, and V. J. Sorger, “λ-size ITO and graphene-based electro-optic modulators on SOI,” IEEE J. Sel. Top. Quant. Electron. 20, 3400310 (2014).

IEEE Photon. Technol. Lett. (1)

D. Thomson, F. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[Crossref]

J. of Phys.: Cond. Matt. (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. of Phys.: Cond. Matt. 12, 8837 (2000).

Nano Lett. (1)

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref] [PubMed]

Nanophotonics (1)

V. J. Sorger, D. Lanzillotti-KimuraNorberto, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17—22 (2012).
[Crossref]

Nat. Nano. (1)

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nano. 4, 732–737 (2009).
[Crossref]

Nat. Photon. (2)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photon. 2, 433–437 (2008).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Nature (4)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (10)

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[Crossref]

A. E.-J. Lim, T.-Y. Liow, F. Qing, N. Duan, L. Ding, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p-i-n photodetector,” Opt. Express 19, 5040–5046 (2011).
[Crossref] [PubMed]

Y. Tang, H.-W. Chen, S. Jain, J. D. Peters, U. Westergren, and J. E. Bowers, “50 Gb/s hybrid silicon traveling-wave electroabsorption modulator,” Opt. Express 19, 5811–5816 (2011).
[Crossref] [PubMed]

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
[Crossref] [PubMed]

J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20, 13215–13225 (2012).
[Crossref] [PubMed]

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21, 10753–10763 (2013).
[Crossref] [PubMed]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18, 11282–11291 (2010).
[Crossref] [PubMed]

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
[Crossref] [PubMed]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
[Crossref] [PubMed]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (1)

Phys. Rev. (1)

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).
[Crossref]

Phys. Rev. B (2)

S. Lysenko, V. Vikhnin, A. Rua, F. Fernandez, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B 82, 205425 (2010).
[Crossref]

M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection driven phase transitions,” Phys. Rev. B 86, 134101 (2012).
[Crossref]

Phys. Rev. Lett. (1)

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Proc. SPIE (2)

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE,” 8265, 826507 (2012).
[Crossref]

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M. Picard, S. Paquet, C. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 898889880L (2014).
[Crossref]

Solid-State Electron. (1)

Y. Zhang and S. Ramanathan, “Analysis of switching times for thermally driven VO2 metal-insulator transition nanoscale switching devices,” Solid-State Electron. 62, 161–164 (2011).
[Crossref]

Other (3)

P. Markov, J. D. Ryckman, R. E. Marvel, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon-VO2 hybrid electro-optic modulator,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2F.7.

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Separating the carrier and thermally induced phase transitions in VO2 microwires,” (submitted) (2014).

A. Joushaghani, “Micro- and nano-scale optoelectronic devices using vanadium dioxide,” Ph.D. thesis, University of Toronto (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A schematic of the Si-VO2 electroabsorption switch. (b) The cross-section of the Si-VO2 waveguide. The simulated electric field intensity of the Si-VO2 waveguide when the VO2 was in the (c) insulating and (d) metallic state.
Fig. 2
Fig. 2 The computed ER and IL as a function of (a) Wg (for hSi = 70 nm and hVO2 = 150 nm) and (b) hVO2 (for Wg = 300 nm and hSi = 70 nm). The computed electric field intensity along the propagation axis and center of the waveguide when the device is in the (c) on and (b) off state. The device dimensions are Wi = 1.1 μm, Wg = 300 nm, hSi = 70 nm, hVO2 = 150 nm, and Lg = 500 nm.
Fig. 3
Fig. 3 (a) A microscope image of a device with a Si-VO2 device length of 500 nm. The measured (b) current and (c) optical transmission as a function of the applied voltage. (d) The measured ER spectra for Lg of 500 nm and 1 μm.
Fig. 4
Fig. 4 (a) The measured voltage across the gap (left axis) and normalized optical transmission (right axis) when a triangular voltage pulse with a ramp-up time of τ was applied. (b) The optical transmission for several values of τ. (c) The measured voltage across the gap (left axis) and normalized optical transmission (right axis) when a square-wave pulse with a duration of t was applied. (d) The measured optical transmission for various values of t.
Fig. 5
Fig. 5 (a) The normalized optical transmission through the 1 μm long Si-VO2 device as a function of the incident optical power coupled into the Si-VO2 section. (b) The measured device resistance as a function of applied voltage for incident optical powers of 0.35 μW and 16.5 μW. (c) The measured (circles) and fitted (solid lines) change in the current through the device when a bias voltage of 5.8 V was applied. The curve on the left is a fit of the form A/(PoB)2 + C, where Po is the incident optical power, and the curve on the right is an exponential fit. (d) The extracted responsivity of the 1 μm long photodetector.

Tables (1)

Tables Icon

Table 1 Estimate of performance limits of VO2 electroabsorption switches and modulators

Metrics