Abstract

We demonstrate the on-chip generation and detection of terahertz radiation in coupled cavity systems using a single semiconductor heterostructure. Multiple sections of a terahertz quantum cascade laser structure in a double-metal waveguide are optically coupled and operate either as a laser or an integrated emission monitor. A detailed analysis of the photon-assisted carrier transport in the active region below threshold reveals the detection mechanism for photons emitted by the very same structure above threshold. Configurations with a single laser cavity and two coupled laser cavities are studied. It is shown that the integrated detector can be used for spatial sensing of the light intensity within a coupled cavity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice

Iman Kundu, Paul Dean, Alexander Valavanis, Li Chen, Lianhe Li, John E. Cunningham, Edmund H. Linfield, and A. Giles Davies
Opt. Express 25(1) 486-496 (2017)

Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities

Iman Kundu, Paul Dean, Alexander Valavanis, Li Chen, Lianhe Li, John E. Cunningham, Edmund H. Linfield, and A. Giles Davies
Opt. Express 22(13) 16595-16605 (2014)

Electrically switchable emission in terahertz quantum cascade lasers

Joshua R. Freeman, Owen P. Marshall, Harvey E. Beere, and David A. Ritchie
Opt. Express 16(24) 19830-19835 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [Crossref] [PubMed]
  2. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
    [Crossref]
  3. M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
    [Crossref] [PubMed]
  4. M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat Commun 5, 4034 (2014).
    [Crossref] [PubMed]
  5. G. Fasching, Ch. Deutsch, A. Benz, A. M. Andrews, P. Klang, R. Zobl, W. Schrenk, G. Strasser, P. Ragulis, V. Tamosiūnas, and K. Unterrainer, “Electrically controllable photonic molecule laser,” Opt. Express 17(22), 20321–20326 (2009).
    [Crossref] [PubMed]
  6. C. Mauro, R. P. Green, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Amplification of terahertz radiation in quantum cascade structures,” J. Appl. Phys. 102(6), 063101 (2007).
    [Crossref]
  7. H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
    [Crossref]
  8. M. Martl, J. Darmo, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, G. Strasser, and K. Unterrainer, “Gain and losses in THz quantum cascade laser with metal-metal waveguide,” Opt. Express 19(2), 733–738 (2011).
    [Crossref] [PubMed]
  9. D. Burghoff, T.-Y. Kao, D. Ban, A. W. M. Lee, Q. Hu, and J. Reno, “A terahertz pulse emitter monolithically integrated with a quantum cascade laser,” Appl. Phys. Lett. 98(6), 061112 (2011).
    [Crossref]
  10. D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett. 81(15), 2683–2685 (2002).
    [Crossref]
  11. L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, “Quantum cascade photodetector,” Appl. Phys. Lett. 85(14), 2824–2826 (2004).
    [Crossref]
  12. M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84(4), 475–477 (2004).
    [Crossref]
  13. B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
    [Crossref]
  14. B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat Commun 5, 4085 (2014).
    [Crossref] [PubMed]
  15. A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
    [Crossref] [PubMed]
  16. Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
    [Crossref]
  17. F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
    [Crossref]
  18. H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
    [Crossref]
  19. Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
    [Crossref]
  20. R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, “Single and multiband modeling of quantum electron transport through layered semiconductor devices,” J. Appl. Phys. 81(12), 7845–7869 (1997).
    [Crossref]
  21. L. E. Henrickson, “Nonequilibrium photocurrent modeling in resonant tunneling photodetectors,” J. Appl. Phys. 91(10), 6273–6281 (2002).
    [Crossref]
  22. M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
    [Crossref]
  23. H. Luo, H. C. Liu, C. Y. Song, and Z. R. Wasilewski, “Background-limited terahertz quantum-well photodetector,” Appl. Phys. Lett. 86(23), 231103 (2005).
    [Crossref]

2014 (5)

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat Commun 5, 4085 (2014).
[Crossref] [PubMed]

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
[Crossref] [PubMed]

M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
[Crossref]

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat Commun 5, 4034 (2014).
[Crossref] [PubMed]

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

2012 (3)

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

2011 (3)

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

D. Burghoff, T.-Y. Kao, D. Ban, A. W. M. Lee, Q. Hu, and J. Reno, “A terahertz pulse emitter monolithically integrated with a quantum cascade laser,” Appl. Phys. Lett. 98(6), 061112 (2011).
[Crossref]

M. Martl, J. Darmo, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, G. Strasser, and K. Unterrainer, “Gain and losses in THz quantum cascade laser with metal-metal waveguide,” Opt. Express 19(2), 733–738 (2011).
[Crossref] [PubMed]

2009 (2)

G. Fasching, Ch. Deutsch, A. Benz, A. M. Andrews, P. Klang, R. Zobl, W. Schrenk, G. Strasser, P. Ragulis, V. Tamosiūnas, and K. Unterrainer, “Electrically controllable photonic molecule laser,” Opt. Express 17(22), 20321–20326 (2009).
[Crossref] [PubMed]

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

2008 (1)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[Crossref]

2007 (1)

C. Mauro, R. P. Green, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Amplification of terahertz radiation in quantum cascade structures,” J. Appl. Phys. 102(6), 063101 (2007).
[Crossref]

2005 (1)

H. Luo, H. C. Liu, C. Y. Song, and Z. R. Wasilewski, “Background-limited terahertz quantum-well photodetector,” Appl. Phys. Lett. 86(23), 231103 (2005).
[Crossref]

2004 (3)

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, “Quantum cascade photodetector,” Appl. Phys. Lett. 85(14), 2824–2826 (2004).
[Crossref]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84(4), 475–477 (2004).
[Crossref]

2002 (2)

D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett. 81(15), 2683–2685 (2002).
[Crossref]

L. E. Henrickson, “Nonequilibrium photocurrent modeling in resonant tunneling photodetectors,” J. Appl. Phys. 91(10), 6273–6281 (2002).
[Crossref]

1997 (1)

R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, “Single and multiband modeling of quantum electron transport through layered semiconductor devices,” J. Appl. Phys. 81(12), 7845–7869 (1997).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Andrews, A. M.

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat Commun 5, 4085 (2014).
[Crossref] [PubMed]

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
[Crossref] [PubMed]

M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
[Crossref]

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

M. Martl, J. Darmo, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, G. Strasser, and K. Unterrainer, “Gain and losses in THz quantum cascade laser with metal-metal waveguide,” Opt. Express 19(2), 733–738 (2011).
[Crossref] [PubMed]

G. Fasching, Ch. Deutsch, A. Benz, A. M. Andrews, P. Klang, R. Zobl, W. Schrenk, G. Strasser, P. Ragulis, V. Tamosiūnas, and K. Unterrainer, “Electrically controllable photonic molecule laser,” Opt. Express 17(22), 20321–20326 (2009).
[Crossref] [PubMed]

Andronico, A.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Bachmann, D.

M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
[Crossref]

Ban, D.

D. Burghoff, T.-Y. Kao, D. Ban, A. W. M. Lee, Q. Hu, and J. Reno, “A terahertz pulse emitter monolithically integrated with a quantum cascade laser,” Appl. Phys. Lett. 98(6), 061112 (2011).
[Crossref]

Barbieri, S.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Baumann, E.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

Baumgartner, O.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

Beck, M.

D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett. 81(15), 2683–2685 (2002).
[Crossref]

Beere, H.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84(4), 475–477 (2004).
[Crossref]

Beere, H. E.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

C. Mauro, R. P. Green, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Amplification of terahertz radiation in quantum cascade structures,” J. Appl. Phys. 102(6), 063101 (2007).
[Crossref]

Belkin, M. A.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Beltram, F.

C. Mauro, R. P. Green, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Amplification of terahertz radiation in quantum cascade structures,” J. Appl. Phys. 102(6), 063101 (2007).
[Crossref]

Benz, A.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
[Crossref] [PubMed]

G. Fasching, Ch. Deutsch, A. Benz, A. M. Andrews, P. Klang, R. Zobl, W. Schrenk, G. Strasser, P. Ragulis, V. Tamosiūnas, and K. Unterrainer, “Electrically controllable photonic molecule laser,” Opt. Express 17(22), 20321–20326 (2009).
[Crossref] [PubMed]

Berger, V.

L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, “Quantum cascade photodetector,” Appl. Phys. Lett. 85(14), 2824–2826 (2004).
[Crossref]

Bowen, R. C.

R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, “Single and multiband modeling of quantum electron transport through layered semiconductor devices,” J. Appl. Phys. 81(12), 7845–7869 (1997).
[Crossref]

Brandstetter, M.

M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
[Crossref]

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat Commun 5, 4034 (2014).
[Crossref] [PubMed]

M. Martl, J. Darmo, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, G. Strasser, and K. Unterrainer, “Gain and losses in THz quantum cascade laser with metal-metal waveguide,” Opt. Express 19(2), 733–738 (2011).
[Crossref] [PubMed]

Burghoff, D.

D. Burghoff, T.-Y. Kao, D. Ban, A. W. M. Lee, Q. Hu, and J. Reno, “A terahertz pulse emitter monolithically integrated with a quantum cascade laser,” Appl. Phys. Lett. 98(6), 061112 (2011).
[Crossref]

Cao, J. C.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

Capasso, F.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Carras, M.

L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, “Quantum cascade photodetector,” Appl. Phys. Lett. 85(14), 2824–2826 (2004).
[Crossref]

Cerjan, A.

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Chassagneux, Y.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Colombelli, R.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Coudevylle, J.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Darmo, J.

Davies, A. G.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

Davies, G.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84(4), 475–477 (2004).
[Crossref]

Dean, P.

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Detz, H.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
[Crossref] [PubMed]

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat Commun 5, 4085 (2014).
[Crossref] [PubMed]

M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
[Crossref]

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

Deutsch, C.

M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
[Crossref]

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat Commun 5, 4034 (2014).
[Crossref] [PubMed]

M. Martl, J. Darmo, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, G. Strasser, and K. Unterrainer, “Gain and losses in THz quantum cascade laser with metal-metal waveguide,” Opt. Express 19(2), 733–738 (2011).
[Crossref] [PubMed]

Deutsch, Ch.

Dietze, D.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
[Crossref] [PubMed]

Faist, J.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84(4), 475–477 (2004).
[Crossref]

D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett. 81(15), 2683–2685 (2002).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Fasching, G.

Fedoryshyn, Y.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

Fischer, M.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

Ge, L.

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Gendron, L.

L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, “Quantum cascade photodetector,” Appl. Phys. Lett. 85(14), 2824–2826 (2004).
[Crossref]

Giorgetta, F. R.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[Crossref]

Graf, M.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84(4), 475–477 (2004).
[Crossref]

Green, R. P.

C. Mauro, R. P. Green, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Amplification of terahertz radiation in quantum cascade structures,” J. Appl. Phys. 102(6), 063101 (2007).
[Crossref]

Harrison, P.

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Henrickson, L. E.

L. E. Henrickson, “Nonequilibrium photocurrent modeling in resonant tunneling photodetectors,” J. Appl. Phys. 91(10), 6273–6281 (2002).
[Crossref]

Hofstetter, D.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84(4), 475–477 (2004).
[Crossref]

D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett. 81(15), 2683–2685 (2002).
[Crossref]

Hu, Q.

D. Burghoff, T.-Y. Kao, D. Ban, A. W. M. Lee, Q. Hu, and J. Reno, “A terahertz pulse emitter monolithically integrated with a quantum cascade laser,” Appl. Phys. Lett. 98(6), 061112 (2011).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Huynh, A.

L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, “Quantum cascade photodetector,” Appl. Phys. Lett. 85(14), 2824–2826 (2004).
[Crossref]

Ikonic, Z.

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Indjin, D.

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Jackel, H.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

Jagtap, V.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Jovanovic, D.

R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, “Single and multiband modeling of quantum electron transport through layered semiconductor devices,” J. Appl. Phys. 81(12), 7845–7869 (1997).
[Crossref]

Kalchmair, S.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

Kao, T.-Y.

D. Burghoff, T.-Y. Kao, D. Ban, A. W. M. Lee, Q. Hu, and J. Reno, “A terahertz pulse emitter monolithically integrated with a quantum cascade laser,” Appl. Phys. Lett. 98(6), 061112 (2011).
[Crossref]

Khanna, S. P.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Klang, P.

Kliese, R.

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Klimeck, G.

R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, “Single and multiband modeling of quantum electron transport through layered semiconductor devices,” J. Appl. Phys. 81(12), 7845–7869 (1997).
[Crossref]

Koeniguer, C.

L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, “Quantum cascade photodetector,” Appl. Phys. Lett. 85(14), 2824–2826 (2004).
[Crossref]

Kohler, K.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

Kosina, H.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

Krall, M.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
[Crossref] [PubMed]

M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
[Crossref]

Lachab, M.

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Lake, R.

R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, “Single and multiband modeling of quantum electron transport through layered semiconductor devices,” J. Appl. Phys. 81(12), 7845–7869 (1997).
[Crossref]

Lee, A. W. M.

D. Burghoff, T.-Y. Kao, D. Ban, A. W. M. Lee, Q. Hu, and J. Reno, “A terahertz pulse emitter monolithically integrated with a quantum cascade laser,” Appl. Phys. Lett. 98(6), 061112 (2011).
[Crossref]

Li, H.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Li, L. H.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Liertzer, M.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat Commun 5, 4034 (2014).
[Crossref] [PubMed]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Lim, Y. L.

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Linfield, E.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84(4), 475–477 (2004).
[Crossref]

Linfield, E. H.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Liu, H. C.

H. Luo, H. C. Liu, C. Y. Song, and Z. R. Wasilewski, “Background-limited terahertz quantum-well photodetector,” Appl. Phys. Lett. 86(23), 231103 (2005).
[Crossref]

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

Luo, H.

H. Luo, H. C. Liu, C. Y. Song, and Z. R. Wasilewski, “Background-limited terahertz quantum-well photodetector,” Appl. Phys. Lett. 86(23), 231103 (2005).
[Crossref]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[Crossref]

Manceau, J. M.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

Manz, C.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

Martl, M.

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[Crossref]

Mauro, C.

C. Mauro, R. P. Green, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Amplification of terahertz radiation in quantum cascade structures,” J. Appl. Phys. 102(6), 063101 (2007).
[Crossref]

Nikolic, M.

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Ortiz, V.

L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, “Quantum cascade photodetector,” Appl. Phys. Lett. 85(14), 2824–2826 (2004).
[Crossref]

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[Crossref]

Ragulis, P.

Rakic, A. D.

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Reininger, P.

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat Commun 5, 4085 (2014).
[Crossref] [PubMed]

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

Reno, J.

D. Burghoff, T.-Y. Kao, D. Ban, A. W. M. Lee, Q. Hu, and J. Reno, “A terahertz pulse emitter monolithically integrated with a quantum cascade laser,” Appl. Phys. Lett. 98(6), 061112 (2011).
[Crossref]

Ristanic, D.

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat Commun 5, 4085 (2014).
[Crossref] [PubMed]

Ritchie, D.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84(4), 475–477 (2004).
[Crossref]

Ritchie, D. A.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

C. Mauro, R. P. Green, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Amplification of terahertz radiation in quantum cascade structures,” J. Appl. Phys. 102(6), 063101 (2007).
[Crossref]

Rotter, S.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat Commun 5, 4034 (2014).
[Crossref] [PubMed]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Scalari, G.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84(4), 475–477 (2004).
[Crossref]

Schöberl, J.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat Commun 5, 4034 (2014).
[Crossref] [PubMed]

Schrenk, W.

M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
[Crossref]

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat Commun 5, 4085 (2014).
[Crossref] [PubMed]

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
[Crossref] [PubMed]

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

G. Fasching, Ch. Deutsch, A. Benz, A. M. Andrews, P. Klang, R. Zobl, W. Schrenk, G. Strasser, P. Ragulis, V. Tamosiūnas, and K. Unterrainer, “Electrically controllable photonic molecule laser,” Opt. Express 17(22), 20321–20326 (2009).
[Crossref] [PubMed]

Schwarz, B.

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat Commun 5, 4085 (2014).
[Crossref] [PubMed]

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

Schwarz, S.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
[Crossref] [PubMed]

Sirtori, C.

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Song, C. Y.

H. Luo, H. C. Liu, C. Y. Song, and Z. R. Wasilewski, “Background-limited terahertz quantum-well photodetector,” Appl. Phys. Lett. 86(23), 231103 (2005).
[Crossref]

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

SpringThorpe, A. J.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

Stone, A. D.

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Strasser, G.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat Commun 5, 4034 (2014).
[Crossref] [PubMed]

M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
[Crossref]

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
[Crossref] [PubMed]

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat Commun 5, 4085 (2014).
[Crossref] [PubMed]

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

M. Martl, J. Darmo, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, G. Strasser, and K. Unterrainer, “Gain and losses in THz quantum cascade laser with metal-metal waveguide,” Opt. Express 19(2), 733–738 (2011).
[Crossref] [PubMed]

G. Fasching, Ch. Deutsch, A. Benz, A. M. Andrews, P. Klang, R. Zobl, W. Schrenk, G. Strasser, P. Ragulis, V. Tamosiūnas, and K. Unterrainer, “Electrically controllable photonic molecule laser,” Opt. Express 17(22), 20321–20326 (2009).
[Crossref] [PubMed]

Strupiechonski, E.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Tamosiunas, V.

Tredicucci, A.

C. Mauro, R. P. Green, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Amplification of terahertz radiation in quantum cascade structures,” J. Appl. Phys. 102(6), 063101 (2007).
[Crossref]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[Crossref]

Türeci, H. E.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat Commun 5, 4034 (2014).
[Crossref] [PubMed]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Unterrainer, K.

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat Commun 5, 4034 (2014).
[Crossref] [PubMed]

M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
[Crossref]

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
[Crossref] [PubMed]

M. Martl, J. Darmo, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, G. Strasser, and K. Unterrainer, “Gain and losses in THz quantum cascade laser with metal-metal waveguide,” Opt. Express 19(2), 733–738 (2011).
[Crossref] [PubMed]

G. Fasching, Ch. Deutsch, A. Benz, A. M. Andrews, P. Klang, R. Zobl, W. Schrenk, G. Strasser, P. Ragulis, V. Tamosiūnas, and K. Unterrainer, “Electrically controllable photonic molecule laser,” Opt. Express 17(22), 20321–20326 (2009).
[Crossref] [PubMed]

Valavanis, A.

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Wang, Q. J.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

Wasilewski, Z. R.

H. Luo, H. C. Liu, C. Y. Song, and Z. R. Wasilewski, “Background-limited terahertz quantum-well photodetector,” Appl. Phys. Lett. 86(23), 231103 (2005).
[Crossref]

Wilson, S. J.

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

Yang, Q.

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

Zederbauer, T.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

Zobl, R.

Appl. Phys. Lett. (10)

D. Burghoff, T.-Y. Kao, D. Ban, A. W. M. Lee, Q. Hu, and J. Reno, “A terahertz pulse emitter monolithically integrated with a quantum cascade laser,” Appl. Phys. Lett. 98(6), 061112 (2011).
[Crossref]

D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett. 81(15), 2683–2685 (2002).
[Crossref]

L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, “Quantum cascade photodetector,” Appl. Phys. Lett. 85(14), 2824–2826 (2004).
[Crossref]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84(4), 475–477 (2004).
[Crossref]

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett. 101(19), 191109 (2012).
[Crossref]

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99(8), 081108 (2011).
[Crossref]

H. Luo, H. C. Liu, C. Y. Song, and Z. R. Wasilewski, “Background-limited terahertz quantum-well photodetector,” Appl. Phys. Lett. 86(23), 231103 (2005).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett. 92(21), 211108 (2008).
[Crossref]

H. Li, J. M. Manceau, A. Andronico, V. Jagtap, C. Sirtori, L. H. Li, E. H. Linfield, A. G. Davies, and S. Barbieri, “Coupled-cavity terahertz quantum cascade lasers for single mode operation,” Appl. Phys. Lett. 104(24), 241102 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors,” IEEE J. Quantum Electron. 45(8), 1039–1052 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Krall, D. Bachmann, C. Deutsch, M. Brandstetter, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “All-electrical thermal monitoring of terahertz quantum cascade lasers,” IEEE Photon. Technol. Lett. 26(14), 1470–1473 (2014).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Trans. Terahertz Sci. Technol. 2(1), 83–92 (2012).
[Crossref]

J. Appl. Phys. (3)

R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, “Single and multiband modeling of quantum electron transport through layered semiconductor devices,” J. Appl. Phys. 81(12), 7845–7869 (1997).
[Crossref]

L. E. Henrickson, “Nonequilibrium photocurrent modeling in resonant tunneling photodetectors,” J. Appl. Phys. 91(10), 6273–6281 (2002).
[Crossref]

C. Mauro, R. P. Green, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Amplification of terahertz radiation in quantum cascade structures,” J. Appl. Phys. 102(6), 063101 (2007).
[Crossref]

Nat Commun (2)

B. Schwarz, P. Reininger, D. Ristanić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat Commun 5, 4085 (2014).
[Crossref] [PubMed]

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter, “Reversing the pump dependence of a laser at an exceptional point,” Nat Commun 5, 4034 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. Lett. (1)

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108(17), 173901 (2012).
[Crossref] [PubMed]

Sci Rep (1)

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci Rep 4, 4269 (2014).
[Crossref] [PubMed]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Band structure and simplified sketch of the level alignment showing the relevant optical transitions at 2.1 THz. The quantum cascade heterostructure is operated (a) at a low bias field in the detector mode, or (b) above threshold in the laser mode.

Fig. 2
Fig. 2

(a) Calculated dipole moments for all relevant intersubband transitions as a function of the applied electric field. The horizontal dashed line indicates the design emission frequency (2.1 THz), and the two vertical lines indicate the detector (4.8 kV/cm) and laser (8.7 kV/cm) alignment fields. The respective dipole moments of the 2.1 THz transitions are 4.5 nm for the detector mode (l-e) and 6.3 nm for the laser mode (u-l). (b) Normalized photoresponse of the quantum cascade structure at 2.1 THz calculated using an NEGF-based quantum transport model.

Fig. 3
Fig. 3

Experimental configuration with a short detector (QCD) section optically coupled to a long laser (QCL) section. The emitted light is collected and measured for comparison also with an external pyroelectric detector.

Fig. 4
Fig. 4

(a) Light-current-voltage characterization of a non-lasing QCD section and a lasing QCL device at a heat sink temperature of 6 K. (b) Emission spectrum of the QCL section for an applied bias of 13.5 V.

Fig. 5
Fig. 5

(a) Two-dimensional bias dependence of the photo-induced current measured in the detector section. The laser cavity is operated in pulsed mode with a duty cycle of 10% (VQCL) and a DC bias is applied to the detector section (VQCD). The onset of lasing is clearly observed if the detector is tuned in resonance with the emission frequency. The maximum photoresponse is obtained with a detector bias of 7.8 V. (b) Cross sections for the QCL operating far below (VQCL = 2 V) and above threshold (VQCL = 13.5 V) are shown. (c) Comparison of the output intensity indicated by the measured photocurrent in the QCD and the signal from the external pyroelectric detector. The internal detector bias is kept constant (VQCD = 7.8 V) and the output power is measured as a function of the laser bias.

Fig. 6
Fig. 6

Experimental configuration of a coupled laser system (QCL A, QCL B) with an integrated emission monitor (QCD). An external pyroelectric detector is used for reference purposes.

Fig. 7
Fig. 7

Optical coupling between the two laser sections. The laser cavities are operated in pulsed mode with a duty cycle of 10%, and a constant bias of 7.8 V is applied to the detector section. (a) Output power measured with the external detector (Pexternal). (b) Photo-induced current within the detector section (PQCD).

Metrics