Abstract

A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics

Zeyang Liu, Yajun Pang, Cheng Pan, and Zhanhua Huang
Opt. Express 25(24) 30720-30731 (2017)

Integrated holographic waveguide display system with a common optical path for visible and infrared light

Zhenlv Lv, Juan Liu, Jiasheng Xiao, and Ying Kuang
Opt. Express 26(25) 32802-32811 (2018)

Highly efficient waveguide display with space-variant volume holographic gratings

Chao Yu, Yifan Peng, Qing Zhao, Haifeng Li, and Xu Liu
Appl. Opt. 56(34) 9390-9397 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
    [Crossref]
  2. J. P. Rolland and K. Thompson, “See-Through Head Worn Displays for Mobile Augmented Reality,” Commun. China Comp. Fed. 7(8), 28–37 (2011).
  3. H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
    [Crossref]
  4. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [PubMed]
  5. D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11(3), 31201–31204 (2013).
    [Crossref]
  6. H. Hua, A. Girardot, C. Gao, and J. P. Rolland, “Engineering of head-mounted projective displays,” Appl. Opt. 39(22), 3814–3824 (2000).
    [Crossref] [PubMed]
  7. H. Hua, X. Hu, and C. Gao, “A high-resolution optical see-through head-mounted display with eyetracking capability,” Opt. Express 21(25), 30993–30998 (2013).
    [Crossref] [PubMed]
  8. R. Martins, V. Shaoulov, Y. Ha, and J. P. Rolland, “A mobile head-worn projection display,” Opt. Express 15(22), 14530–14538 (2007).
    [Crossref] [PubMed]
  9. A. J. Wright, B. A. Patterson, S. P. Poland, J. M. Girkin, G. M. Gibson, and M. J. Padgett, “Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror,” Opt. Express 14(1), 222–228 (2006).
    [Crossref] [PubMed]
  10. S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
    [Crossref]
  11. E. Fernandez and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11(9), 1056–1069 (2003).
    [Crossref] [PubMed]
  12. M. Beuret, P. Twardowski, and J. Fontaine, “Design of an off-axis see-through display based on a dynamic phase correction approach,” Opt. Express 19(20), 19688–19701 (2011).
    [Crossref] [PubMed]
  13. H. H. Tobben, B. Lorenz, and S. Schmerwitz, “Design of a pathway display for a retinal scanning HMD,” Proc. SPIE 5802, 102–111 (2005).
    [Crossref]
  14. M. M. Bayer, “Retinal scanning display: a novel HMD approach for army aviation,” Proc. SPIE 4711, 202 (2002).
  15. B. T. Schowengerdt, R. S. Johnston, C. D. Melville, and E. J. Seibel, “3D Displays using Scanning Laser Projection,” SID Symposium Digest of Technical Papers, 43: 640–643 (2012).
  16. X. Yang, Z. Wang, and R. Fu, “Hybrid diffractive-refractive 67-diagonal field of view optical see-through head-mounted display,” Optik-International Journal for Light and Electron Optics 116(7), 351–355 (2005).
    [Crossref]
  17. J. A. Cox, T. A. Fritz, and T. R. Werner, “Application and demonstration of diffractive optics for head-mounted displays,” Proc. SPIE 2218, 32 (1994).
  18. B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
    [Crossref]
  19. H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, and J. Zhang, “Review and analysis of avionic helmet-mounted displays,” Opt. Eng. 52(11), 110901 (2013).
    [Crossref]
  20. R. Shechter, S. Reinhorn, Y. Amitai, and A. A. Friesem, “Planar holographic elements with uniform diffraction efficiency,” Appl. Surf. Sci. 106, 369–373 (1996).
    [Crossref]
  21. R. Shechter, Y. Amitai, and A. A. Friesem, “Compact beam expander with linear gratings,” Appl. Opt. 41(7), 1236–1240 (2002).
    [Crossref] [PubMed]
  22. J. P. Sharpe, T. Post, S. Khatri, and G. Halpin, “Fabrication and characterization of optical waveguides and grating couplers,” Eur. J. Phys. 34(5), 1317–1326 (2013).
    [Crossref]
  23. J. Piao, G. Li, M. Piao, and N. Kim, “Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer,” J. Opt. Soc. Korea 17(3), 242–248 (2013).
    [Crossref]
  24. I. Gurwich, V. Weiss, L. Eisen, M. Meyklyar, and A. A. Friesem, “Design and experiments of planar optical light guides for virtual image displays,” Proc. SPIE 5182, 212–221 (2004).
    [Crossref]
  25. http://www.lumus-optical.com/
  26. http://www.epson.com/cgi-bin/Store/jsp/Moverio/Home.do?BV_UseBVCookie=yes
  27. http://www.google.com/glass/start/
  28. K. Sarayeddine and K. Mirza, “Key challenges to affordable see-through wearable displays: the missing link for mobile AR mass deployment,” Proc. SPIE 8720, 87200D (2013).
    [Crossref]
  29. http://optinvent.com/HUD-HMD-benchmark
  30. http://www.lumus-optical.com/index.php?option=com_content&task=view&id=10&Itemid=16
  31. Y. Amitai, “Extremely Compact High-Performance HMDs Based on Substrate-Guided Optical Element,” SID Symposium Digest of Technical Papers, 35: 310–313 (2004).
    [Crossref]
  32. P. Äyräs and P. Saarikko, “Near-to-eye display based on retinal scanning and a diffractive exit-pupil expander”, Proc. SPIE 7723, 77230V (2010).
  33. T. Levola and P. Laakkonen, “Replicated slanted gratings with a high refractive index material for in and outcoupling of light,” Opt. Express 15(5), 2067–2074 (2007).
    [Crossref] [PubMed]
  34. T. Levola, “Novel Diffractive Optical Components for Near to Eye Displays,” SID Symposium Digest of Technical Papers, 37: 64–67 (2006).
  35. I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
    [Crossref]
  36. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A Full Color Eyewear Display using Holographic Planar Waveguides,” SID Symposium Digest of Technical Papers, 39: 89–92 (2008).
  37. I. K. Wilmington and M. S. Valera, “Waveguide‐Based Display Technology”, SID Symposium Digest of Technical Papers, 44: 278–280 (2013).
  38. A. A. Cameron, “Optical waveguide technology and its application in head-mounted displays,” Proc. SPIE 383, 83830E (2012).
  39. http://www.baesystems.com .
  40. L. Eisen, M. Meyklyar, M. Golub, A. A. Friesem, I. Gurwich, and V. Weiss, “Planar configuration for image projection,” Appl. Opt. 45(17), 4005–4011 (2006).
    [Crossref] [PubMed]
  41. R. Shi, J. Liu, H. Zhao, Z. Wu, Y. Liu, Y. Hu, Y. Chen, J. Xie, and Y. Wang, “Chromatic dispersion correction in planar waveguide using one-layer volume holograms based on three-step exposure,” Appl. Opt. 51(20), 4703–4708 (2012).
    [Crossref] [PubMed]
  42. Z. Wu, J. Liu, R. Shi, and Y. Wang, “The recording method of planar holographic grating with variable diffraction efficiency by phase modulations,” Opt. Commun. 298–299, 41–45 (2013).
    [Crossref]
  43. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  44. A. M. Weber, W. K. Smothers, T. J. Trout, and D. J. Mickish, “Hologram recording in du Pont's new photopolymer materials,” (1990), pp. 30–39.
  45. Y. Yamagishi, T. Ishizuka, T. Yagishita, K. Ikegami, and H. Okuyama, “Holographic Recording Material Containing Poly-N-vinyl carbazole,” (1986), pp. 14–19.

2013 (8)

D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11(3), 31201–31204 (2013).
[Crossref]

H. Hua, X. Hu, and C. Gao, “A high-resolution optical see-through head-mounted display with eyetracking capability,” Opt. Express 21(25), 30993–30998 (2013).
[Crossref] [PubMed]

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, and J. Zhang, “Review and analysis of avionic helmet-mounted displays,” Opt. Eng. 52(11), 110901 (2013).
[Crossref]

K. Sarayeddine and K. Mirza, “Key challenges to affordable see-through wearable displays: the missing link for mobile AR mass deployment,” Proc. SPIE 8720, 87200D (2013).
[Crossref]

J. P. Sharpe, T. Post, S. Khatri, and G. Halpin, “Fabrication and characterization of optical waveguides and grating couplers,” Eur. J. Phys. 34(5), 1317–1326 (2013).
[Crossref]

J. Piao, G. Li, M. Piao, and N. Kim, “Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer,” J. Opt. Soc. Korea 17(3), 242–248 (2013).
[Crossref]

Z. Wu, J. Liu, R. Shi, and Y. Wang, “The recording method of planar holographic grating with variable diffraction efficiency by phase modulations,” Opt. Commun. 298–299, 41–45 (2013).
[Crossref]

2012 (2)

2011 (3)

M. Beuret, P. Twardowski, and J. Fontaine, “Design of an off-axis see-through display based on a dynamic phase correction approach,” Opt. Express 19(20), 19688–19701 (2011).
[Crossref] [PubMed]

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

J. P. Rolland and K. Thompson, “See-Through Head Worn Displays for Mobile Augmented Reality,” Commun. China Comp. Fed. 7(8), 28–37 (2011).

2010 (1)

P. Äyräs and P. Saarikko, “Near-to-eye display based on retinal scanning and a diffractive exit-pupil expander”, Proc. SPIE 7723, 77230V (2010).

2009 (1)

2007 (2)

2006 (2)

2005 (2)

H. H. Tobben, B. Lorenz, and S. Schmerwitz, “Design of a pathway display for a retinal scanning HMD,” Proc. SPIE 5802, 102–111 (2005).
[Crossref]

X. Yang, Z. Wang, and R. Fu, “Hybrid diffractive-refractive 67-diagonal field of view optical see-through head-mounted display,” Optik-International Journal for Light and Electron Optics 116(7), 351–355 (2005).
[Crossref]

2004 (1)

I. Gurwich, V. Weiss, L. Eisen, M. Meyklyar, and A. A. Friesem, “Design and experiments of planar optical light guides for virtual image displays,” Proc. SPIE 5182, 212–221 (2004).
[Crossref]

2003 (2)

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

E. Fernandez and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11(9), 1056–1069 (2003).
[Crossref] [PubMed]

2002 (2)

M. M. Bayer, “Retinal scanning display: a novel HMD approach for army aviation,” Proc. SPIE 4711, 202 (2002).

R. Shechter, Y. Amitai, and A. A. Friesem, “Compact beam expander with linear gratings,” Appl. Opt. 41(7), 1236–1240 (2002).
[Crossref] [PubMed]

2001 (1)

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

2000 (1)

1996 (2)

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

R. Shechter, S. Reinhorn, Y. Amitai, and A. A. Friesem, “Planar holographic elements with uniform diffraction efficiency,” Appl. Surf. Sci. 106, 369–373 (1996).
[Crossref]

1994 (1)

J. A. Cox, T. A. Fritz, and T. R. Werner, “Application and demonstration of diffractive optics for head-mounted displays,” Proc. SPIE 2218, 32 (1994).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A Full Color Eyewear Display using Holographic Planar Waveguides,” SID Symposium Digest of Technical Papers, 39: 89–92 (2008).

Akiyama, T.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A Full Color Eyewear Display using Holographic Planar Waveguides,” SID Symposium Digest of Technical Papers, 39: 89–92 (2008).

Amitai, Y.

R. Shechter, Y. Amitai, and A. A. Friesem, “Compact beam expander with linear gratings,” Appl. Opt. 41(7), 1236–1240 (2002).
[Crossref] [PubMed]

R. Shechter, S. Reinhorn, Y. Amitai, and A. A. Friesem, “Planar holographic elements with uniform diffraction efficiency,” Appl. Surf. Sci. 106, 369–373 (1996).
[Crossref]

Y. Amitai, “Extremely Compact High-Performance HMDs Based on Substrate-Guided Optical Element,” SID Symposium Digest of Technical Papers, 35: 310–313 (2004).
[Crossref]

Anisetti, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Artal, P.

Äyräs, P.

P. Äyräs and P. Saarikko, “Near-to-eye display based on retinal scanning and a diffractive exit-pupil expander”, Proc. SPIE 7723, 77230V (2010).

Bayer, M. M.

M. M. Bayer, “Retinal scanning display: a novel HMD approach for army aviation,” Proc. SPIE 4711, 202 (2002).

Beuret, M.

Cameron, A. A.

A. A. Cameron, “Optical waveguide technology and its application in head-mounted displays,” Proc. SPIE 383, 83830E (2012).

Carmigniani, J.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Ceravolo, P.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Chen, Y.

Cheng, D.

D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11(3), 31201–31204 (2013).
[Crossref]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[PubMed]

Cox, J. A.

J. A. Cox, T. A. Fritz, and T. R. Werner, “Application and demonstration of diffractive optics for head-mounted displays,” Proc. SPIE 2218, 32 (1994).

Damiani, E.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Eisen, L.

L. Eisen, M. Meyklyar, M. Golub, A. A. Friesem, I. Gurwich, and V. Weiss, “Planar configuration for image projection,” Appl. Opt. 45(17), 4005–4011 (2006).
[Crossref] [PubMed]

I. Gurwich, V. Weiss, L. Eisen, M. Meyklyar, and A. A. Friesem, “Design and experiments of planar optical light guides for virtual image displays,” Proc. SPIE 5182, 212–221 (2004).
[Crossref]

Fernandez, E.

Fontaine, J.

Friesem, A. A.

L. Eisen, M. Meyklyar, M. Golub, A. A. Friesem, I. Gurwich, and V. Weiss, “Planar configuration for image projection,” Appl. Opt. 45(17), 4005–4011 (2006).
[Crossref] [PubMed]

I. Gurwich, V. Weiss, L. Eisen, M. Meyklyar, and A. A. Friesem, “Design and experiments of planar optical light guides for virtual image displays,” Proc. SPIE 5182, 212–221 (2004).
[Crossref]

R. Shechter, Y. Amitai, and A. A. Friesem, “Compact beam expander with linear gratings,” Appl. Opt. 41(7), 1236–1240 (2002).
[Crossref] [PubMed]

R. Shechter, S. Reinhorn, Y. Amitai, and A. A. Friesem, “Planar holographic elements with uniform diffraction efficiency,” Appl. Surf. Sci. 106, 369–373 (1996).
[Crossref]

Fritz, T. A.

J. A. Cox, T. A. Fritz, and T. R. Werner, “Application and demonstration of diffractive optics for head-mounted displays,” Proc. SPIE 2218, 32 (1994).

Fu, R.

X. Yang, Z. Wang, and R. Fu, “Hybrid diffractive-refractive 67-diagonal field of view optical see-through head-mounted display,” Optik-International Journal for Light and Electron Optics 116(7), 351–355 (2005).
[Crossref]

Furht, B.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Furness, T. A.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Gao, C.

Gibson, G. M.

Girardot, A.

Girkin, J. M.

Golub, M.

Gurwich, I.

L. Eisen, M. Meyklyar, M. Golub, A. A. Friesem, I. Gurwich, and V. Weiss, “Planar configuration for image projection,” Appl. Opt. 45(17), 4005–4011 (2006).
[Crossref] [PubMed]

I. Gurwich, V. Weiss, L. Eisen, M. Meyklyar, and A. A. Friesem, “Design and experiments of planar optical light guides for virtual image displays,” Proc. SPIE 5182, 212–221 (2004).
[Crossref]

Ha, Y.

Halpin, G.

J. P. Sharpe, T. Post, S. Khatri, and G. Halpin, “Fabrication and characterization of optical waveguides and grating couplers,” Eur. J. Phys. 34(5), 1317–1326 (2013).
[Crossref]

Hiroaki, U.

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

Hoshi, H.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Hu, X.

Hu, Y.

Hua, H.

Ivkovic, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Jin, G.

D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11(3), 31201–31204 (2013).
[Crossref]

Johnston, R. S.

B. T. Schowengerdt, R. S. Johnston, C. D. Melville, and E. J. Seibel, “3D Displays using Scanning Laser Projection,” SID Symposium Digest of Technical Papers, 43: 640–643 (2012).

Kasai, I.

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

Kelly, J. P.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Khatri, S.

J. P. Sharpe, T. Post, S. Khatri, and G. Halpin, “Fabrication and characterization of optical waveguides and grating couplers,” Eur. J. Phys. 34(5), 1317–1326 (2013).
[Crossref]

Kim, N.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kress, B.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A Full Color Eyewear Display using Holographic Planar Waveguides,” SID Symposium Digest of Technical Papers, 39: 89–92 (2008).

Laakkonen, P.

Levola, T.

T. Levola and P. Laakkonen, “Replicated slanted gratings with a high refractive index material for in and outcoupling of light,” Opt. Express 15(5), 2067–2074 (2007).
[Crossref] [PubMed]

T. Levola, “Novel Diffractive Optical Components for Near to Eye Displays,” SID Symposium Digest of Technical Papers, 37: 64–67 (2006).

Li, G.

Li, H.

H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, and J. Zhang, “Review and analysis of avionic helmet-mounted displays,” Opt. Eng. 52(11), 110901 (2013).
[Crossref]

Liu, J.

Z. Wu, J. Liu, R. Shi, and Y. Wang, “The recording method of planar holographic grating with variable diffraction efficiency by phase modulations,” Opt. Commun. 298–299, 41–45 (2013).
[Crossref]

R. Shi, J. Liu, H. Zhao, Z. Wu, Y. Liu, Y. Hu, Y. Chen, J. Xie, and Y. Wang, “Chromatic dispersion correction in planar waveguide using one-layer volume holograms based on three-step exposure,” Appl. Opt. 51(20), 4703–4708 (2012).
[Crossref] [PubMed]

Liu, Y.

Lorenz, B.

H. H. Tobben, B. Lorenz, and S. Schmerwitz, “Design of a pathway display for a retinal scanning HMD,” Proc. SPIE 5802, 102–111 (2005).
[Crossref]

Martins, R.

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A Full Color Eyewear Display using Holographic Planar Waveguides,” SID Symposium Digest of Technical Papers, 39: 89–92 (2008).

McQuaide, S. C.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Melville, C. D.

B. T. Schowengerdt, R. S. Johnston, C. D. Melville, and E. J. Seibel, “3D Displays using Scanning Laser Projection,” SID Symposium Digest of Technical Papers, 43: 640–643 (2012).

Meyklyar, M.

L. Eisen, M. Meyklyar, M. Golub, A. A. Friesem, I. Gurwich, and V. Weiss, “Planar configuration for image projection,” Appl. Opt. 45(17), 4005–4011 (2006).
[Crossref] [PubMed]

I. Gurwich, V. Weiss, L. Eisen, M. Meyklyar, and A. A. Friesem, “Design and experiments of planar optical light guides for virtual image displays,” Proc. SPIE 5182, 212–221 (2004).
[Crossref]

Mirza, K.

K. Sarayeddine and K. Mirza, “Key challenges to affordable see-through wearable displays: the missing link for mobile AR mass deployment,” Proc. SPIE 8720, 87200D (2013).
[Crossref]

Morishima, H.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A Full Color Eyewear Display using Holographic Planar Waveguides,” SID Symposium Digest of Technical Papers, 39: 89–92 (2008).

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A Full Color Eyewear Display using Holographic Planar Waveguides,” SID Symposium Digest of Technical Papers, 39: 89–92 (2008).

Ogawa, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A Full Color Eyewear Display using Holographic Planar Waveguides,” SID Symposium Digest of Technical Papers, 39: 89–92 (2008).

Okuyama, A.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Padgett, M. J.

Patterson, B. A.

Piao, J.

Piao, M.

Poland, S. P.

Post, T.

J. P. Sharpe, T. Post, S. Khatri, and G. Halpin, “Fabrication and characterization of optical waveguides and grating couplers,” Eur. J. Phys. 34(5), 1317–1326 (2013).
[Crossref]

Qu, H.

H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, and J. Zhang, “Review and analysis of avionic helmet-mounted displays,” Opt. Eng. 52(11), 110901 (2013).
[Crossref]

Reinhorn, S.

R. Shechter, S. Reinhorn, Y. Amitai, and A. A. Friesem, “Planar holographic elements with uniform diffraction efficiency,” Appl. Surf. Sci. 106, 369–373 (1996).
[Crossref]

Rolland, J. P.

Saarikko, P.

P. Äyräs and P. Saarikko, “Near-to-eye display based on retinal scanning and a diffractive exit-pupil expander”, Proc. SPIE 7723, 77230V (2010).

Sarayeddine, K.

K. Sarayeddine and K. Mirza, “Key challenges to affordable see-through wearable displays: the missing link for mobile AR mass deployment,” Proc. SPIE 8720, 87200D (2013).
[Crossref]

Schmerwitz, S.

H. H. Tobben, B. Lorenz, and S. Schmerwitz, “Design of a pathway display for a retinal scanning HMD,” Proc. SPIE 5802, 102–111 (2005).
[Crossref]

Schowengerdt, B. T.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

B. T. Schowengerdt, R. S. Johnston, C. D. Melville, and E. J. Seibel, “3D Displays using Scanning Laser Projection,” SID Symposium Digest of Technical Papers, 43: 640–643 (2012).

Seibel, E. J.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

B. T. Schowengerdt, R. S. Johnston, C. D. Melville, and E. J. Seibel, “3D Displays using Scanning Laser Projection,” SID Symposium Digest of Technical Papers, 43: 640–643 (2012).

Shaoulov, V.

Sharpe, J. P.

J. P. Sharpe, T. Post, S. Khatri, and G. Halpin, “Fabrication and characterization of optical waveguides and grating couplers,” Eur. J. Phys. 34(5), 1317–1326 (2013).
[Crossref]

Shechter, R.

R. Shechter, Y. Amitai, and A. A. Friesem, “Compact beam expander with linear gratings,” Appl. Opt. 41(7), 1236–1240 (2002).
[Crossref] [PubMed]

R. Shechter, S. Reinhorn, Y. Amitai, and A. A. Friesem, “Planar holographic elements with uniform diffraction efficiency,” Appl. Surf. Sci. 106, 369–373 (1996).
[Crossref]

Shi, G.

H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, and J. Zhang, “Review and analysis of avionic helmet-mounted displays,” Opt. Eng. 52(11), 110901 (2013).
[Crossref]

Shi, R.

Z. Wu, J. Liu, R. Shi, and Y. Wang, “The recording method of planar holographic grating with variable diffraction efficiency by phase modulations,” Opt. Commun. 298–299, 41–45 (2013).
[Crossref]

R. Shi, J. Liu, H. Zhao, Z. Wu, Y. Liu, Y. Hu, Y. Chen, J. Xie, and Y. Wang, “Chromatic dispersion correction in planar waveguide using one-layer volume holograms based on three-step exposure,” Appl. Opt. 51(20), 4703–4708 (2012).
[Crossref] [PubMed]

Starner, T.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Takeshi, E.

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

Talha, M. M.

Taniguchi, N.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Tanijiri, Y.

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

Thompson, K.

J. P. Rolland and K. Thompson, “See-Through Head Worn Displays for Mobile Augmented Reality,” Commun. China Comp. Fed. 7(8), 28–37 (2011).

Tobben, H. H.

H. H. Tobben, B. Lorenz, and S. Schmerwitz, “Design of a pathway display for a retinal scanning HMD,” Proc. SPIE 5802, 102–111 (2005).
[Crossref]

Twardowski, P.

Valera, M. S.

I. K. Wilmington and M. S. Valera, “Waveguide‐Based Display Technology”, SID Symposium Digest of Technical Papers, 44: 278–280 (2013).

Wang, Q.

D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11(3), 31201–31204 (2013).
[Crossref]

Wang, Y.

D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11(3), 31201–31204 (2013).
[Crossref]

Z. Wu, J. Liu, R. Shi, and Y. Wang, “The recording method of planar holographic grating with variable diffraction efficiency by phase modulations,” Opt. Commun. 298–299, 41–45 (2013).
[Crossref]

R. Shi, J. Liu, H. Zhao, Z. Wu, Y. Liu, Y. Hu, Y. Chen, J. Xie, and Y. Wang, “Chromatic dispersion correction in planar waveguide using one-layer volume holograms based on three-step exposure,” Appl. Opt. 51(20), 4703–4708 (2012).
[Crossref] [PubMed]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[PubMed]

Wang, Z.

X. Yang, Z. Wang, and R. Fu, “Hybrid diffractive-refractive 67-diagonal field of view optical see-through head-mounted display,” Optik-International Journal for Light and Electron Optics 116(7), 351–355 (2005).
[Crossref]

Weiss, V.

L. Eisen, M. Meyklyar, M. Golub, A. A. Friesem, I. Gurwich, and V. Weiss, “Planar configuration for image projection,” Appl. Opt. 45(17), 4005–4011 (2006).
[Crossref] [PubMed]

I. Gurwich, V. Weiss, L. Eisen, M. Meyklyar, and A. A. Friesem, “Design and experiments of planar optical light guides for virtual image displays,” Proc. SPIE 5182, 212–221 (2004).
[Crossref]

Werner, T. R.

J. A. Cox, T. A. Fritz, and T. R. Werner, “Application and demonstration of diffractive optics for head-mounted displays,” Proc. SPIE 2218, 32 (1994).

Wilmington, I. K.

I. K. Wilmington and M. S. Valera, “Waveguide‐Based Display Technology”, SID Symposium Digest of Technical Papers, 44: 278–280 (2013).

Wright, A. J.

Wu, Y.

H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, and J. Zhang, “Review and analysis of avionic helmet-mounted displays,” Opt. Eng. 52(11), 110901 (2013).
[Crossref]

Wu, Z.

Z. Wu, J. Liu, R. Shi, and Y. Wang, “The recording method of planar holographic grating with variable diffraction efficiency by phase modulations,” Opt. Commun. 298–299, 41–45 (2013).
[Crossref]

R. Shi, J. Liu, H. Zhao, Z. Wu, Y. Liu, Y. Hu, Y. Chen, J. Xie, and Y. Wang, “Chromatic dispersion correction in planar waveguide using one-layer volume holograms based on three-step exposure,” Appl. Opt. 51(20), 4703–4708 (2012).
[Crossref] [PubMed]

Xie, J.

Yamazaki, S.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

Yang, X.

X. Yang, Z. Wang, and R. Fu, “Hybrid diffractive-refractive 67-diagonal field of view optical see-through head-mounted display,” Optik-International Journal for Light and Electron Optics 116(7), 351–355 (2005).
[Crossref]

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A Full Color Eyewear Display using Holographic Planar Waveguides,” SID Symposium Digest of Technical Papers, 39: 89–92 (2008).

Zhang, J.

H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, and J. Zhang, “Review and analysis of avionic helmet-mounted displays,” Opt. Eng. 52(11), 110901 (2013).
[Crossref]

Zhang, X.

H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, and J. Zhang, “Review and analysis of avionic helmet-mounted displays,” Opt. Eng. 52(11), 110901 (2013).
[Crossref]

Zhao, H.

Appl. Opt. (5)

Appl. Surf. Sci. (1)

R. Shechter, S. Reinhorn, Y. Amitai, and A. A. Friesem, “Planar holographic elements with uniform diffraction efficiency,” Appl. Surf. Sci. 106, 369–373 (1996).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Chin. Opt. Lett. (1)

D. Cheng, Q. Wang, Y. Wang, and G. Jin, “Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms,” Chin. Opt. Lett. 11(3), 31201–31204 (2013).
[Crossref]

Commun. China Comp. Fed. (1)

J. P. Rolland and K. Thompson, “See-Through Head Worn Displays for Mobile Augmented Reality,” Commun. China Comp. Fed. 7(8), 28–37 (2011).

Displays (1)

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Eur. J. Phys. (1)

J. P. Sharpe, T. Post, S. Khatri, and G. Halpin, “Fabrication and characterization of optical waveguides and grating couplers,” Eur. J. Phys. 34(5), 1317–1326 (2013).
[Crossref]

J. Opt. Soc. Korea (1)

Multimedia Tools Appl. (1)

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Opt. Commun. (1)

Z. Wu, J. Liu, R. Shi, and Y. Wang, “The recording method of planar holographic grating with variable diffraction efficiency by phase modulations,” Opt. Commun. 298–299, 41–45 (2013).
[Crossref]

Opt. Eng. (1)

H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, and J. Zhang, “Review and analysis of avionic helmet-mounted displays,” Opt. Eng. 52(11), 110901 (2013).
[Crossref]

Opt. Express (6)

Opt. Rev. (1)

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
[Crossref]

Optik-International Journal for Light and Electron Optics (1)

X. Yang, Z. Wang, and R. Fu, “Hybrid diffractive-refractive 67-diagonal field of view optical see-through head-mounted display,” Optik-International Journal for Light and Electron Optics 116(7), 351–355 (2005).
[Crossref]

Proc. SPIE (9)

J. A. Cox, T. A. Fritz, and T. R. Werner, “Application and demonstration of diffractive optics for head-mounted displays,” Proc. SPIE 2218, 32 (1994).

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

H. H. Tobben, B. Lorenz, and S. Schmerwitz, “Design of a pathway display for a retinal scanning HMD,” Proc. SPIE 5802, 102–111 (2005).
[Crossref]

M. M. Bayer, “Retinal scanning display: a novel HMD approach for army aviation,” Proc. SPIE 4711, 202 (2002).

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[Crossref]

A. A. Cameron, “Optical waveguide technology and its application in head-mounted displays,” Proc. SPIE 383, 83830E (2012).

P. Äyräs and P. Saarikko, “Near-to-eye display based on retinal scanning and a diffractive exit-pupil expander”, Proc. SPIE 7723, 77230V (2010).

I. Gurwich, V. Weiss, L. Eisen, M. Meyklyar, and A. A. Friesem, “Design and experiments of planar optical light guides for virtual image displays,” Proc. SPIE 5182, 212–221 (2004).
[Crossref]

K. Sarayeddine and K. Mirza, “Key challenges to affordable see-through wearable displays: the missing link for mobile AR mass deployment,” Proc. SPIE 8720, 87200D (2013).
[Crossref]

Other (13)

http://optinvent.com/HUD-HMD-benchmark

http://www.lumus-optical.com/index.php?option=com_content&task=view&id=10&Itemid=16

Y. Amitai, “Extremely Compact High-Performance HMDs Based on Substrate-Guided Optical Element,” SID Symposium Digest of Technical Papers, 35: 310–313 (2004).
[Crossref]

http://www.lumus-optical.com/

http://www.epson.com/cgi-bin/Store/jsp/Moverio/Home.do?BV_UseBVCookie=yes

http://www.google.com/glass/start/

T. Levola, “Novel Diffractive Optical Components for Near to Eye Displays,” SID Symposium Digest of Technical Papers, 37: 64–67 (2006).

http://www.baesystems.com .

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A Full Color Eyewear Display using Holographic Planar Waveguides,” SID Symposium Digest of Technical Papers, 39: 89–92 (2008).

I. K. Wilmington and M. S. Valera, “Waveguide‐Based Display Technology”, SID Symposium Digest of Technical Papers, 44: 278–280 (2013).

B. T. Schowengerdt, R. S. Johnston, C. D. Melville, and E. J. Seibel, “3D Displays using Scanning Laser Projection,” SID Symposium Digest of Technical Papers, 43: 640–643 (2012).

A. M. Weber, W. K. Smothers, T. J. Trout, and D. J. Mickish, “Hologram recording in du Pont's new photopolymer materials,” (1990), pp. 30–39.

Y. Yamagishi, T. Ishizuka, T. Yagishita, K. Ikegami, and H. Okuyama, “Holographic Recording Material Containing Poly-N-vinyl carbazole,” (1986), pp. 14–19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Sketch of integrated optical waveguide. (b) Parameters of the optical waveguide
Fig. 2
Fig. 2 (a) Schematic view of the in-coupler. The subfigure in the lower-left dashed frame illustrates the position of the XY polynomial surface S1, the aspherical surface S2 and the coupled-in pupil Si. Colored lines refer to light emitted from micro-display and modified by the in-coupler. (b) Ray-tracing diagram of the WGDS. (c) Schematic top view of the expanded optical path of the in-coupler.
Fig. 3
Fig. 3 MTF curves of in-coupler with some evaluated FOVs. Where the solid lines and dashed lines represent the tangential and radial MTFs of certain FOVs separately. The coordinates with ‘MAX’ mean the pupil ratio of the sampled light, and coordinates with ‘DEG’ mean the angle.
Fig. 4
Fig. 4 Simulation results (a) Ideal image of the resolution chart. The inserted box highlights the partial amplification of the central spline. (b) Received image by the human eye. (c) Distortion grid of the in-coupler. (Blue grid shows the distortion of the paraxial FOV, and red grid gives the real distortion.
Fig. 5
Fig. 5 Illustration of system in tolerance with (a) central FOV and (b) marginal FOV of freeform in-coupler
Fig. 6
Fig. 6 (a) Diffractive optical path of the sampled light. (b) Recording diagram of the reflection VH (c) Relationship of the angular bandwidth of each sampled light and the FOV in the substrate. Blue, green and purple triangles stand for the anguler bandwidths of 6°, 0° and −6°, respectively.
Fig. 7
Fig. 7 Relationship between diffraction efficiency and FOV in the air.
Fig. 8
Fig. 8 (a) Relationship between diffraction efficiency and FOV for different refractive index modulations. (b)Curves of average diffraction efficiency and uniformity with index modulation.
Fig. 9
Fig. 9 (a) Relationship between diffraction efficiency and FOV for different material thickness. (b) Curves of average diffraction efficiency and uniformity with material thickness.
Fig. 10
Fig. 10 (a) Relationship between diffraction efficiency and FOV after changing the angles of objective wave. (b) Curves of average diffraction efficiency and uniformity with angular increment of the objective angle.
Fig. 11
Fig. 11 (a) Relationship between diffraction efficiency and FOV after changing the angles of reference wave. (b) Curves of average diffraction efficiency and uniformity with angular increment of the reference angle.
Fig. 12
Fig. 12 (a) Relationship between diffraction efficiency and FOV after changing the angles of central sampled light. (b) Curves of average diffraction efficiency and uniformity with angular increment of the central sampled light.
Fig. 13
Fig. 13 Curves of diffraction efficiency (a) before optimization, and (b) after optimization

Tables (7)

Tables Icon

Table 1 Grating parameters for corresponding sampled light

Tables Icon

Table 2 Relationship between refractive index modulation, uniformity and diffraction efficiency with default recording parameters.

Tables Icon

Table 3 Relationship between the thickness of the material, uniformity and diffraction efficiency with default recording parameters.

Tables Icon

Table 4 Grating parameters by changing the objective wave

Tables Icon

Table 5 Grating parameters by the changing reference wave

Tables Icon

Table 6 Grating parameters changed the central sampled light

Tables Icon

Table 7 Comparison of original and optimized out-coupler

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

EP= ER n 0 +D+ 2mD cos( θ i ) ,
{ θ i1 > θ i0 > θ i2 > θ TIR y p 1 y p 1 >0 y p 1 y p 1 >0 z p 1 z p 1 >0 z p 1 z p 2 >0
2 Λ i n 0 sin θ i =λ,
η i = y i 2 ( ch2 X i 1 ) y i 2 ( ch2 X i +1 )2 x i 2 ,
X i = y i 2 x i 2 ,
y i = πΔnd λ α i | β i | ,
x i = Δ φ i k i dsin( φ i ϕ i ) 2| β i | ,
α i =cos φ i ,
β i =cos φ i k i / k D cosϕ,
ϕ i = ψ i + φ i 2 (i=lc, mc,rc),
Γ i =1 η imax η imin η imax + η imin

Metrics