Abstract

We present a widely tunable narrowband superfluorescent source near 2 μm employing a monolithic Tm-doped fiber amplifier (TDFA), and the output power exceeds 250 W. A broadband superfluorescent source with a narrowband tunable band pass filter was used as the seed source. The spectra of the seed source can be tuned in a range of ~1930-2030 nm with full width at half maximum (FWHM) of ~1.7 nm. The Tm-doped fiber amplifier scales up the power of the seed source to a level of more than 250 W with a tuning range of ~35 nm (1966-2001 nm) and a FWHM of ~1.5-2.0 nm, and the slope efficiency is about 0.50. The output power is limited by the available pump power, and the tuning range is limited by the amplifier spontaneous emission at other wavelengths. Higher output power can be achieved if launching more pump power into the amplifier, and the tuning range can be further improved by optimizing the parameters of the TDFA. To the best of our knowledge, this is the first demonstration on a widely tunable narrowband superfluorescent source at 2 μm with average output power exceeding 250 W.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
105 W ultra-narrowband nanosecond pulsed laser at 2 μm based on monolithic Tm-doped fiber MOPA

Xiong Wang, Xiaoxi Jin, Pu Zhou, Xiaolin Wang, Hu Xiao, and Zejin Liu
Opt. Express 23(4) 4233-4241 (2015)

Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power

D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson
Opt. Express 16(15) 11021-11026 (2008)

High-power Ho-doped all-fiber superfluorescent source pumped by a 1150  nm Raman fiber laser

Xiaoxi Jin, Xiong Wang, Xiaolin Wang, Hu Xiao, and Pu Zhou
Appl. Opt. 53(35) 8302-8304 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, Q. Wang, and S. Jiang, “2μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
    [Crossref]
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  3. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [Crossref]
  4. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
    [Crossref]
  5. Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).
  6. Y. Tang, C. Huang, S. Wang, H. Li, and J. Xu, “High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity,” Opt. Express 20(16), 17539–17544 (2012).
    [Crossref] [PubMed]
  7. J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett. 34(22), 3493–3495 (2009).
    [Crossref] [PubMed]
  8. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).
  9. J. Liu, K. Liu, F. Tan, and P. Wang, “High-power Thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).
  10. P. Honzatko, Y. Baravets, I. Kasik, and O. Podrazky, “Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600-2300 nm spectral band,” Opt. Lett. 39(12), 3650–3653 (2014).
    [Crossref] [PubMed]
  11. K. Oh, A. Kilian, L. Reinhart, Q. Zhang, T. F. Morse, and P. M. Weber, “Broadband superfluorescent emission of the 3H4 → 3H6 transition in a Tm-doped multicomponent silicate fiber,” Opt. Lett. 19(15), 1131–1133 (1994).
    [Crossref] [PubMed]
  12. Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
    [Crossref]
  13. D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
    [Crossref] [PubMed]
  14. A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
    [Crossref]
  15. A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
    [Crossref]
  16. P. Kuan, K. Li, G. Zhang, X. Wang, L. Zhang, G. Bai, Y. Tsang, and L. Hu, “Compact broadband amplified spontaneous emission in Tm3+-doped tungsten tellurite glass double-cladding single-mode fiber,” Opt. Mater. Express 3(6), 723–728 (2013).
    [Crossref]
  17. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49(32), 6236–6242 (2010).
    [Crossref] [PubMed]
  18. Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739–4742 (2013).
    [Crossref] [PubMed]
  19. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
    [Crossref] [PubMed]
  20. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express 14(13), 6084–6090 (2006).
    [Crossref] [PubMed]
  21. K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
    [Crossref] [PubMed]

2014 (5)

2013 (2)

2012 (4)

Y. Tang, C. Huang, S. Wang, H. Li, and J. Xu, “High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity,” Opt. Express 20(16), 17539–17544 (2012).
[Crossref] [PubMed]

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2011 (1)

J. Geng, Q. Wang, and S. Jiang, “2μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
[Crossref]

2010 (2)

T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49(32), 6236–6242 (2010).
[Crossref] [PubMed]

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

2009 (2)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett. 34(22), 3493–3495 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

2006 (2)

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express 14(13), 6084–6090 (2006).
[Crossref] [PubMed]

1994 (1)

Ahmad, H.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

Alam, S. U.

Ali, S. M. M.

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

Amzajerdian, F.

Bai, G.

Baravets, Y.

Bhadra, S. K.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Clarkson, W. A.

Damanhuri, S. S. A.

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

Das, S.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

Ehrenreich, T.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Geng, J.

Halder, A.

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

Harun, S. W.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

Heidt, A. M.

Honzatko, P.

Hou, J.

Hu, L.

Huang, C.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

Jiang, S.

Jung, Y.

Kadwani, P.

Kasik, I.

Kilian, A.

King, T. A.

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Ko, D.

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Kuan, P.

Lancaster, D. G.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

Lee, J.

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Leveille, R.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Li, H.

Li, J.

Li, K.

Li, L.

Li, X.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Li, Z.

Liu, J.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power Thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).

Liu, K.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power Thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).

Liu, Y.

Luo, H.

Luo, T.

Majid, I.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

McComb, T. S.

Morse, T. F.

Moulton, P.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Oh, K.

Pal, M.

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

Paul, M. C.

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

Pearson, L.

Podrazky, O.

Reinhart, L.

Richardson, D. J.

Richardson, M.

Rines, G.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Sabella, A.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

Sahu, J. K.

Saidin, N.

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Shah, L.

Shahabuddin, N. S.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

Shen, D. Y.

Sims, R. A.

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Sudesh, V.

Sun, Z.

Tan, F.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power Thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).

Tang, Y.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Y. Tang, C. Huang, S. Wang, H. Li, and J. Xu, “High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity,” Opt. Express 20(16), 17539–17544 (2012).
[Crossref] [PubMed]

Tankala, K.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Tsang, Y.

Tsang, Y. H.

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Wang, P.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power Thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).

D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
[Crossref] [PubMed]

Wang, Q.

Wang, Q. J.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Wang, S.

Wang, X.

Weber, P. M.

Willis, C. C. C.

Xu, J.

Xue, G.

Yan, Z.

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Yin, K.

Yu, X.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Zhang, B.

Zhang, G.

Zhang, L.

Zhang, Q.

Zhang, Y.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

Zhou, K.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (4)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-μm nanosecond all-fiber-based Thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100707 (2014).

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power Thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).

IEEE P. Hoton. J. (1)

A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880-nm broadband ASE generation with Bismuth–Thulium codoped fiber,” IEEE P. Hoton. J. 4(6), 2176–2181 (2012).
[Crossref]

IEEE Photon. J. (1)

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double-clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photon. J. 4(1), 14–18 (2012).
[Crossref]

J. Mod. Opt. (1)

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. Express (1)

Proc. SPIE (2)

J. Geng, Q. Wang, and S. Jiang, “2μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
[Crossref]

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic sketch of the superfluorescent source seed. WDM: wavelength division multiplexer; THDF: Tm-Ho codoped fiber; ISO: isolator; TBPF: tunable band pass filter.
Fig. 2
Fig. 2 Schematic sketch of the pre-amplifier of the superfluorescent source seed. WDM: wavelength division multiplexer; TDF: Tm-doped fiber; ISO: isolator; LD: laser diode; DC TDF: double cladding Tm-doped fiber.
Fig. 3
Fig. 3 Schematic sketch of the main amplifier.
Fig. 4
Fig. 4 Output power of the superfluorescent source seed without TBPF. Inset: spectra at different cases.
Fig. 5
Fig. 5 Illustrational tuning spectra of the widely tunable narrowband superfluorescent source seed.
Fig. 6
Fig. 6 Output power data of the main amplifier at different wavelengths. Inset: spectra at 1990 nm.
Fig. 7
Fig. 7 Maximum output power data and spectra of the TDFA at different wavelengths.
Fig. 8
Fig. 8 Spectra of 1966 nm and 2001 nm narrowband superfluorescent sources at different situations.
Fig. 9
Fig. 9 Oscilloscope trace of the tunable narrowband superfluorescent source after the main amplifier.

Metrics