Abstract

The generation of diffractive optical elements often requires time and cost consuming production techniques such as photolithography. Especially in research and development, small series of diffractive microstructures are needed and flexible and cost effective fabrication techniques are desirable to enable the fabrication of versatile optical elements on a short time scale. In this work, we introduce a novel process chain for fabrication of diffractive optical elements in various polymers. It is based on a maskless lithography process step, where a computer generated image of the optical element is projected via a digital mirror device and a microscope setup onto a silicon wafer coated with photosensitive resist. In addition, a stitching process allows us to microstructure a large area on the wafer. After development, a soft stamp of the microstructure is made from Polydimethylsiloxane, which is used as a mold for the subsequent hot embossing process, where the final diffractive optical element is replicated into thermoplastic polymer. Experimental results are presented, which demonstrate the applicability of the process.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polymer-based diffractive optical elements for rear end automotive applications: design and fabrication process

M. S. Khan, Maik Rahlves, Roland Lachmayer, and Bernhard Roth
Appl. Opt. 57(30) 9106-9113 (2018)

Single-step replication of a highly integrated PDMS optofluidic analysis system

Martin Amberg, Sebastian Stoebenau, and Stefan Sinzinger
Appl. Opt. 49(22) 4326-4330 (2010)

Color effects from scattering on random surface structures in dielectrics

Jeppe Clausen, Alexander B. Christiansen, Joergen Garnaes, N. Asger Mortensen, and Anders Kristensen
Opt. Express 20(4) 4376-4381 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H.-P. Herzig, (ed.), Micro-optics - Elements, Systems and Applications (Taylor & Francis, 1997).
  2. S. Bäumer, (ed.), Handbook of Plastic Optics (Wiley-VCH, 2005).
    [Crossref]
  3. M. Worgull, Hot Embossing: Theory and Technology of Microreplication (William Andrew, 2009).
  4. S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 2003).
    [Crossref]
  5. X. Luo, K. Cheng, D. Webb, and F. Wardle, “Design of ultraprecision machine tools with applications to manufacture of miniature and micro components,” J. Mater. Process. Technol. 167, 515–528 (2005).
    [Crossref]
  6. Y.-C. Chan, Y.-L. Lam, Y. Zhou, F.-L. Xu, C.-Y. Liaw, W. Jiang, and J. Ahn, “Development and applications of a laser writing lithography system for maskless patterning,” Opt. Eng. 37(9), 2521–2530 (1998).
    [Crossref]
  7. M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
    [Crossref]
  8. A. Smuk and N. Lawandy, “Direct laser writing of diffractive optics in glass,” Opt. Lett. 22(13), 1030–1032 (1997).
    [Crossref] [PubMed]
  9. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
    [Crossref] [PubMed]
  10. M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing,” Opt. Lett. 31(6), 805–807 (2006).
    [Crossref] [PubMed]
  11. J. Serbin, A. Egbert, A. Ostendorf, B. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref] [PubMed]
  12. L. H. Erdmann, A. Deparnay, F. Wirth, and R. Brunner, “MEMS-based lithography for the fabrication of micro-optical components,” Proc. SPIE 5347, 79–84 (2004).
    [Crossref]
  13. B.-A. Behrens, R. Krimm, J. Jocker, E. Reithmeier, B. Roth, and M. Rahlves, “Method to emboss holograms into the surface of sheet metals,” Key Eng. Mater. 549, 125–132 (2013).
    [Crossref]
  14. G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
    [Crossref] [PubMed]
  15. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18(11), 11754–11762 (2010).
    [Crossref] [PubMed]
  16. J.H. Lake, S.D. Cambron, K.M. Walsh, and S. McNamara, “Maskless grayscale lithography using a positive-tone photodefinable polyimide for MEMS applications,” J. Microelectromech. S. 20, (6)1483–1488 (2011).
    [Crossref]
  17. C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, and C. Qiu, “Imaging simulation of maskless lithography using a DMD,” Proc. SPIE 5645, 307–314 (2005).
    [Crossref]
  18. C. Kelb, E. Reithmeier, and B. Roth, “Foil-integrated 2D optical strain sensors,” Procedia Technology 15, 711–716 (2014).
    [Crossref]
  19. M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Polymer planar Bragg grating sensor for static strain measurements,” Opt. Lett. 38(5), 772–774 (2013).
    [Crossref] [PubMed]
  20. R. Kirchner, A. Finn, R. Landgraf, L. Nueske, L. Teng, M. Vogler, and W.-J. Fischer, “Direct UV-imprint of hybrid-polymer photonic microring resonators and their characterization,” J. Lightwave Technol. 32(9), 1674–1680 (2014).
    [Crossref]
  21. Q. Zhengkun, Y. Yue, S. Jia, Z. Huiping, W. Guofeng, S. Yongxin, and Wang Yuhai, “Analysis of fabrication results for 17 × 17 polymer arrayed waveguide grating multiplexers with flat spectral responses,” J. Semicond.  34, 094011 (2013).
    [Crossref]
  22. S. W. Lee and S. S. Lee, “Shrinkage ratio of PDMS and its alignment method for the wafer level process,” Microsyst. Technol. 14(2), 205–208 (2008).
    [Crossref]

2014 (3)

2013 (3)

Q. Zhengkun, Y. Yue, S. Jia, Z. Huiping, W. Guofeng, S. Yongxin, and Wang Yuhai, “Analysis of fabrication results for 17 × 17 polymer arrayed waveguide grating multiplexers with flat spectral responses,” J. Semicond.  34, 094011 (2013).
[Crossref]

B.-A. Behrens, R. Krimm, J. Jocker, E. Reithmeier, B. Roth, and M. Rahlves, “Method to emboss holograms into the surface of sheet metals,” Key Eng. Mater. 549, 125–132 (2013).
[Crossref]

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Polymer planar Bragg grating sensor for static strain measurements,” Opt. Lett. 38(5), 772–774 (2013).
[Crossref] [PubMed]

2011 (1)

J.H. Lake, S.D. Cambron, K.M. Walsh, and S. McNamara, “Maskless grayscale lithography using a positive-tone photodefinable polyimide for MEMS applications,” J. Microelectromech. S. 20, (6)1483–1488 (2011).
[Crossref]

2010 (2)

2008 (1)

S. W. Lee and S. S. Lee, “Shrinkage ratio of PDMS and its alignment method for the wafer level process,” Microsyst. Technol. 14(2), 205–208 (2008).
[Crossref]

2006 (1)

2005 (2)

X. Luo, K. Cheng, D. Webb, and F. Wardle, “Design of ultraprecision machine tools with applications to manufacture of miniature and micro components,” J. Mater. Process. Technol. 167, 515–528 (2005).
[Crossref]

C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, and C. Qiu, “Imaging simulation of maskless lithography using a DMD,” Proc. SPIE 5645, 307–314 (2005).
[Crossref]

2004 (1)

L. H. Erdmann, A. Deparnay, F. Wirth, and R. Brunner, “MEMS-based lithography for the fabrication of micro-optical components,” Proc. SPIE 5347, 79–84 (2004).
[Crossref]

2003 (1)

1998 (1)

Y.-C. Chan, Y.-L. Lam, Y. Zhou, F.-L. Xu, C.-Y. Liaw, W. Jiang, and J. Ahn, “Development and applications of a laser writing lithography system for maskless patterning,” Opt. Eng. 37(9), 2521–2530 (1998).
[Crossref]

1997 (1)

1994 (1)

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Ahn, J.

Y.-C. Chan, Y.-L. Lam, Y. Zhou, F.-L. Xu, C.-Y. Liaw, W. Jiang, and J. Ahn, “Development and applications of a laser writing lithography system for maskless patterning,” Opt. Eng. 37(9), 2521–2530 (1998).
[Crossref]

Behrens, B.-A.

B.-A. Behrens, R. Krimm, J. Jocker, E. Reithmeier, B. Roth, and M. Rahlves, “Method to emboss holograms into the surface of sheet metals,” Key Eng. Mater. 549, 125–132 (2013).
[Crossref]

Belle, S.

Bian, H.

Brunner, R.

L. H. Erdmann, A. Deparnay, F. Wirth, and R. Brunner, “MEMS-based lithography for the fabrication of micro-optical components,” Proc. SPIE 5347, 79–84 (2004).
[Crossref]

Cambron, S.D.

J.H. Lake, S.D. Cambron, K.M. Walsh, and S. McNamara, “Maskless grayscale lithography using a positive-tone photodefinable polyimide for MEMS applications,” J. Microelectromech. S. 20, (6)1483–1488 (2011).
[Crossref]

Chan, Y.-C.

Y.-C. Chan, Y.-L. Lam, Y. Zhou, F.-L. Xu, C.-Y. Liaw, W. Jiang, and J. Ahn, “Development and applications of a laser writing lithography system for maskless patterning,” Opt. Eng. 37(9), 2521–2530 (1998).
[Crossref]

Chen, F.

Cheng, K.

X. Luo, K. Cheng, D. Webb, and F. Wardle, “Design of ultraprecision machine tools with applications to manufacture of miniature and micro components,” J. Mater. Process. Technol. 167, 515–528 (2005).
[Crossref]

Chichkov, B.

Chilkoti, A.

Clark, R. L.

Cronauer, C.

Deparnay, A.

L. H. Erdmann, A. Deparnay, F. Wirth, and R. Brunner, “MEMS-based lithography for the fabrication of micro-optical components,” Proc. SPIE 5347, 79–84 (2004).
[Crossref]

Deubel, M.

Domann, G.

Du, J.

C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, and C. Qiu, “Imaging simulation of maskless lithography using a DMD,” Proc. SPIE 5645, 307–314 (2005).
[Crossref]

Duan, X.

C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, and C. Qiu, “Imaging simulation of maskless lithography using a DMD,” Proc. SPIE 5645, 307–314 (2005).
[Crossref]

Egbert, A.

Erdmann, L. H.

L. H. Erdmann, A. Deparnay, F. Wirth, and R. Brunner, “MEMS-based lithography for the fabrication of micro-optical components,” Proc. SPIE 5347, 79–84 (2004).
[Crossref]

Finn, A.

Fischer, W.-J.

Fröhlich, L.

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Gao, F.

C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, and C. Qiu, “Imaging simulation of maskless lithography using a DMD,” Proc. SPIE 5645, 307–314 (2005).
[Crossref]

Guo, X.

C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, and C. Qiu, “Imaging simulation of maskless lithography using a DMD,” Proc. SPIE 5645, 307–314 (2005).
[Crossref]

Guofeng, W.

Q. Zhengkun, Y. Yue, S. Jia, Z. Huiping, W. Guofeng, S. Yongxin, and Wang Yuhai, “Analysis of fabrication results for 17 × 17 polymer arrayed waveguide grating multiplexers with flat spectral responses,” J. Semicond.  34, 094011 (2013).
[Crossref]

Hellmann, R.

Hill, R. T.

Hou, C.

Hou, X.

Houbertz, R.

Hucknall, A.

Huiping, Z.

Q. Zhengkun, Y. Yue, S. Jia, Z. Huiping, W. Guofeng, S. Yongxin, and Wang Yuhai, “Analysis of fabrication results for 17 × 17 polymer arrayed waveguide grating multiplexers with flat spectral responses,” J. Semicond.  34, 094011 (2013).
[Crossref]

Jahns, J.

S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 2003).
[Crossref]

Jenness, N. J.

Jia, S.

Q. Zhengkun, Y. Yue, S. Jia, Z. Huiping, W. Guofeng, S. Yongxin, and Wang Yuhai, “Analysis of fabrication results for 17 × 17 polymer arrayed waveguide grating multiplexers with flat spectral responses,” J. Semicond.  34, 094011 (2013).
[Crossref]

Jiang, W.

Y.-C. Chan, Y.-L. Lam, Y. Zhou, F.-L. Xu, C.-Y. Liaw, W. Jiang, and J. Ahn, “Development and applications of a laser writing lithography system for maskless patterning,” Opt. Eng. 37(9), 2521–2530 (1998).
[Crossref]

Jocker, J.

B.-A. Behrens, R. Krimm, J. Jocker, E. Reithmeier, B. Roth, and M. Rahlves, “Method to emboss holograms into the surface of sheet metals,” Key Eng. Mater. 549, 125–132 (2013).
[Crossref]

John, S.

Kelb, C.

C. Kelb, E. Reithmeier, and B. Roth, “Foil-integrated 2D optical strain sensors,” Procedia Technology 15, 711–716 (2014).
[Crossref]

Kelemen, L.

Kirchner, R.

Koller, G.

Krimm, R.

B.-A. Behrens, R. Krimm, J. Jocker, E. Reithmeier, B. Roth, and M. Rahlves, “Method to emboss holograms into the surface of sheet metals,” Key Eng. Mater. 549, 125–132 (2013).
[Crossref]

Lake, J.H.

J.H. Lake, S.D. Cambron, K.M. Walsh, and S. McNamara, “Maskless grayscale lithography using a positive-tone photodefinable polyimide for MEMS applications,” J. Microelectromech. S. 20, (6)1483–1488 (2011).
[Crossref]

Lam, Y.-L.

Y.-C. Chan, Y.-L. Lam, Y. Zhou, F.-L. Xu, C.-Y. Liaw, W. Jiang, and J. Ahn, “Development and applications of a laser writing lithography system for maskless patterning,” Opt. Eng. 37(9), 2521–2530 (1998).
[Crossref]

Landgraf, R.

Lawandy, N.

Lee, S. S.

S. W. Lee and S. S. Lee, “Shrinkage ratio of PDMS and its alignment method for the wafer level process,” Microsyst. Technol. 14(2), 205–208 (2008).
[Crossref]

Lee, S. W.

S. W. Lee and S. S. Lee, “Shrinkage ratio of PDMS and its alignment method for the wafer level process,” Microsyst. Technol. 14(2), 205–208 (2008).
[Crossref]

Liang, W.

Liaw, C.-Y.

Y.-C. Chan, Y.-L. Lam, Y. Zhou, F.-L. Xu, C.-Y. Liaw, W. Jiang, and J. Ahn, “Development and applications of a laser writing lithography system for maskless patterning,” Opt. Eng. 37(9), 2521–2530 (1998).
[Crossref]

Linden, S.

Liu, C.

C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, and C. Qiu, “Imaging simulation of maskless lithography using a DMD,” Proc. SPIE 5645, 307–314 (2005).
[Crossref]

Liu, H.

Luo, B.

C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, and C. Qiu, “Imaging simulation of maskless lithography using a DMD,” Proc. SPIE 5645, 307–314 (2005).
[Crossref]

Luo, X.

X. Luo, K. Cheng, D. Webb, and F. Wardle, “Design of ultraprecision machine tools with applications to manufacture of miniature and micro components,” J. Mater. Process. Technol. 167, 515–528 (2005).
[Crossref]

McNamara, S.

J.H. Lake, S.D. Cambron, K.M. Walsh, and S. McNamara, “Maskless grayscale lithography using a positive-tone photodefinable polyimide for MEMS applications,” J. Microelectromech. S. 20, (6)1483–1488 (2011).
[Crossref]

Nueske, L.

Ormos, P.

Ostendorf, A.

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Popall, M.

Qiu, C.

C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, and C. Qiu, “Imaging simulation of maskless lithography using a DMD,” Proc. SPIE 5645, 307–314 (2005).
[Crossref]

Rahlves, M.

B.-A. Behrens, R. Krimm, J. Jocker, E. Reithmeier, B. Roth, and M. Rahlves, “Method to emboss holograms into the surface of sheet metals,” Key Eng. Mater. 549, 125–132 (2013).
[Crossref]

Reithmeier, E.

C. Kelb, E. Reithmeier, and B. Roth, “Foil-integrated 2D optical strain sensors,” Procedia Technology 15, 711–716 (2014).
[Crossref]

B.-A. Behrens, R. Krimm, J. Jocker, E. Reithmeier, B. Roth, and M. Rahlves, “Method to emboss holograms into the surface of sheet metals,” Key Eng. Mater. 549, 125–132 (2013).
[Crossref]

Rosenberger, M.

Rossi, M.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Roth, B.

C. Kelb, E. Reithmeier, and B. Roth, “Foil-integrated 2D optical strain sensors,” Procedia Technology 15, 711–716 (2014).
[Crossref]

B.-A. Behrens, R. Krimm, J. Jocker, E. Reithmeier, B. Roth, and M. Rahlves, “Method to emboss holograms into the surface of sheet metals,” Key Eng. Mater. 549, 125–132 (2013).
[Crossref]

Schmauss, B.

Schuetz, H.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Schulz, J.

Serbin, J.

Si, J.

Sinzinger, S.

S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 2003).
[Crossref]

Smuk, A.

Teng, L.

Vizsnyiczai, G.

Vogler, M.

von Freymann, G.

Walsh, K.M.

J.H. Lake, S.D. Cambron, K.M. Walsh, and S. McNamara, “Maskless grayscale lithography using a positive-tone photodefinable polyimide for MEMS applications,” J. Microelectromech. S. 20, (6)1483–1488 (2011).
[Crossref]

Wang, X.

Wardle, F.

X. Luo, K. Cheng, D. Webb, and F. Wardle, “Design of ultraprecision machine tools with applications to manufacture of miniature and micro components,” J. Mater. Process. Technol. 167, 515–528 (2005).
[Crossref]

Webb, D.

X. Luo, K. Cheng, D. Webb, and F. Wardle, “Design of ultraprecision machine tools with applications to manufacture of miniature and micro components,” J. Mater. Process. Technol. 167, 515–528 (2005).
[Crossref]

Wegener, M.

Wirth, F.

L. H. Erdmann, A. Deparnay, F. Wirth, and R. Brunner, “MEMS-based lithography for the fabrication of micro-optical components,” Proc. SPIE 5347, 79–84 (2004).
[Crossref]

Worgull, M.

M. Worgull, Hot Embossing: Theory and Technology of Microreplication (William Andrew, 2009).

Xu, F.-L.

Y.-C. Chan, Y.-L. Lam, Y. Zhou, F.-L. Xu, C.-Y. Liaw, W. Jiang, and J. Ahn, “Development and applications of a laser writing lithography system for maskless patterning,” Opt. Eng. 37(9), 2521–2530 (1998).
[Crossref]

Yang, Q.

Yongxin, S.

Q. Zhengkun, Y. Yue, S. Jia, Z. Huiping, W. Guofeng, S. Yongxin, and Wang Yuhai, “Analysis of fabrication results for 17 × 17 polymer arrayed waveguide grating multiplexers with flat spectral responses,” J. Semicond.  34, 094011 (2013).
[Crossref]

Yue, Y.

Q. Zhengkun, Y. Yue, S. Jia, Z. Huiping, W. Guofeng, S. Yongxin, and Wang Yuhai, “Analysis of fabrication results for 17 × 17 polymer arrayed waveguide grating multiplexers with flat spectral responses,” J. Semicond.  34, 094011 (2013).
[Crossref]

Yuhai, Wang

Q. Zhengkun, Y. Yue, S. Jia, Z. Huiping, W. Guofeng, S. Yongxin, and Wang Yuhai, “Analysis of fabrication results for 17 × 17 polymer arrayed waveguide grating multiplexers with flat spectral responses,” J. Semicond.  34, 094011 (2013).
[Crossref]

Zhengkun, Q.

Q. Zhengkun, Y. Yue, S. Jia, Z. Huiping, W. Guofeng, S. Yongxin, and Wang Yuhai, “Analysis of fabrication results for 17 × 17 polymer arrayed waveguide grating multiplexers with flat spectral responses,” J. Semicond.  34, 094011 (2013).
[Crossref]

Zhou, Y.

Y.-C. Chan, Y.-L. Lam, Y. Zhou, F.-L. Xu, C.-Y. Liaw, W. Jiang, and J. Ahn, “Development and applications of a laser writing lithography system for maskless patterning,” Opt. Eng. 37(9), 2521–2530 (1998).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Process. Technol. (1)

X. Luo, K. Cheng, D. Webb, and F. Wardle, “Design of ultraprecision machine tools with applications to manufacture of miniature and micro components,” J. Mater. Process. Technol. 167, 515–528 (2005).
[Crossref]

J. Microelectromech. S. (1)

J.H. Lake, S.D. Cambron, K.M. Walsh, and S. McNamara, “Maskless grayscale lithography using a positive-tone photodefinable polyimide for MEMS applications,” J. Microelectromech. S. 20, (6)1483–1488 (2011).
[Crossref]

J. Semicond (1)

Q. Zhengkun, Y. Yue, S. Jia, Z. Huiping, W. Guofeng, S. Yongxin, and Wang Yuhai, “Analysis of fabrication results for 17 × 17 polymer arrayed waveguide grating multiplexers with flat spectral responses,” J. Semicond.  34, 094011 (2013).
[Crossref]

Key Eng. Mater. (1)

B.-A. Behrens, R. Krimm, J. Jocker, E. Reithmeier, B. Roth, and M. Rahlves, “Method to emboss holograms into the surface of sheet metals,” Key Eng. Mater. 549, 125–132 (2013).
[Crossref]

Microsyst. Technol. (1)

S. W. Lee and S. S. Lee, “Shrinkage ratio of PDMS and its alignment method for the wafer level process,” Microsyst. Technol. 14(2), 205–208 (2008).
[Crossref]

Opt. Eng. (2)

Y.-C. Chan, Y.-L. Lam, Y. Zhou, F.-L. Xu, C.-Y. Liaw, W. Jiang, and J. Ahn, “Development and applications of a laser writing lithography system for maskless patterning,” Opt. Eng. 37(9), 2521–2530 (1998).
[Crossref]

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (2)

L. H. Erdmann, A. Deparnay, F. Wirth, and R. Brunner, “MEMS-based lithography for the fabrication of micro-optical components,” Proc. SPIE 5347, 79–84 (2004).
[Crossref]

C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, and C. Qiu, “Imaging simulation of maskless lithography using a DMD,” Proc. SPIE 5645, 307–314 (2005).
[Crossref]

Procedia Technology (1)

C. Kelb, E. Reithmeier, and B. Roth, “Foil-integrated 2D optical strain sensors,” Procedia Technology 15, 711–716 (2014).
[Crossref]

Other (4)

H.-P. Herzig, (ed.), Micro-optics - Elements, Systems and Applications (Taylor & Francis, 1997).

S. Bäumer, (ed.), Handbook of Plastic Optics (Wiley-VCH, 2005).
[Crossref]

M. Worgull, Hot Embossing: Theory and Technology of Microreplication (William Andrew, 2009).

S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Maskless lithography setup
Fig. 2
Fig. 2 Process chain for soft stamp embossing of diffractive optical elements
Fig. 3
Fig. 3 Photograph of a logo with an incorporated diffraction grating replicated in a thin PMMA foil (a), magnified image of the diffractive structure on the logo (b), and microscope image of a diffraction grating within the stitching region (c).
Fig. 4
Fig. 4 Microscope images of the diffractive grating structure in resist (a), its PDMS copy (b), and the hot embossed structure in PMMA (c). The inset shows the enlarged region in (c) indicated by the red square.
Fig. 5
Fig. 5 Surface profiles measured by confocal microscopy of the initial microstructure on silicon substrate (top), PDMS soft stamp (middle), and its PMMA replica made by soft stamp hot embossing (bottom).

Tables (1)

Tables Icon

Table 1 Measured period and profile height determined from the measured profiles in Fig. 5

Metrics