Abstract

Temporal self-imaging effects (TSIs) are observed when a periodic pulse train propagates through a first-order dispersive medium. Under specific dispersion conditions, either an exact, rate multiplied or rate divided image of the input signal is reproduced at the output. TSI possesses an interesting self-restoration capability even when acting over an aperiodic train of pulses. In this work, we investigate and demonstrate, for the first time to our knowledge, the capability of TSI to produce periodic sub-harmonic (rate-divided) pulse trains from aperiodic sequences. We use this inherent property of the TSI to implement a novel, simple and reconfigurable sub-harmonic optical clock recovery technique from RZ-OOK data signals. The proposed technique features a very simple realization, involving only temporal phase modulation and first-order dispersion and it allows one to set the repetition rate of the reconstructed clock signal in integer fractions (sub-harmonics) of the input bit rate. Proof-of-concept experiments are reported to validate the proposed technique and guidelines for optimization of the clock-recovery process are also outlined.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temporal self-imaging effect for periodically modulated trains of pulses

S. Tainta, M. J. Erro, M. J. Garde, and M. A. Muriel
Opt. Express 22(12) 15251-15266 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
    [Crossref]
  2. J. Azaña and M. A. Muriel, “Temporal Talbot effect in fiber gratings and its applications,” Appl. Opt. 38(32), 6700–6704 (1999).
    [Crossref] [PubMed]
  3. J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
    [Crossref] [PubMed]
  4. D. Pudo and L. R. Chen, “Tunable passive all-optical pulse repetition rate multiplier using fiber Bragg gratings,” J. Lightwave Technol. 23(4), 1729–1733 (2005).
    [Crossref]
  5. J. H. Lee, Y. M. Chang, Y. G. Han, S. H. Kim, and S. B. Lee, “2 ~ 5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating,” Opt. Express 12(17), 3900–3905 (2004).
    [Crossref] [PubMed]
  6. C. J. S. de Matos and J. R. Taylor, “Tunable repetition-rate multiplication of a 10 GHz pulse train using linear and nonlinear fiber propagation,” Appl. Phys. Lett. 83 (26), 5356–5358 (2003).
    [Crossref]
  7. J. Caraquitena and J. Martí, “High-rate pulse-train generation by phase-only filtering of an electrooptic frequency comb: analysis and optimization,” Opt. Commun. 282(18), 3686–3692 (2009).
    [Crossref]
  8. D. Pudo, M. Depa, and L. R. Chen, “Single and multiwavelength all-optical clock recovery in single-mode fiber using the temporal Talbot effect,” J. Lightwave Technol. 25(10), 2898–2903 (2007).
    [Crossref]
  9. D. Pudo, M. Depa, and L. R. Chen, “All-optical clock recovery using the temporal Talbot effect,” in Proceedings of Optical Fiber Communication (OFC) Conference, Anaheim, USA, paper: OThB7 (2007).
  10. R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
    [Crossref] [PubMed]
  11. H. Hu, H. C. H. Mulvad, M. Galili, E. Palushani, J. Xu, A. T. Clausen, L. K. Oxenlowe, and P. Jeppesen, “Polarization- insensitive 640Gb/s demultiplexing based on four wave mixing in a polarization-maintaining fibre loop,” J. Lightwave Technol. 28(12), 1789–1795 (2010).
    [Crossref]
  12. A. M. de Melo, S. Randel, and K. Petermann, “Mach–Zehnder interferometer-based high-speed OTDM add–drop multiplexing,” J. Lightwave Technol. 25(4), 1017–1026 (2007).
    [Crossref]
  13. C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
    [Crossref] [PubMed]
  14. J. Parra-Cetina, J. Luo, N. Calabretta, S. Latkowski, H. J. S. Dorren, and P. Landais, “Subharmonic all-optical clock recovery of up to 320 Gb/s signal using a quantum dash Fabry–Perot mode-locked laser,” Electron. Lett. 31(19), 3127–3134 (2013).
  15. J. Caraquitena, M. Beltrán, R. Llorente, J. Martí, and M. A. Muriel, “Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train,” Opt. Lett. 36(6), 858–860 (2011).
    [Crossref] [PubMed]
  16. A. Malacarne and J. Azaña, “Discretely tunable comb spacing of a frequency comb by multilevel phase modulation of a periodic pulse train,” Opt. Express 21(4), 4139–4144 (2013).
    [Crossref] [PubMed]
  17. M. Oiwa, S. Minami, K. Tsuji, N. Onodera, and M. Saruwatari, “Temporal-Talbot-effect-based preprocessing for pattern-effect reduction in all-optical clock recovery using a semiconductor-optical-amplifier-based fiber ring laser,” Opt. Fiber Technol. 16(1), 63–71 (2010).
    [Crossref]
  18. R. Maram and J. Azaña, “Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation,” Opt. Express 21(23), 28824–28835 (2013).
    [Crossref] [PubMed]

2014 (1)

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

2013 (3)

2011 (1)

2010 (2)

H. Hu, H. C. H. Mulvad, M. Galili, E. Palushani, J. Xu, A. T. Clausen, L. K. Oxenlowe, and P. Jeppesen, “Polarization- insensitive 640Gb/s demultiplexing based on four wave mixing in a polarization-maintaining fibre loop,” J. Lightwave Technol. 28(12), 1789–1795 (2010).
[Crossref]

M. Oiwa, S. Minami, K. Tsuji, N. Onodera, and M. Saruwatari, “Temporal-Talbot-effect-based preprocessing for pattern-effect reduction in all-optical clock recovery using a semiconductor-optical-amplifier-based fiber ring laser,” Opt. Fiber Technol. 16(1), 63–71 (2010).
[Crossref]

2009 (1)

J. Caraquitena and J. Martí, “High-rate pulse-train generation by phase-only filtering of an electrooptic frequency comb: analysis and optimization,” Opt. Commun. 282(18), 3686–3692 (2009).
[Crossref]

2008 (1)

2007 (3)

2005 (1)

2004 (1)

2003 (1)

C. J. S. de Matos and J. R. Taylor, “Tunable repetition-rate multiplication of a 10 GHz pulse train using linear and nonlinear fiber propagation,” Appl. Phys. Lett. 83 (26), 5356–5358 (2003).
[Crossref]

2001 (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[Crossref]

1999 (1)

Azaña, J.

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

A. Malacarne and J. Azaña, “Discretely tunable comb spacing of a frequency comb by multilevel phase modulation of a periodic pulse train,” Opt. Express 21(4), 4139–4144 (2013).
[Crossref] [PubMed]

R. Maram and J. Azaña, “Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation,” Opt. Express 21(23), 28824–28835 (2013).
[Crossref] [PubMed]

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[Crossref]

J. Azaña and M. A. Muriel, “Temporal Talbot effect in fiber gratings and its applications,” Appl. Opt. 38(32), 6700–6704 (1999).
[Crossref] [PubMed]

Beltrán, M.

Calabretta, N.

J. Parra-Cetina, J. Luo, N. Calabretta, S. Latkowski, H. J. S. Dorren, and P. Landais, “Subharmonic all-optical clock recovery of up to 320 Gb/s signal using a quantum dash Fabry–Perot mode-locked laser,” Electron. Lett. 31(19), 3127–3134 (2013).

Caraquitena, J.

Chang, Y. M.

Chen, L. R.

Clausen, A. T.

de Matos, C. J. S.

C. J. S. de Matos and J. R. Taylor, “Tunable repetition-rate multiplication of a 10 GHz pulse train using linear and nonlinear fiber propagation,” Appl. Phys. Lett. 83 (26), 5356–5358 (2003).
[Crossref]

de Melo, A. M.

Depa, M.

Dorren, H. J. S.

J. Parra-Cetina, J. Luo, N. Calabretta, S. Latkowski, H. J. S. Dorren, and P. Landais, “Subharmonic all-optical clock recovery of up to 320 Gb/s signal using a quantum dash Fabry–Perot mode-locked laser,” Electron. Lett. 31(19), 3127–3134 (2013).

Erasme, D.

Galili, M.

Gómez Agis, F.

Han, Y. G.

Hu, H.

Ichikawa, J.

Jeppesen, P.

Jiang, Z.

Kim, S. H.

Kurimura, S.

Landais, P.

J. Parra-Cetina, J. Luo, N. Calabretta, S. Latkowski, H. J. S. Dorren, and P. Landais, “Subharmonic all-optical clock recovery of up to 320 Gb/s signal using a quantum dash Fabry–Perot mode-locked laser,” Electron. Lett. 31(19), 3127–3134 (2013).

Latkowski, S.

J. Parra-Cetina, J. Luo, N. Calabretta, S. Latkowski, H. J. S. Dorren, and P. Landais, “Subharmonic all-optical clock recovery of up to 320 Gb/s signal using a quantum dash Fabry–Perot mode-locked laser,” Electron. Lett. 31(19), 3127–3134 (2013).

Leaird, D. E.

Lee, J. H.

Lee, S. B.

Li, M.

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

Llorente, R.

Luo, J.

J. Parra-Cetina, J. Luo, N. Calabretta, S. Latkowski, H. J. S. Dorren, and P. Landais, “Subharmonic all-optical clock recovery of up to 320 Gb/s signal using a quantum dash Fabry–Perot mode-locked laser,” Electron. Lett. 31(19), 3127–3134 (2013).

Malacarne, A.

Maram, R.

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

R. Maram and J. Azaña, “Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation,” Opt. Express 21(23), 28824–28835 (2013).
[Crossref] [PubMed]

Martí, J.

J. Caraquitena, M. Beltrán, R. Llorente, J. Martí, and M. A. Muriel, “Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train,” Opt. Lett. 36(6), 858–860 (2011).
[Crossref] [PubMed]

J. Caraquitena and J. Martí, “High-rate pulse-train generation by phase-only filtering of an electrooptic frequency comb: analysis and optimization,” Opt. Commun. 282(18), 3686–3692 (2009).
[Crossref]

Minami, S.

M. Oiwa, S. Minami, K. Tsuji, N. Onodera, and M. Saruwatari, “Temporal-Talbot-effect-based preprocessing for pattern-effect reduction in all-optical clock recovery using a semiconductor-optical-amplifier-based fiber ring laser,” Opt. Fiber Technol. 16(1), 63–71 (2010).
[Crossref]

Mulvad, H. C. H.

Muriel, M. A.

Nakajima, H.

Oiwa, M.

M. Oiwa, S. Minami, K. Tsuji, N. Onodera, and M. Saruwatari, “Temporal-Talbot-effect-based preprocessing for pattern-effect reduction in all-optical clock recovery using a semiconductor-optical-amplifier-based fiber ring laser,” Opt. Fiber Technol. 16(1), 63–71 (2010).
[Crossref]

Onodera, N.

M. Oiwa, S. Minami, K. Tsuji, N. Onodera, and M. Saruwatari, “Temporal-Talbot-effect-based preprocessing for pattern-effect reduction in all-optical clock recovery using a semiconductor-optical-amplifier-based fiber ring laser,” Opt. Fiber Technol. 16(1), 63–71 (2010).
[Crossref]

Oxenlowe, L. K.

Oxenløwe, L. K.

Palushani, E.

Parra-Cetina, J.

J. Parra-Cetina, J. Luo, N. Calabretta, S. Latkowski, H. J. S. Dorren, and P. Landais, “Subharmonic all-optical clock recovery of up to 320 Gb/s signal using a quantum dash Fabry–Perot mode-locked laser,” Electron. Lett. 31(19), 3127–3134 (2013).

Petermann, K.

Pudo, D.

Randel, S.

Saruwatari, M.

M. Oiwa, S. Minami, K. Tsuji, N. Onodera, and M. Saruwatari, “Temporal-Talbot-effect-based preprocessing for pattern-effect reduction in all-optical clock recovery using a semiconductor-optical-amplifier-based fiber ring laser,” Opt. Fiber Technol. 16(1), 63–71 (2010).
[Crossref]

Taylor, J. R.

C. J. S. de Matos and J. R. Taylor, “Tunable repetition-rate multiplication of a 10 GHz pulse train using linear and nonlinear fiber propagation,” Appl. Phys. Lett. 83 (26), 5356–5358 (2003).
[Crossref]

Tsuji, K.

M. Oiwa, S. Minami, K. Tsuji, N. Onodera, and M. Saruwatari, “Temporal-Talbot-effect-based preprocessing for pattern-effect reduction in all-optical clock recovery using a semiconductor-optical-amplifier-based fiber ring laser,” Opt. Fiber Technol. 16(1), 63–71 (2010).
[Crossref]

Van Howe, J.

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

Ware, C.

Weiner, A. M.

Xu, J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. J. S. de Matos and J. R. Taylor, “Tunable repetition-rate multiplication of a 10 GHz pulse train using linear and nonlinear fiber propagation,” Appl. Phys. Lett. 83 (26), 5356–5358 (2003).
[Crossref]

Electron. Lett. (1)

J. Parra-Cetina, J. Luo, N. Calabretta, S. Latkowski, H. J. S. Dorren, and P. Landais, “Subharmonic all-optical clock recovery of up to 320 Gb/s signal using a quantum dash Fabry–Perot mode-locked laser,” Electron. Lett. 31(19), 3127–3134 (2013).

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[Crossref]

J. Lightwave Technol. (4)

Nat. Commun. (1)

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

Opt. Commun. (1)

J. Caraquitena and J. Martí, “High-rate pulse-train generation by phase-only filtering of an electrooptic frequency comb: analysis and optimization,” Opt. Commun. 282(18), 3686–3692 (2009).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

M. Oiwa, S. Minami, K. Tsuji, N. Onodera, and M. Saruwatari, “Temporal-Talbot-effect-based preprocessing for pattern-effect reduction in all-optical clock recovery using a semiconductor-optical-amplifier-based fiber ring laser,” Opt. Fiber Technol. 16(1), 63–71 (2010).
[Crossref]

Opt. Lett. (2)

Other (1)

D. Pudo, M. Depa, and L. R. Chen, “All-optical clock recovery using the temporal Talbot effect,” in Proceedings of Optical Fiber Communication (OFC) Conference, Anaheim, USA, paper: OThB7 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Standard temporal Talbot effect. Evolution of a repetitive input pulse train through propagation along a first-order dispersive medium. (b) Repetition rate division by temporal self-imaging assisted [10]. (b) Illustration of the principle of operation of the proposed SHCR concept.
Fig. 2
Fig. 2 Joint time-frequency analysis of (a) a flat-phase and (b) phase-conditioned periodic input pulse train propagating through a given dispersive medium. t: time, f: frequency.
Fig. 3
Fig. 3 Joint time-frequency analysis of (a) base-rate clock recovery and (b) sub-harmonic clock recovery from a RZ-OOK data signal using dispersion-induced TSI. t: time, f: frequency.
Fig. 4
Fig. 4 Experimental setup of the sub-harmonic clock recovery technique through dispersion-induced temporal self-imaging. MLFL: Mode-Locked Fiber Laser, MZM: Mach-Zehnder Modulator, PC: Polarization Controller, AWG: Arbitrary Waveform Generator, DCF: Dispersion-Compensating Fiber, PM: Phase Modulator, TODL: Tunable Optical Delay Line, RF Amp: Radio-Frequency Amplifier.
Fig. 5
Fig. 5 Prescribed temporal phase modulation profiles. Ideal temporal phase profiles (dashed red) and measured phase drives, as delivered by the AWG (solid blue).
Fig. 6
Fig. 6 Measured optical spectra of the input data signal before (solid blue) and after (dashed red) temporal phase modulation.
Fig. 7
Fig. 7 (a) Temporal waveform, eye diagram and (b) RF spectrum of the measured input 27 –1 PRBS signal (9.7Gbit/s) used for the experiments.
Fig. 8
Fig. 8 Temporal waveforms and eye diagrams of the recovered 4.85GHz sub-harmonic clock signal when m = 2, 3.23GHz sub-harmonic clock signal when m = 3 and 2.42GHz sub-harmonic clock signal when m = 4 at the output of the circuit.
Fig. 9
Fig. 9 Sub-harmonic clock signal’s amplitude-variations as a function of (a) input pulse width and (b) the number of consecutive zeros in the input signal’s pattern.
Fig. 10
Fig. 10 Temporal waveforms and eye diagrams of the recovered 9.7GHz base-rate clock signal in the absence of temporal phase modulation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ n = m1 m π n 2
ϕ T (2) =( s×m+1 ) m T 2 2π
RAVF= P max P min P max

Metrics