Abstract

We demonstrate a polarization-insensitive perfect absorber with multiband and broadband absorption based on a tunable and thin metamaterial, which consists of a double split-ring microstructure (DSRM) on double-layer and a coating substrate. The multiband absorption at different frequencies and broadband absorption with the relative bandwidth of 90.63% from 5.69GHz to 15.12GHz, of which the absorptivity is larger than 90%, can be achieved by changing the rotary angle of the proposed DSRM perfect metamaterial absorber (DSRM-PMA). The advantages of polarized-insensitivity, wide bandwidth and multiband absorption are illuminated by the angular absorptions and the surface current distributions. The DSRM-PMA device with similar geometry in simulation is fabricated and tested to clearly validate the functionality of our design. The simulated and experimental results indicate that the DSRM-PMA performs multiband and broadband absorptions with the rotary angle of 0° and 90° respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide-angle perfect metamaterial absorbers based on cave-rings and the complementary patterns

Xiutao Huang, Conghui Lu, Cancan Rong, and Minghai Liu
Opt. Mater. Express 8(9) 2520-2531 (2018)

Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures

Yuying Lu, Jining Li, Shaohua Zhang, Jinhai Sun, and Jian Quan Yao
Appl. Opt. 57(21) 6269-6275 (2018)

Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber

Xu Chen and Wenhui Fan
Appl. Opt. 54(9) 2376-2382 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
    [Crossref]
  3. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
    [Crossref] [PubMed]
  4. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  5. W. Chihhui, N. Burton, S. Gennady, J. Jeremy, M. Andrew, Z. Byron, and S. Steve, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
    [Crossref]
  6. S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).
  7. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
    [Crossref] [PubMed]
  8. M. N. Abbas, C. W. Cheng, Y. C. Chang, M. H. Shih, H. H. Chen, and S. C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
    [Crossref]
  9. Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
    [Crossref]
  10. H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
    [Crossref]
  11. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
    [Crossref] [PubMed]
  12. E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
    [Crossref] [PubMed]
  13. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  14. L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
    [Crossref]
  15. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref] [PubMed]
  16. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
    [Crossref]
  17. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [Crossref] [PubMed]
  18. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Fravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
    [Crossref]
  19. E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17(8), 6770–6781 (2009).
    [Crossref] [PubMed]
  20. T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, and H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(4), 2327–2335 (2013).
  21. Li Sijia, Gao Jun, Cao Xiangyu, and Zhao Zhang. “Loading MPA method for RCS reduction based on the surface current distribution of guidewave slot array antennas,” IET Microwave Antennas and Propag., doi:10.1049 /iet-map.2014.0490.
  22. S. Li, X. Cao, T. Liu, and H. Yang, “Double-layer perfect metamaterial absorber and its application for RCS reduction of antenna,” Radio Engineering. 23(1), 222–228 (2014).
  23. S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163–173 (2014).
    [Crossref]
  24. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  25. W. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
    [Crossref]
  26. C. P. Ho, P. Pitchappa, Y.-S. Lin, C.-Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectro-mechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
    [Crossref]
  27. H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
    [Crossref] [PubMed]
  28. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
    [Crossref] [PubMed]
  29. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
    [Crossref]
  30. K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Three-dimensional broadband tunable terahertz metamaterials,” Phys. Rev. B 87(16), 161104 (2013).
  31. T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci Rep 4, 3955 (2014).
    [Crossref] [PubMed]
  32. P. Koskinen, “Graphene cardboard: from ripples to tunable metamaterial,” Appl. Phys. Lett. 104(10), 101902 (2014).
    [Crossref]
  33. Y. Huang, G. Wen, W. Zhu, J. Li, L. M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
    [Crossref] [PubMed]
  34. B. Paulillo, J. M. Manceau, A. Degiron, N. Zerounian, G. Beaudoin, I. Sagnes, and R. Colombelli, “Circuit-tunable sub-wavelength THz resonators: hybridizing optical cavities and loop antennas,” Opt. Express 22(18), 21302–21312 (2014).
    [Crossref] [PubMed]
  35. P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, “Harnessing buckling to design tunable locally resonant acoustic metamaterials,” Phys. Rev. Lett. 113(1), 014301 (2014).
    [Crossref] [PubMed]
  36. P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
    [Crossref]
  37. S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
    [PubMed]
  38. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]

2014 (10)

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

S. Li, X. Cao, T. Liu, and H. Yang, “Double-layer perfect metamaterial absorber and its application for RCS reduction of antenna,” Radio Engineering. 23(1), 222–228 (2014).

S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163–173 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, Y.-S. Lin, C.-Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectro-mechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci Rep 4, 3955 (2014).
[Crossref] [PubMed]

P. Koskinen, “Graphene cardboard: from ripples to tunable metamaterial,” Appl. Phys. Lett. 104(10), 101902 (2014).
[Crossref]

P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, “Harnessing buckling to design tunable locally resonant acoustic metamaterials,” Phys. Rev. Lett. 113(1), 014301 (2014).
[Crossref] [PubMed]

Y. Huang, G. Wen, W. Zhu, J. Li, L. M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
[PubMed]

B. Paulillo, J. M. Manceau, A. Degiron, N. Zerounian, G. Beaudoin, I. Sagnes, and R. Colombelli, “Circuit-tunable sub-wavelength THz resonators: hybridizing optical cavities and loop antennas,” Opt. Express 22(18), 21302–21312 (2014).
[Crossref] [PubMed]

2013 (8)

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
[Crossref]

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, and H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(4), 2327–2335 (2013).

W. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

2012 (2)

H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

2011 (9)

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[Crossref]

M. N. Abbas, C. W. Cheng, Y. C. Chang, M. H. Shih, H. H. Chen, and S. C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[Crossref]

W. Chihhui, N. Burton, S. Gennady, J. Jeremy, M. Andrew, Z. Byron, and S. Steve, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
[Crossref] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[Crossref] [PubMed]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
[Crossref] [PubMed]

2010 (2)

T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
[Crossref] [PubMed]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Fravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

2009 (2)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17(8), 6770–6781 (2009).
[Crossref] [PubMed]

2008 (3)

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Abbas, M. N.

M. N. Abbas, C. W. Cheng, Y. C. Chang, M. H. Shih, H. H. Chen, and S. C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[Crossref]

Andrew, M.

W. Chihhui, N. Burton, S. Gennady, J. Jeremy, M. Andrew, Z. Byron, and S. Steve, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Aydin, K.

Beaudoin, G.

Bertoldi, K.

P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, “Harnessing buckling to design tunable locally resonant acoustic metamaterials,” Phys. Rev. Lett. 113(1), 014301 (2014).
[Crossref] [PubMed]

Bonod, N.

Brueckl, H.

Burton, N.

W. Chihhui, N. Burton, S. Gennady, J. Jeremy, M. Andrew, Z. Byron, and S. Steve, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Butun, S.

Byron, Z.

W. Chihhui, N. Burton, S. Gennady, J. Jeremy, M. Andrew, Z. Byron, and S. Steve, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Cao, T.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci Rep 4, 3955 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
[Crossref]

Cao, X.

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

S. Li, X. Cao, T. Liu, and H. Yang, “Double-layer perfect metamaterial absorber and its application for RCS reduction of antenna,” Radio Engineering. 23(1), 222–228 (2014).

T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, and H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(4), 2327–2335 (2013).

Capolino, F.

Casadei, F.

P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, “Harnessing buckling to design tunable locally resonant acoustic metamaterials,” Phys. Rev. Lett. 113(1), 014301 (2014).
[Crossref] [PubMed]

Chang, Y. C.

M. N. Abbas, C. W. Cheng, Y. C. Chang, M. H. Shih, H. H. Chen, and S. C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[Crossref]

Chen, H. H.

M. N. Abbas, C. W. Cheng, Y. C. Chang, M. H. Shih, H. H. Chen, and S. C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[Crossref]

Chen, L.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Chen, L. Y.

Chen, Q.

Cheng, C. W.

M. N. Abbas, C. W. Cheng, Y. C. Chang, M. H. Shih, H. H. Chen, and S. C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[Crossref]

Cheng, Y.

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Cheong, H.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Chihhui, W.

W. Chihhui, N. Burton, S. Gennady, J. Jeremy, M. Andrew, Z. Byron, and S. Steve, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Choi, E. H.

Colombelli, R.

Costa, F.

S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163–173 (2014).
[Crossref]

Cryan, M. J.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci Rep 4, 3955 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
[Crossref]

Cui, T. J.

Cumming, D. R. S.

Degiron, A.

Deng, L. J.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Derrick, G. H.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Enoch, S.

Feng, Q.

Fravets, A. F.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Fravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

Gao, J.

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, and H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(4), 2327–2335 (2013).

Gennady, S.

W. Chihhui, N. Burton, S. Gennady, J. Jeremy, M. Andrew, Z. Byron, and S. Steve, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Genovesi, S.

S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163–173 (2014).
[Crossref]

Gong, J.-Q.

H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Gong, R.

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Grant, J.

Grigorenko, A. N.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Fravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[Crossref]

Guclu, C.

Ho, C. P.

C. P. Ho, P. Pitchappa, Y.-S. Lin, C.-Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectro-mechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Hu, C.

Huang, C.

Huang, C.-Y.

C. P. Ho, P. Pitchappa, Y.-S. Lin, C.-Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectro-mechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Huang, Y.

Hutley, M. C.

Jang, W. H.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Jeremy, J.

W. Chihhui, N. Burton, S. Gennady, J. Jeremy, M. Andrew, Z. Byron, and S. Steve, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Jiang, W. X.

Khalid, A.

Kim, K. W.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Kim, S.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Koskinen, P.

P. Koskinen, “Graphene cardboard: from ripples to tunable metamaterial,” Appl. Phys. Lett. 104(10), 101902 (2014).
[Crossref]

Kravets, V. G.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Fravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[Crossref]

Kropelnicki, P.

C. P. Ho, P. Pitchappa, Y.-S. Lin, C.-Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectro-mechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, C.

C. P. Ho, P. Pitchappa, Y.-S. Lin, C.-Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectro-mechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Lee, S. C.

M. N. Abbas, C. W. Cheng, Y. C. Chang, M. H. Shih, H. H. Chen, and S. C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[Crossref]

Lee, Y. P.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Li, H.

Li, J.

Li, L.

L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[Crossref]

Li, S.

S. Li, X. Cao, T. Liu, and H. Yang, “Double-layer perfect metamaterial absorber and its application for RCS reduction of antenna,” Radio Engineering. 23(1), 222–228 (2014).

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

Li, W.

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, and H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(4), 2327–2335 (2013).

Liang, C.

L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[Crossref]

Liang, J.-G.

H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Lin, Y.-S.

C. P. Ho, P. Pitchappa, Y.-S. Lin, C.-Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectro-mechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Liu, T.

S. Li, X. Cao, T. Liu, and H. Yang, “Double-layer perfect metamaterial absorber and its application for RCS reduction of antenna,” Radio Engineering. 23(1), 222–228 (2014).

T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, and H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(4), 2327–2335 (2013).

Lok, L. B.

Luo, X.

Ma, H. F.

Ma, Y.

Maier, T.

Manceau, J. M.

Maystre, D.

McPhedran, R. C.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Monorchio, A.

S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163–173 (2014).
[Crossref]

Neubeck, S.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Fravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

Nevière, M.

Nie, Y.

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Othman, M. A. K.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Park, J. W.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Paulillo, B.

Pitchappa, P.

C. P. Ho, P. Pitchappa, Y.-S. Lin, C.-Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectro-mechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Popov, E.

Premaratne, M.

Pu, M.

Qi, M.-Q.

H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Rhee, J. Y.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Rushton, J. J.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

Sagnes, I.

Saha, S.

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[Crossref]

Shan, S.

P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, “Harnessing buckling to design tunable locally resonant acoustic metamaterials,” Phys. Rev. Lett. 113(1), 014301 (2014).
[Crossref] [PubMed]

Shen, X.

Shih, M. H.

M. N. Abbas, C. W. Cheng, Y. C. Chang, M. H. Shih, H. H. Chen, and S. C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[Crossref]

Si, L. M.

Sievenpiper, D. F.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

Simpson, R. E.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci Rep 4, 3955 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sonkusale, S.

W. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Steve, S.

W. Chihhui, N. Burton, S. Gennady, J. Jeremy, M. Andrew, Z. Byron, and S. Steve, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Tuong, P. V.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Wakatsuchi, H.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

Wang, C.

Wang, G.-M.

H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Wang, M.

Wang, P.

P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, “Harnessing buckling to design tunable locally resonant acoustic metamaterials,” Phys. Rev. Lett. 113(1), 014301 (2014).
[Crossref] [PubMed]

Weaver, J. C.

P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, “Harnessing buckling to design tunable locally resonant acoustic metamaterials,” Phys. Rev. Lett. 113(1), 014301 (2014).
[Crossref] [PubMed]

Wei, C.

Wei, C. W.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci Rep 4, 3955 (2014).
[Crossref] [PubMed]

Wen, G.

Xu, H.-X.

H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Xu, W.

W. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

Xu, Y. Q.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Xu, Z.-M.

H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Yang, H.

S. Li, X. Cao, T. Liu, and H. Yang, “Double-layer perfect metamaterial absorber and its application for RCS reduction of antenna,” Radio Engineering. 23(1), 222–228 (2014).

T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, and H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(4), 2327–2335 (2013).

Yang, Y.

L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[Crossref]

Zerounian, N.

Zhang, D.

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

Zhang, H. B.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Zhang, L.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci Rep 4, 3955 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
[Crossref]

Zhang, Z.

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

Zhao, J.

Zhao, Z.

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zheng, Q.

T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, and H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(4), 2327–2335 (2013).

Zhou, P. H.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Zhu, W.

Appl. Phys. Lett. (5)

M. N. Abbas, C. W. Cheng, Y. C. Chang, M. H. Shih, H. H. Chen, and S. C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[Crossref]

W. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

C. P. Ho, P. Pitchappa, Y.-S. Lin, C.-Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectro-mechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

P. Koskinen, “Graphene cardboard: from ripples to tunable metamaterial,” Appl. Phys. Lett. 104(10), 101902 (2014).
[Crossref]

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163–173 (2014).
[Crossref]

T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, and H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(4), 2327–2335 (2013).

J. Appl. Phys. (3)

S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, “Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances,” J. Appl. Phys. 116(4), 043710 (2014).

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[Crossref]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Opt. Express (9)

E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17(8), 6770–6781 (2009).
[Crossref] [PubMed]

S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
[PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

Y. Huang, G. Wen, W. Zhu, J. Li, L. M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

B. Paulillo, J. M. Manceau, A. Degiron, N. Zerounian, G. Beaudoin, I. Sagnes, and R. Colombelli, “Circuit-tunable sub-wavelength THz resonators: hybridizing optical cavities and loop antennas,” Opt. Express 22(18), 21302–21312 (2014).
[Crossref] [PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
[Crossref] [PubMed]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. B (5)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[Crossref]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Fravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

W. Chihhui, N. Burton, S. Gennady, J. Jeremy, M. Andrew, Z. Byron, and S. Steve, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, “Harnessing buckling to design tunable locally resonant acoustic metamaterials,” Phys. Rev. Lett. 113(1), 014301 (2014).
[Crossref] [PubMed]

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

Radio Engineering. (1)

S. Li, X. Cao, T. Liu, and H. Yang, “Double-layer perfect metamaterial absorber and its application for RCS reduction of antenna,” Radio Engineering. 23(1), 222–228 (2014).

Sci Rep (1)

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci Rep 4, 3955 (2014).
[Crossref] [PubMed]

Other (2)

Li Sijia, Gao Jun, Cao Xiangyu, and Zhao Zhang. “Loading MPA method for RCS reduction based on the surface current distribution of guidewave slot array antennas,” IET Microwave Antennas and Propag., doi:10.1049 /iet-map.2014.0490.

K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Three-dimensional broadband tunable terahertz metamaterials,” Phys. Rev. B 87(16), 161104 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic geometry of the DSRM-PMA unit cell. (a) The DSRM-PMA with three layers. (b) The middle layer with SRS-II. (c) The bottom layer with SRS-I. (d) The perspective of the DSRM-PMA. β represented the rotary angle between the splits of the SRS-II on the middle layer and the SRS-I on the bottom layer.
Fig. 2
Fig. 2 (a) Simulated absorptivity results of the DSRM-PMA with the rotary angle β of 0°, 30°, 60°, 90°, 120°, and 150° from 2GHz to 18GHz for the TEM incident wave (θ = 0°). (b) The relationship between the absorption band and the rotary angle. (c) The effective impedance of the DSRM-PMA.
Fig. 3
Fig. 3 Simulated absorption results of the DSRM-PMA from 2GHz to 18GHz at incident angles (θ) of 0°, 20°, 40°, 60°, and 80° for the TE and TM polarized incidences. (a) The absorption results of the DSRM-PMA with β = 0°. (b) The absorption results of the DSRM-PMA with β = 90°.
Fig. 4
Fig. 4 Surface current distributions of the SRS-I, SRS-II and copper ground for DSRM-PMA with the rotary angle β of 0° at 8.0GHz and 10.86GHz when the incident angles were 0°, 40° and 80° for the TE and TM polarized incidences.
Fig. 5
Fig. 5 Surface current distributions of the SRS-I, SRS-II and copper ground for DSRM-PMA with the rotary angle β of 90° at 8.2GHz and 10.52GHz when the incident angles were 0°, 40° and 80° for the TE and TM polarized incidences.
Fig. 6
Fig. 6 Simulated angular absorption results of the DSRM-PMA when the incident angle (θ) shifted from 0° to 90° for the TEM incidence and the electric field and magnetic field with the incident angle (θ) of 60°. (a) Angular absorptivity results with β of 0° at the frequencies of 4.72, 7.13, 8.0, 10.86, 12.32, and 14.8GHz. (b) Angular absorptivity results with β of 90° at the frequencies of 4.7, 6.1, 8.2, 8.7, 10.52, 12.5 and 14.9GHz. (c) The electric and magnetic fields at 12.32GHz with β of 0° and θ of 60°. (d) The electric and magnetic fields at 12.5GHz with β of 90° and θ of 60°.
Fig. 7
Fig. 7 Prototypes of the proposed DSRM-PMA. (a) Photograph of the top layer. (b) Photograph of the middle layer. (c) Photograph of the bottom layer. (d) The proposed DSRM -PMA was measured in a microwave anechoic chamber.
Fig. 8
Fig. 8 The experimental absorptivity for the DSRM-PMA samples with β of 0° and 90° in the TE and TM polarized incident waves from 2GHz to 18GHz. (a) The experimental absorptivity of the multiband DSRM-PMA sample with β of 0° and θ of 0°, 40° and 80° in the TE and TM polarized incident waves. (b) The experimental absorptivity of the broadband DSRM-PMA sample with β of 90° and θ of 0°, 40° and 80° in the TE and TM polarized incident waves.
Fig. 9
Fig. 9 Experimental angular absorption results of the DSRM-PMA with β of 0° and 90° when the incident angle (θ) shifted from 0° to 90° in the TE and TM polarized incidences. (a) Experimental angular absorption results of the multiband DSRM -PMA with β of 0° at 4.72, 7.13, 8.0, 10.86, 12.32, and 14.8GHz. (b) Experimental angular absorption results of the broadband DSRM-PMA with β of 90° at 4.7, 6.1, 8.2, 8.7, 10.52, 12.5, and 14.9GHz.

Tables (1)

Tables Icon

Table 1 The DSRM-PMA exhibited the tunable absorption as rotary angle β of different values.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A=1TR=1 | S 21 | 2 | S 11 | 2
A=1| S 11 | 2
y=1.18×1 0 10 × β 6 +6.34×1 0 8 × β 5 1.25×1 0 5 × β 4 +1.1×1 0 3 × β 3 4.08×1 0 2 × β 2 +0.42×β+6 

Metrics