Abstract

Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frustrated FRET for high-contrast high-resolution two-photon imaging

Fang Xu, Lu Wei, Zhixing Chen, and Wei Min
Opt. Express 21(12) 14097-14108 (2013)

Multifarious control of two-photon excitation of multiple fluorophores achieved by phase modulation of ultra-broadband laser pulses

Keisuke Isobe, Akira Suda, Masahiro Tanaka, Fumihiko Kannari, Hiroyuki Kawano, Hideaki Mizuno, Atsushi Miyawaki, and Katsumi Midorikawa
Opt. Express 17(16) 13737-13746 (2009)

In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse

James McGinty, Daniel W. Stuckey, Vadim Y. Soloviev, Romain Laine, Marzena Wylezinska-Arridge, Dominic J. Wells, Simon R. Arridge, Paul M. W. French, Joseph V. Hajnal, and Alessandro Sardini
Biomed. Opt. Express 2(7) 1907-1917 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55–75 (1948).
    [Crossref]
  2. P. R. Selvin, “Fluorescence resonance energy transfer,” Methods Enzymol. 246, 300–334 (1995).
    [Crossref] [PubMed]
  3. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 5th ed. (Garland Science, 2007).
  4. P. R. Selvin, “The renaissance of fluorescence resonance energy transfer,” Nat. Struct. Mol. Biol. 7, 730–734 (2000).
    [Crossref]
  5. V. S. Kraynov, C. Chamberlain, G. M. Bokoch, M. A. Schwartz, S. Slabaugh, and K. M. Hahn, “Localized Rac activation dynamics visualized in living cells,” Science 290, 333–337 (2000).
    [Crossref] [PubMed]
  6. R. M. Clegg, “Fluorescence resonance energy transfer and nucleic acids,” Methods Enzymol. 211, 353–388 (1992).
    [Crossref] [PubMed]
  7. G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
    [Crossref] [PubMed]
  8. Z. Xia and Y. Liu, “Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes,” Biophys. J. 81, 2395–2402 (2001).
    [Crossref] [PubMed]
  9. M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
    [Crossref] [PubMed]
  10. A. Hoppe, K. Christensen, and J. A. Swanson, “Fluorescence resonance energy transfer-based stoichiometry in living cells,” Biophys. J. 83, 3652–3664 (2002).
    [Crossref] [PubMed]
  11. R. A. Neher and E. Neher, “Applying spectral fingerprinting to the analysis of FRET images,” Microsc. Res. and Tech. 64, 185–195 (2004).
    [Crossref]
  12. N. K. Lee, A. N. Kapanidis, Y. Wang, X. Michalet, J. Mukhopadhyay, R. H. Ebright, and S. Weiss, “Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation,” Biophys. J. 88, 2939–2953 (2005).
    [Crossref] [PubMed]
  13. A. N. Kapanidis, N. K. Lee, T. A. Laurence, S. Doose, E. Margeat, and S. Weiss, “Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules,” Proc. Nat. Acad. Sci USA 101, 8936–8941 (2004).
    [Crossref] [PubMed]
  14. V. Raicu, D. B. Jansma, R. J. D. Miller, and J. Friesen, “Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer,” Biochem J. 385, 265–277 (2005).
    [Crossref]
  15. A. D. Elder, A. Domin, G. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, and C. F. Kaminski, “A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission,” J. R. Soc. Interface 6, S59–S81 (2009).
    [Crossref]
  16. Y. Sun, R. N. Day, and A. Periasamy, “Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy,” Nat. Protoc. 6, 1324–1340 (2011).
    [Crossref] [PubMed]
  17. M. Elangovan, R. N. Day, and A. Periasamy, “Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell,” J. Microsc. 205, 3–14 (2002).
    [Crossref] [PubMed]
  18. Y. Sun, C. Rombola, V. Jyothikumar, and A. Periasamy, “Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells,” Cytometry Part A 83, 780–793 (2013).
    [Crossref]
  19. D. Llères, J. James, S. Swift, D. G. Norman, and A. I. Lamond, “Quantitative analysis of chromatin compaction in living cells using FLIM-FRET,” J. Cell Biol. 187, 481–496 (2009).
    [Crossref] [PubMed]
  20. H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16, 19–27 (2005).
    [Crossref] [PubMed]
  21. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
    [Crossref] [PubMed]
  22. D. W. Brousmiche, J. M. Serin, J. M. J. Fréchet, G. S. He, T.-C. Lin, S. J. Chung, and P. N. Prasad, “Fluorescence resonance energy transfer in a novel two-photon absorbing system,” J. Am. Chem. Soc. 125, 1448–1449 (2003).
    [Crossref] [PubMed]
  23. H. Wallrabe, M. Stanley, A. Periasamy, and M. Barroso, “One- and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes,” J. Biomed. Opt. 8, 339–346 (2003).
    [Crossref] [PubMed]
  24. J. D. Mills, J. R. Stone, D. G. Rubin, D. E. Melon, D. O. Okonkwo, A. Periasamy, and G. A. Helm, “Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy,” J. Biomed. Opt. 8, 347–356 (2003).
    [Crossref] [PubMed]
  25. K.-L. Chou, N. Won, J. Kwag, S. Kim, and J.-Y. Chen, “Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots,” J. Mater. Chem. B 1, 4584–4592 (2013).
    [Crossref]
  26. C. Fowley, N. Nomikou, A. P. McHale, B. McCaughan, and J. F. Callan, “Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy,” Chem. Commun. 49, 8934–8936 (2013).
    [Crossref]
  27. S. Picard, E. J. Cueto-Diaz, E. Genin, G. Clermont, F. Acher, D. Ogden, and M. Blanchard-Desce, “Tandem triad systems based on FRET for two-photon induced release of glutamate,” Chem. Commun. 49, 10805–10807 (2013).
    [Crossref]
  28. J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, and G. Zheng, “Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging,” Adv. Mater. 25, 6569–6574 (2013).
    [Crossref] [PubMed]
  29. C. Thaler, S. V. Koushik, P. S. Blank, and S. S. Vogel, “Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer,” Biophys. J. 89, 2736–2749 (2005).
    [Crossref] [PubMed]
  30. V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
    [Crossref]
  31. M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy,” Methods 29, 58–73 (2003).
    [Crossref] [PubMed]
  32. Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63, 72–80 (2004).
    [Crossref]
  33. J. P. Ogilvie, D. Débarre, X. Solinas, J.-L. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express 14, 759–766 (2006).
    [Crossref] [PubMed]
  34. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
    [Crossref]
  35. E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc. 19, 517–532 (2009).
    [Crossref]
  36. R. S. Pillai, C. Boudoux, G. Labroille, N. Olivier, I. Veilleux, E. Farge, M. Joffre, and E. Beaurepaire, “Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses,” Opt. Express 17, 12741–12752 (2009).
    [Crossref] [PubMed]
  37. K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Multifarious control of two-photon excitation of multiple fluorophores achieved by phase modulation of ultra-broadband laser pulses,” Opt. Express 17, 13737–13746 (2009).
    [Crossref] [PubMed]
  38. M. H. Brenner, D. Cai, J. A. Swanson, and J. P. Ogilvie, “Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser,” Opt. Express 21, 17256–17264 (2013).
    [Crossref] [PubMed]
  39. M. H. Brenner, D. Cai, S. R. Nichols, S. W. Straight, A. D. Hoppe, J. A. Swanson, and J. P. Ogilvie, “Pulse shaping multiphoton FRET microscopy,” Proc. SPIE 8226, 82260R (2012).
    [Crossref]
  40. D. C. Flynn, A. R. Bhagwat, and J. P. Ogilvie, “Chemical-contrast imaging with pulse-shaping based pump-probe spectroscopy,” Proc. SPIE 8588, 85881Z (2013).
    [Crossref]
  41. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
    [Crossref] [PubMed]
  42. Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B 16, 1999–2004 (1999).
    [Crossref]
  43. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
    [Crossref]
  44. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
    [Crossref] [PubMed]
  45. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Ann. Rev. Phys. Chem. 60, 277–292 (2009).
    [Crossref]
  46. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instr. 71, 1929–1960 (2000).
    [Crossref]
  47. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
    [Crossref]
  48. G. Steinmeyer, “A review of ultrafast optics and optoelectronics,” J. Opt. A: Pure Appl. Opt. 5, R1–R15 (2003).
    [Crossref]
  49. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
    [Crossref]
  50. B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
    [Crossref] [PubMed]
  51. M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12, 1061–1066 (2004).
    [Crossref] [PubMed]
  52. V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” ChemPhysChem 6, 1970–2000 (2005).
    [Crossref] [PubMed]
  53. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
    [Crossref] [PubMed]
  54. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
    [Crossref]
  55. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.-H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
    [Crossref]
  56. B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
    [Crossref]
  57. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
    [Crossref]
  58. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004).
    [Crossref] [PubMed]
  59. J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, “Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control,” Opt. Lett. 30, 911–913 (2005).
    [Crossref] [PubMed]
  60. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
    [Crossref]
  61. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson Higher Ed, 2008).
  62. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
    [Crossref]
  63. A. D. Hoppe, B. L. Scott, T. P. Welliver, S. W. Straight, and J. A. Swanson, “N-way FRET microscopy of multiple protein-protein interactions in live cells,” PLoS ONE 8, e64760 (2013).
    [Crossref] [PubMed]
  64. N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
    [Crossref]
  65. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
    [Crossref] [PubMed]
  66. A. C. Millard, P. J. Campagnola, W. Mohler, A. Lewis, and L. M. Loew, “Second harmonic imaging microscopy,” Methods Enzymol. 361, 47–69 (2003).
    [Crossref] [PubMed]
  67. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
    [Crossref]
  68. W. Supatto, T. V. Truong, D. Débarre, and E. Beaurepaire, “Advances in multiphoton microscopy for imaging embryos,” Curr. Opin. Gen. Dev. 21, 538–548 (2011).
    [Crossref]
  69. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [Crossref] [PubMed]
  70. J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC, 2012).
  71. I. T. Jolliffe, Principal Component Analysis (Springer, 2002).
  72. A. J. Izenman, Modern Multivariate Statistical Techniques (Springer, 2008).
    [Crossref]

2013 (8)

Y. Sun, C. Rombola, V. Jyothikumar, and A. Periasamy, “Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells,” Cytometry Part A 83, 780–793 (2013).
[Crossref]

K.-L. Chou, N. Won, J. Kwag, S. Kim, and J.-Y. Chen, “Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots,” J. Mater. Chem. B 1, 4584–4592 (2013).
[Crossref]

C. Fowley, N. Nomikou, A. P. McHale, B. McCaughan, and J. F. Callan, “Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy,” Chem. Commun. 49, 8934–8936 (2013).
[Crossref]

S. Picard, E. J. Cueto-Diaz, E. Genin, G. Clermont, F. Acher, D. Ogden, and M. Blanchard-Desce, “Tandem triad systems based on FRET for two-photon induced release of glutamate,” Chem. Commun. 49, 10805–10807 (2013).
[Crossref]

J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, and G. Zheng, “Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging,” Adv. Mater. 25, 6569–6574 (2013).
[Crossref] [PubMed]

D. C. Flynn, A. R. Bhagwat, and J. P. Ogilvie, “Chemical-contrast imaging with pulse-shaping based pump-probe spectroscopy,” Proc. SPIE 8588, 85881Z (2013).
[Crossref]

A. D. Hoppe, B. L. Scott, T. P. Welliver, S. W. Straight, and J. A. Swanson, “N-way FRET microscopy of multiple protein-protein interactions in live cells,” PLoS ONE 8, e64760 (2013).
[Crossref] [PubMed]

M. H. Brenner, D. Cai, J. A. Swanson, and J. P. Ogilvie, “Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser,” Opt. Express 21, 17256–17264 (2013).
[Crossref] [PubMed]

2012 (1)

M. H. Brenner, D. Cai, S. R. Nichols, S. W. Straight, A. D. Hoppe, J. A. Swanson, and J. P. Ogilvie, “Pulse shaping multiphoton FRET microscopy,” Proc. SPIE 8226, 82260R (2012).
[Crossref]

2011 (3)

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref] [PubMed]

Y. Sun, R. N. Day, and A. Periasamy, “Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy,” Nat. Protoc. 6, 1324–1340 (2011).
[Crossref] [PubMed]

W. Supatto, T. V. Truong, D. Débarre, and E. Beaurepaire, “Advances in multiphoton microscopy for imaging embryos,” Curr. Opin. Gen. Dev. 21, 538–548 (2011).
[Crossref]

2010 (1)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
[Crossref]

2009 (7)

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Ann. Rev. Phys. Chem. 60, 277–292 (2009).
[Crossref]

R. S. Pillai, C. Boudoux, G. Labroille, N. Olivier, I. Veilleux, E. Farge, M. Joffre, and E. Beaurepaire, “Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses,” Opt. Express 17, 12741–12752 (2009).
[Crossref] [PubMed]

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Multifarious control of two-photon excitation of multiple fluorophores achieved by phase modulation of ultra-broadband laser pulses,” Opt. Express 17, 13737–13746 (2009).
[Crossref] [PubMed]

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

A. D. Elder, A. Domin, G. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, and C. F. Kaminski, “A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission,” J. R. Soc. Interface 6, S59–S81 (2009).
[Crossref]

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc. 19, 517–532 (2009).
[Crossref]

D. Llères, J. James, S. Swift, D. G. Norman, and A. I. Lamond, “Quantitative analysis of chromatin compaction in living cells using FLIM-FRET,” J. Cell Biol. 187, 481–496 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
[Crossref]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (6)

J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, “Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control,” Opt. Lett. 30, 911–913 (2005).
[Crossref] [PubMed]

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” ChemPhysChem 6, 1970–2000 (2005).
[Crossref] [PubMed]

C. Thaler, S. V. Koushik, P. S. Blank, and S. S. Vogel, “Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer,” Biophys. J. 89, 2736–2749 (2005).
[Crossref] [PubMed]

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16, 19–27 (2005).
[Crossref] [PubMed]

N. K. Lee, A. N. Kapanidis, Y. Wang, X. Michalet, J. Mukhopadhyay, R. H. Ebright, and S. Weiss, “Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation,” Biophys. J. 88, 2939–2953 (2005).
[Crossref] [PubMed]

V. Raicu, D. B. Jansma, R. J. D. Miller, and J. Friesen, “Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer,” Biochem J. 385, 265–277 (2005).
[Crossref]

2004 (6)

R. A. Neher and E. Neher, “Applying spectral fingerprinting to the analysis of FRET images,” Microsc. Res. and Tech. 64, 185–195 (2004).
[Crossref]

A. N. Kapanidis, N. K. Lee, T. A. Laurence, S. Doose, E. Margeat, and S. Weiss, “Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules,” Proc. Nat. Acad. Sci USA 101, 8936–8941 (2004).
[Crossref] [PubMed]

Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63, 72–80 (2004).
[Crossref]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12, 1061–1066 (2004).
[Crossref] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004).
[Crossref] [PubMed]

2003 (8)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

A. C. Millard, P. J. Campagnola, W. Mohler, A. Lewis, and L. M. Loew, “Second harmonic imaging microscopy,” Methods Enzymol. 361, 47–69 (2003).
[Crossref] [PubMed]

G. Steinmeyer, “A review of ultrafast optics and optoelectronics,” J. Opt. A: Pure Appl. Opt. 5, R1–R15 (2003).
[Crossref]

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy,” Methods 29, 58–73 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref] [PubMed]

D. W. Brousmiche, J. M. Serin, J. M. J. Fréchet, G. S. He, T.-C. Lin, S. J. Chung, and P. N. Prasad, “Fluorescence resonance energy transfer in a novel two-photon absorbing system,” J. Am. Chem. Soc. 125, 1448–1449 (2003).
[Crossref] [PubMed]

H. Wallrabe, M. Stanley, A. Periasamy, and M. Barroso, “One- and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes,” J. Biomed. Opt. 8, 339–346 (2003).
[Crossref] [PubMed]

J. D. Mills, J. R. Stone, D. G. Rubin, D. E. Melon, D. O. Okonkwo, A. Periasamy, and G. A. Helm, “Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy,” J. Biomed. Opt. 8, 347–356 (2003).
[Crossref] [PubMed]

2002 (4)

A. Hoppe, K. Christensen, and J. A. Swanson, “Fluorescence resonance energy transfer-based stoichiometry in living cells,” Biophys. J. 83, 3652–3664 (2002).
[Crossref] [PubMed]

M. Elangovan, R. N. Day, and A. Periasamy, “Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell,” J. Microsc. 205, 3–14 (2002).
[Crossref] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

2001 (3)

R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
[Crossref] [PubMed]

Z. Xia and Y. Liu, “Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes,” Biophys. J. 81, 2395–2402 (2001).
[Crossref] [PubMed]

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[Crossref] [PubMed]

2000 (4)

P. R. Selvin, “The renaissance of fluorescence resonance energy transfer,” Nat. Struct. Mol. Biol. 7, 730–734 (2000).
[Crossref]

V. S. Kraynov, C. Chamberlain, G. M. Bokoch, M. A. Schwartz, S. Slabaugh, and K. M. Hahn, “Localized Rac activation dynamics visualized in living cells,” Science 290, 333–337 (2000).
[Crossref] [PubMed]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instr. 71, 1929–1960 (2000).
[Crossref]

1999 (1)

1998 (3)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref] [PubMed]

1997 (2)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[Crossref]

1995 (1)

P. R. Selvin, “Fluorescence resonance energy transfer,” Methods Enzymol. 246, 300–334 (1995).
[Crossref] [PubMed]

1992 (2)

R. M. Clegg, “Fluorescence resonance energy transfer and nucleic acids,” Methods Enzymol. 211, 353–388 (1992).
[Crossref] [PubMed]

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[Crossref] [PubMed]

1948 (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55–75 (1948).
[Crossref]

Acher, F.

S. Picard, E. J. Cueto-Diaz, E. Genin, G. Clermont, F. Acher, D. Ogden, and M. Blanchard-Desce, “Tandem triad systems based on FRET for two-photon induced release of glutamate,” Chem. Commun. 49, 10805–10807 (2013).
[Crossref]

Alberts, B.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 5th ed. (Garland Science, 2007).

Alexandrou, A.

Alseikhan, B. A.

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[Crossref] [PubMed]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Baker, J. R.

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc. 19, 517–532 (2009).
[Crossref]

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

Barroso, M.

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy,” Methods 29, 58–73 (2003).
[Crossref] [PubMed]

H. Wallrabe, M. Stanley, A. Periasamy, and M. Barroso, “One- and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes,” J. Biomed. Opt. 8, 339–346 (2003).
[Crossref] [PubMed]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[Crossref]

Beaurepaire, E.

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Berry, G.

G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref] [PubMed]

Bhagwat, A. R.

D. C. Flynn, A. R. Bhagwat, and J. P. Ogilvie, “Chemical-contrast imaging with pulse-shaping based pump-probe spectroscopy,” Proc. SPIE 8588, 85881Z (2013).
[Crossref]

Blanchard-Desce, M.

S. Picard, E. J. Cueto-Diaz, E. Genin, G. Clermont, F. Acher, D. Ogden, and M. Blanchard-Desce, “Tandem triad systems based on FRET for two-photon induced release of glutamate,” Chem. Commun. 49, 10805–10807 (2013).
[Crossref]

Blank, P. S.

C. Thaler, S. V. Koushik, P. S. Blank, and S. S. Vogel, “Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer,” Biophys. J. 89, 2736–2749 (2005).
[Crossref] [PubMed]

Bokoch, G. M.

V. S. Kraynov, C. Chamberlain, G. M. Bokoch, M. A. Schwartz, S. Slabaugh, and K. M. Hahn, “Localized Rac activation dynamics visualized in living cells,” Science 290, 333–337 (2000).
[Crossref] [PubMed]

Borukhovich, I.

Boudoux, C.

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Brenner, M. H.

M. H. Brenner, D. Cai, J. A. Swanson, and J. P. Ogilvie, “Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser,” Opt. Express 21, 17256–17264 (2013).
[Crossref] [PubMed]

M. H. Brenner, D. Cai, S. R. Nichols, S. W. Straight, A. D. Hoppe, J. A. Swanson, and J. P. Ogilvie, “Pulse shaping multiphoton FRET microscopy,” Proc. SPIE 8226, 82260R (2012).
[Crossref]

Brixner, T.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[Crossref]

Broers, B.

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[Crossref] [PubMed]

Brousmiche, D. W.

D. W. Brousmiche, J. M. Serin, J. M. J. Fréchet, G. S. He, T.-C. Lin, S. J. Chung, and P. N. Prasad, “Fluorescence resonance energy transfer in a novel two-photon absorbing system,” J. Am. Chem. Soc. 125, 1448–1449 (2003).
[Crossref] [PubMed]

Cai, D.

M. H. Brenner, D. Cai, J. A. Swanson, and J. P. Ogilvie, “Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser,” Opt. Express 21, 17256–17264 (2013).
[Crossref] [PubMed]

M. H. Brenner, D. Cai, S. R. Nichols, S. W. Straight, A. D. Hoppe, J. A. Swanson, and J. P. Ogilvie, “Pulse shaping multiphoton FRET microscopy,” Proc. SPIE 8226, 82260R (2012).
[Crossref]

Callan, J. F.

C. Fowley, N. Nomikou, A. P. McHale, B. McCaughan, and J. F. Callan, “Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy,” Chem. Commun. 49, 8934–8936 (2013).
[Crossref]

Campagnola, P. J.

A. C. Millard, P. J. Campagnola, W. Mohler, A. Lewis, and L. M. Loew, “Second harmonic imaging microscopy,” Methods Enzymol. 361, 47–69 (2003).
[Crossref] [PubMed]

Chamberlain, C.

V. S. Kraynov, C. Chamberlain, G. M. Bokoch, M. A. Schwartz, S. Slabaugh, and K. M. Hahn, “Localized Rac activation dynamics visualized in living cells,” Science 290, 333–337 (2000).
[Crossref] [PubMed]

Chatel, B.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
[Crossref]

Chen, J.-Y.

K.-L. Chou, N. Won, J. Kwag, S. Kim, and J.-Y. Chen, “Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots,” J. Mater. Chem. B 1, 4584–4592 (2013).
[Crossref]

Chen, Y.

Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63, 72–80 (2004).
[Crossref]

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy,” Methods 29, 58–73 (2003).
[Crossref] [PubMed]

Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B 16, 1999–2004 (1999).
[Crossref]

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC, 2012).

Cho, S. H.

Chou, K.-L.

K.-L. Chou, N. Won, J. Kwag, S. Kim, and J.-Y. Chen, “Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots,” J. Mater. Chem. B 1, 4584–4592 (2013).
[Crossref]

Christensen, K.

A. Hoppe, K. Christensen, and J. A. Swanson, “Fluorescence resonance energy transfer-based stoichiometry in living cells,” Biophys. J. 83, 3652–3664 (2002).
[Crossref] [PubMed]

Chung, S. J.

D. W. Brousmiche, J. M. Serin, J. M. J. Fréchet, G. S. He, T.-C. Lin, S. J. Chung, and P. N. Prasad, “Fluorescence resonance energy transfer in a novel two-photon absorbing system,” J. Am. Chem. Soc. 125, 1448–1449 (2003).
[Crossref] [PubMed]

Clegg, R. M.

R. M. Clegg, “Fluorescence resonance energy transfer and nucleic acids,” Methods Enzymol. 211, 353–388 (1992).
[Crossref] [PubMed]

Clermont, G.

S. Picard, E. J. Cueto-Diaz, E. Genin, G. Clermont, F. Acher, D. Ogden, and M. Blanchard-Desce, “Tandem triad systems based on FRET for two-photon induced release of glutamate,” Chem. Commun. 49, 10805–10807 (2013).
[Crossref]

Coello, Y.

Comstock, M.

Cueto-Diaz, E. J.

S. Picard, E. J. Cueto-Diaz, E. Genin, G. Clermont, F. Acher, D. Ogden, and M. Blanchard-Desce, “Tandem triad systems based on FRET for two-photon induced release of glutamate,” Chem. Commun. 49, 10805–10807 (2013).
[Crossref]

Dantus, M.

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.-H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
[Crossref]

B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
[Crossref]

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” ChemPhysChem 6, 1970–2000 (2005).
[Crossref] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12, 1061–1066 (2004).
[Crossref] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004).
[Crossref] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

Day, R. N.

Y. Sun, R. N. Day, and A. Periasamy, “Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy,” Nat. Protoc. 6, 1324–1340 (2011).
[Crossref] [PubMed]

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy,” Methods 29, 58–73 (2003).
[Crossref] [PubMed]

M. Elangovan, R. N. Day, and A. Periasamy, “Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell,” J. Microsc. 205, 3–14 (2002).
[Crossref] [PubMed]

Débarre, D.

W. Supatto, T. V. Truong, D. Débarre, and E. Beaurepaire, “Advances in multiphoton microscopy for imaging embryos,” Curr. Opin. Gen. Dev. 21, 538–548 (2011).
[Crossref]

J. P. Ogilvie, D. Débarre, X. Solinas, J.-L. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express 14, 759–766 (2006).
[Crossref] [PubMed]

Dela Cruz, J. M.

B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
[Crossref]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

Domin, A.

A. D. Elder, A. Domin, G. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, and C. F. Kaminski, “A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission,” J. R. Soc. Interface 6, S59–S81 (2009).
[Crossref]

Doose, S.

A. N. Kapanidis, N. K. Lee, T. A. Laurence, S. Doose, E. Margeat, and S. Weiss, “Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules,” Proc. Nat. Acad. Sci USA 101, 8936–8941 (2004).
[Crossref] [PubMed]

Drobizhev, M.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref] [PubMed]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

Ebright, R. H.

N. K. Lee, A. N. Kapanidis, Y. Wang, X. Michalet, J. Mukhopadhyay, R. H. Ebright, and S. Weiss, “Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation,” Biophys. J. 88, 2939–2953 (2005).
[Crossref] [PubMed]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

Elangovan, M.

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy,” Methods 29, 58–73 (2003).
[Crossref] [PubMed]

M. Elangovan, R. N. Day, and A. Periasamy, “Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell,” J. Microsc. 205, 3–14 (2002).
[Crossref] [PubMed]

Elder, A. D.

A. D. Elder, A. Domin, G. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, and C. F. Kaminski, “A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission,” J. R. Soc. Interface 6, S59–S81 (2009).
[Crossref]

Erickson, M. G.

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[Crossref] [PubMed]

Esposito, A.

A. D. Elder, A. Domin, G. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, and C. F. Kaminski, “A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission,” J. R. Soc. Interface 6, S59–S81 (2009).
[Crossref]

Farge, E.

Flynn, D. C.

D. C. Flynn, A. R. Bhagwat, and J. P. Ogilvie, “Chemical-contrast imaging with pulse-shaping based pump-probe spectroscopy,” Proc. SPIE 8588, 85881Z (2013).
[Crossref]

Förster, T.

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55–75 (1948).
[Crossref]

Fowley, C.

C. Fowley, N. Nomikou, A. P. McHale, B. McCaughan, and J. F. Callan, “Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy,” Chem. Commun. 49, 8934–8936 (2013).
[Crossref]

Fox, M.

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

Fréchet, J. M. J.

D. W. Brousmiche, J. M. Serin, J. M. J. Fréchet, G. S. He, T.-C. Lin, S. J. Chung, and P. N. Prasad, “Fluorescence resonance energy transfer in a novel two-photon absorbing system,” J. Am. Chem. Soc. 125, 1448–1449 (2003).
[Crossref] [PubMed]

Friesen, J.

V. Raicu, D. B. Jansma, R. J. D. Miller, and J. Friesen, “Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer,” Biochem J. 385, 265–277 (2005).
[Crossref]

Fujimoto, J. G.

Fung, R.

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

Gassman, N.

N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
[Crossref]

Gauderon, R.

R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
[Crossref] [PubMed]

Genin, E.

S. Picard, E. J. Cueto-Diaz, E. Genin, G. Clermont, F. Acher, D. Ogden, and M. Blanchard-Desce, “Tandem triad systems based on FRET for two-photon induced release of glutamate,” Chem. Commun. 49, 10805–10807 (2013).
[Crossref]

Gerber, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[Crossref]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson Higher Ed, 2008).

Gordon, G. W.

G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref] [PubMed]

Gunaratne, T. C.

Gunn, J. M.

Hahn, K. M.

V. S. Kraynov, C. Chamberlain, G. M. Bokoch, M. A. Schwartz, S. Slabaugh, and K. M. Hahn, “Localized Rac activation dynamics visualized in living cells,” Science 290, 333–337 (2000).
[Crossref] [PubMed]

Haus, H. A.

He, G. S.

D. W. Brousmiche, J. M. Serin, J. M. J. Fréchet, G. S. He, T.-C. Lin, S. J. Chung, and P. N. Prasad, “Fluorescence resonance energy transfer in a novel two-photon absorbing system,” J. Am. Chem. Soc. 125, 1448–1449 (2003).
[Crossref] [PubMed]

Helm, G. A.

J. D. Mills, J. R. Stone, D. G. Rubin, D. E. Melon, D. O. Okonkwo, A. Periasamy, and G. A. Helm, “Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy,” J. Biomed. Opt. 8, 347–356 (2003).
[Crossref] [PubMed]

Herman, B.

G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref] [PubMed]

Ho, S. O.

N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
[Crossref]

Hoppe, A.

A. Hoppe, K. Christensen, and J. A. Swanson, “Fluorescence resonance energy transfer-based stoichiometry in living cells,” Biophys. J. 83, 3652–3664 (2002).
[Crossref] [PubMed]

Hoppe, A. D.

A. D. Hoppe, B. L. Scott, T. P. Welliver, S. W. Straight, and J. A. Swanson, “N-way FRET microscopy of multiple protein-protein interactions in live cells,” PLoS ONE 8, e64760 (2013).
[Crossref] [PubMed]

M. H. Brenner, D. Cai, S. R. Nichols, S. W. Straight, A. D. Hoppe, J. A. Swanson, and J. P. Ogilvie, “Pulse shaping multiphoton FRET microscopy,” Proc. SPIE 8226, 82260R (2012).
[Crossref]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

Hughes, T. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref] [PubMed]

Ippen, E. P.

Isobe, K.

Izenman, A. J.

A. J. Izenman, Modern Multivariate Statistical Techniques (Springer, 2008).
[Crossref]

James, J.

D. Llères, J. James, S. Swift, D. G. Norman, and A. I. Lamond, “Quantitative analysis of chromatin compaction in living cells using FLIM-FRET,” J. Cell Biol. 187, 481–496 (2009).
[Crossref] [PubMed]

Jansma, D. B.

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

V. Raicu, D. B. Jansma, R. J. D. Miller, and J. Friesen, “Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer,” Biochem J. 385, 265–277 (2005).
[Crossref]

Joffre, M.

Johnson, A.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 5th ed. (Garland Science, 2007).

Jolliffe, I. T.

I. T. Jolliffe, Principal Component Analysis (Springer, 2002).

Jyothikumar, V.

Y. Sun, C. Rombola, V. Jyothikumar, and A. Periasamy, “Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells,” Cytometry Part A 83, 780–793 (2013).
[Crossref]

Kaminski, C. F.

A. D. Elder, A. Domin, G. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, and C. F. Kaminski, “A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission,” J. R. Soc. Interface 6, S59–S81 (2009).
[Crossref]

Kaminski Schierle, G.

A. D. Elder, A. Domin, G. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, and C. F. Kaminski, “A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission,” J. R. Soc. Interface 6, S59–S81 (2009).
[Crossref]

Kannari, F.

Kapanidis, A. N.

N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
[Crossref]

N. K. Lee, A. N. Kapanidis, Y. Wang, X. Michalet, J. Mukhopadhyay, R. H. Ebright, and S. Weiss, “Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation,” Biophys. J. 88, 2939–2953 (2005).
[Crossref] [PubMed]

A. N. Kapanidis, N. K. Lee, T. A. Laurence, S. Doose, E. Margeat, and S. Weiss, “Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules,” Proc. Nat. Acad. Sci USA 101, 8936–8941 (2004).
[Crossref] [PubMed]

Kärtner, F. X.

Kawano, H.

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Kim, S.

K.-L. Chou, N. Won, J. Kwag, S. Kim, and J.-Y. Chen, “Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots,” J. Mater. Chem. B 1, 4584–4592 (2013).
[Crossref]

Kim, S. K.

N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
[Crossref]

Kim, Y.

N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
[Crossref]

Koh, H. R.

N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
[Crossref]

Kong, B.

J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, and G. Zheng, “Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging,” Adv. Mater. 25, 6569–6574 (2013).
[Crossref] [PubMed]

Korlann, Y.

N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
[Crossref]

Koushik, S. V.

C. Thaler, S. V. Koushik, P. S. Blank, and S. S. Vogel, “Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer,” Biophys. J. 89, 2736–2749 (2005).
[Crossref] [PubMed]

Krausz, F.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Kraynov, V. S.

V. S. Kraynov, C. Chamberlain, G. M. Bokoch, M. A. Schwartz, S. Slabaugh, and K. M. Hahn, “Localized Rac activation dynamics visualized in living cells,” Science 290, 333–337 (2000).
[Crossref] [PubMed]

Kubarych, K. J.

Kwag, J.

K.-L. Chou, N. Won, J. Kwag, S. Kim, and J.-Y. Chen, “Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots,” J. Mater. Chem. B 1, 4584–4592 (2013).
[Crossref]

Labroille, G.

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
[Crossref]

Lamond, A. I.

D. Llères, J. James, S. Swift, D. G. Norman, and A. I. Lamond, “Quantitative analysis of chromatin compaction in living cells using FLIM-FRET,” J. Cell Biol. 187, 481–496 (2009).
[Crossref] [PubMed]

Laurence, T. A.

A. N. Kapanidis, N. K. Lee, T. A. Laurence, S. Doose, E. Margeat, and S. Weiss, “Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules,” Proc. Nat. Acad. Sci USA 101, 8936–8941 (2004).
[Crossref] [PubMed]

Lee, N. K.

N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
[Crossref]

N. K. Lee, A. N. Kapanidis, Y. Wang, X. Michalet, J. Mukhopadhyay, R. H. Ebright, and S. Weiss, “Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation,” Biophys. J. 88, 2939–2953 (2005).
[Crossref] [PubMed]

A. N. Kapanidis, N. K. Lee, T. A. Laurence, S. Doose, E. Margeat, and S. Weiss, “Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules,” Proc. Nat. Acad. Sci USA 101, 8936–8941 (2004).
[Crossref] [PubMed]

Levine, B.

G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref] [PubMed]

Lewis, A.

A. C. Millard, P. J. Campagnola, W. Mohler, A. Lewis, and L. M. Loew, “Second harmonic imaging microscopy,” Methods Enzymol. 361, 47–69 (2003).
[Crossref] [PubMed]

Lewis, J.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 5th ed. (Garland Science, 2007).

Liang, X. H.

G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref] [PubMed]

Lin, T.-C.

D. W. Brousmiche, J. M. Serin, J. M. J. Fréchet, G. S. He, T.-C. Lin, S. J. Chung, and P. N. Prasad, “Fluorescence resonance energy transfer in a novel two-photon absorbing system,” J. Am. Chem. Soc. 125, 1448–1449 (2003).
[Crossref] [PubMed]

Lindon, C.

A. D. Elder, A. Domin, G. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, and C. F. Kaminski, “A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission,” J. R. Soc. Interface 6, S59–S81 (2009).
[Crossref]

Liu, Y.

Z. Xia and Y. Liu, “Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes,” Biophys. J. 81, 2395–2402 (2001).
[Crossref] [PubMed]

Llères, D.

D. Llères, J. James, S. Swift, D. G. Norman, and A. I. Lamond, “Quantitative analysis of chromatin compaction in living cells using FLIM-FRET,” J. Cell Biol. 187, 481–496 (2009).
[Crossref] [PubMed]

Loew, L. M.

A. C. Millard, P. J. Campagnola, W. Mohler, A. Lewis, and L. M. Loew, “Second harmonic imaging microscopy,” Methods Enzymol. 361, 47–69 (2003).
[Crossref] [PubMed]

Lozovoy, V. V.

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.-H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
[Crossref]

B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
[Crossref]

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” ChemPhysChem 6, 1970–2000 (2005).
[Crossref] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004).
[Crossref] [PubMed]

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12, 1061–1066 (2004).
[Crossref] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

Lukins, P. B.

R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
[Crossref] [PubMed]

Makarov, N. S.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref] [PubMed]

Margeat, E.

A. N. Kapanidis, N. K. Lee, T. A. Laurence, S. Doose, E. Margeat, and S. Weiss, “Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules,” Proc. Nat. Acad. Sci USA 101, 8936–8941 (2004).
[Crossref] [PubMed]

Martin, J.-L.

Mauring, K.

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc. 19, 517–532 (2009).
[Crossref]

McCaughan, B.

C. Fowley, N. Nomikou, A. P. McHale, B. McCaughan, and J. F. Callan, “Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy,” Chem. Commun. 49, 8934–8936 (2013).
[Crossref]

McHale, A. P.

C. Fowley, N. Nomikou, A. P. McHale, B. McCaughan, and J. F. Callan, “Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy,” Chem. Commun. 49, 8934–8936 (2013).
[Crossref]

Melnichuk, M.

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

Melon, D. E.

J. D. Mills, J. R. Stone, D. G. Rubin, D. E. Melon, D. O. Okonkwo, A. Periasamy, and G. A. Helm, “Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy,” J. Biomed. Opt. 8, 347–356 (2003).
[Crossref] [PubMed]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Michalet, X.

N. K. Lee, A. N. Kapanidis, Y. Wang, X. Michalet, J. Mukhopadhyay, R. H. Ebright, and S. Weiss, “Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation,” Biophys. J. 88, 2939–2953 (2005).
[Crossref] [PubMed]

Midorikawa, K.

Millard, A. C.

A. C. Millard, P. J. Campagnola, W. Mohler, A. Lewis, and L. M. Loew, “Second harmonic imaging microscopy,” Methods Enzymol. 361, 47–69 (2003).
[Crossref] [PubMed]

Miller, R. J. D.

V. Raicu, D. B. Jansma, R. J. D. Miller, and J. Friesen, “Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer,” Biochem J. 385, 265–277 (2005).
[Crossref]

Mills, J. D.

J. D. Mills, J. R. Stone, D. G. Rubin, D. E. Melon, D. O. Okonkwo, A. Periasamy, and G. A. Helm, “Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy,” J. Biomed. Opt. 8, 347–356 (2003).
[Crossref] [PubMed]

Miyawaki, A.

Mizuno, H.

Mohler, W.

A. C. Millard, P. J. Campagnola, W. Mohler, A. Lewis, and L. M. Loew, “Second harmonic imaging microscopy,” Methods Enzymol. 361, 47–69 (2003).
[Crossref] [PubMed]

Monmayrant, A.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
[Crossref]

Morgner, U.

Mukhopadhyay, J.

N. K. Lee, A. N. Kapanidis, Y. Wang, X. Michalet, J. Mukhopadhyay, R. H. Ebright, and S. Weiss, “Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation,” Biophys. J. 88, 2939–2953 (2005).
[Crossref] [PubMed]

Neher, E.

R. A. Neher and E. Neher, “Applying spectral fingerprinting to the analysis of FRET images,” Microsc. Res. and Tech. 64, 185–195 (2004).
[Crossref]

Neher, R. A.

R. A. Neher and E. Neher, “Applying spectral fingerprinting to the analysis of FRET images,” Microsc. Res. and Tech. 64, 185–195 (2004).
[Crossref]

Nichols, S. R.

M. H. Brenner, D. Cai, S. R. Nichols, S. W. Straight, A. D. Hoppe, J. A. Swanson, and J. P. Ogilvie, “Pulse shaping multiphoton FRET microscopy,” Proc. SPIE 8226, 82260R (2012).
[Crossref]

Nomikou, N.

C. Fowley, N. Nomikou, A. P. McHale, B. McCaughan, and J. F. Callan, “Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy,” Chem. Commun. 49, 8934–8936 (2013).
[Crossref]

Noordam, L. D.

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[Crossref] [PubMed]

Norman, D. G.

D. Llères, J. James, S. Swift, D. G. Norman, and A. I. Lamond, “Quantitative analysis of chromatin compaction in living cells using FLIM-FRET,” J. Cell Biol. 187, 481–496 (2009).
[Crossref] [PubMed]

Norris, T. B.

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc. 19, 517–532 (2009).
[Crossref]

Nuernberger, P.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

Ogden, D.

S. Picard, E. J. Cueto-Diaz, E. Genin, G. Clermont, F. Acher, D. Ogden, and M. Blanchard-Desce, “Tandem triad systems based on FRET for two-photon induced release of glutamate,” Chem. Commun. 49, 10805–10807 (2013).
[Crossref]

Ogilvie, J. P.

Okonkwo, D. O.

J. D. Mills, J. R. Stone, D. G. Rubin, D. E. Melon, D. O. Okonkwo, A. Periasamy, and G. A. Helm, “Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy,” J. Biomed. Opt. 8, 347–356 (2003).
[Crossref] [PubMed]

Olivier, N.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

Pastirk, I.

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12, 1061–1066 (2004).
[Crossref] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29, 775–777 (2004).
[Crossref] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

Periasamy, A.

Y. Sun, C. Rombola, V. Jyothikumar, and A. Periasamy, “Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells,” Cytometry Part A 83, 780–793 (2013).
[Crossref]

Y. Sun, R. N. Day, and A. Periasamy, “Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy,” Nat. Protoc. 6, 1324–1340 (2011).
[Crossref] [PubMed]

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16, 19–27 (2005).
[Crossref] [PubMed]

Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63, 72–80 (2004).
[Crossref]

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy,” Methods 29, 58–73 (2003).
[Crossref] [PubMed]

H. Wallrabe, M. Stanley, A. Periasamy, and M. Barroso, “One- and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes,” J. Biomed. Opt. 8, 339–346 (2003).
[Crossref] [PubMed]

J. D. Mills, J. R. Stone, D. G. Rubin, D. E. Melon, D. O. Okonkwo, A. Periasamy, and G. A. Helm, “Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy,” J. Biomed. Opt. 8, 347–356 (2003).
[Crossref] [PubMed]

M. Elangovan, R. N. Day, and A. Periasamy, “Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell,” J. Microsc. 205, 3–14 (2002).
[Crossref] [PubMed]

Peterson, B. Z.

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[Crossref] [PubMed]

Picard, S.

S. Picard, E. J. Cueto-Diaz, E. Genin, G. Clermont, F. Acher, D. Ogden, and M. Blanchard-Desce, “Tandem triad systems based on FRET for two-photon induced release of glutamate,” Chem. Commun. 49, 10805–10807 (2013).
[Crossref]

Pillai, R. S.

Pines, J.

A. D. Elder, A. Domin, G. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, and C. F. Kaminski, “A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission,” J. R. Soc. Interface 6, S59–S81 (2009).
[Crossref]

Pisterzi, L. F.

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

Prasad, P. N.

D. W. Brousmiche, J. M. Serin, J. M. J. Fréchet, G. S. He, T.-C. Lin, S. J. Chung, and P. N. Prasad, “Fluorescence resonance energy transfer in a novel two-photon absorbing system,” J. Am. Chem. Soc. 125, 1448–1449 (2003).
[Crossref] [PubMed]

Raff, M.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 5th ed. (Garland Science, 2007).

Raicu, V.

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

V. Raicu, D. B. Jansma, R. J. D. Miller, and J. Friesen, “Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer,” Biochem J. 385, 265–277 (2005).
[Crossref]

Rath, S.

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

Rebane, A.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref] [PubMed]

Roberts, K.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 5th ed. (Garland Science, 2007).

Rombola, C.

Y. Sun, C. Rombola, V. Jyothikumar, and A. Periasamy, “Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells,” Cytometry Part A 83, 780–793 (2013).
[Crossref]

Rubin, D. G.

J. D. Mills, J. R. Stone, D. G. Rubin, D. E. Melon, D. O. Okonkwo, A. Periasamy, and G. A. Helm, “Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy,” J. Biomed. Opt. 8, 347–356 (2003).
[Crossref] [PubMed]

Saldin, D. K.

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

Schwartz, M. A.

V. S. Kraynov, C. Chamberlain, G. M. Bokoch, M. A. Schwartz, S. Slabaugh, and K. M. Hahn, “Localized Rac activation dynamics visualized in living cells,” Science 290, 333–337 (2000).
[Crossref] [PubMed]

Scott, B. L.

A. D. Hoppe, B. L. Scott, T. P. Welliver, S. W. Straight, and J. A. Swanson, “N-way FRET microscopy of multiple protein-protein interactions in live cells,” PLoS ONE 8, e64760 (2013).
[Crossref] [PubMed]

Selvin, P. R.

P. R. Selvin, “The renaissance of fluorescence resonance energy transfer,” Nat. Struct. Mol. Biol. 7, 730–734 (2000).
[Crossref]

P. R. Selvin, “Fluorescence resonance energy transfer,” Methods Enzymol. 246, 300–334 (1995).
[Crossref] [PubMed]

Serin, J. M.

D. W. Brousmiche, J. M. Serin, J. M. J. Fréchet, G. S. He, T.-C. Lin, S. J. Chung, and P. N. Prasad, “Fluorescence resonance energy transfer in a novel two-photon absorbing system,” J. Am. Chem. Soc. 125, 1448–1449 (2003).
[Crossref] [PubMed]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[Crossref]

Sheppard, C. J. R.

R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
[Crossref] [PubMed]

Silberberg, Y.

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Ann. Rev. Phys. Chem. 60, 277–292 (2009).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

Slabaugh, S.

V. S. Kraynov, C. Chamberlain, G. M. Bokoch, M. A. Schwartz, S. Slabaugh, and K. M. Hahn, “Localized Rac activation dynamics visualized in living cells,” Science 290, 333–337 (2000).
[Crossref] [PubMed]

Solinas, X.

Stanley, M.

H. Wallrabe, M. Stanley, A. Periasamy, and M. Barroso, “One- and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes,” J. Biomed. Opt. 8, 339–346 (2003).
[Crossref] [PubMed]

Steinmeyer, G.

G. Steinmeyer, “A review of ultrafast optics and optoelectronics,” J. Opt. A: Pure Appl. Opt. 5, R1–R15 (2003).
[Crossref]

Stone, J. R.

J. D. Mills, J. R. Stone, D. G. Rubin, D. E. Melon, D. O. Okonkwo, A. Periasamy, and G. A. Helm, “Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy,” J. Biomed. Opt. 8, 347–356 (2003).
[Crossref] [PubMed]

Stoneman, M. R.

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

Straight, S. W.

A. D. Hoppe, B. L. Scott, T. P. Welliver, S. W. Straight, and J. A. Swanson, “N-way FRET microscopy of multiple protein-protein interactions in live cells,” PLoS ONE 8, e64760 (2013).
[Crossref] [PubMed]

M. H. Brenner, D. Cai, S. R. Nichols, S. W. Straight, A. D. Hoppe, J. A. Swanson, and J. P. Ogilvie, “Pulse shaping multiphoton FRET microscopy,” Proc. SPIE 8226, 82260R (2012).
[Crossref]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[Crossref]

Suda, A.

Sun, Y.

Y. Sun, C. Rombola, V. Jyothikumar, and A. Periasamy, “Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells,” Cytometry Part A 83, 780–793 (2013).
[Crossref]

Y. Sun, R. N. Day, and A. Periasamy, “Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy,” Nat. Protoc. 6, 1324–1340 (2011).
[Crossref] [PubMed]

Supatto, W.

W. Supatto, T. V. Truong, D. Débarre, and E. Beaurepaire, “Advances in multiphoton microscopy for imaging embryos,” Curr. Opin. Gen. Dev. 21, 538–548 (2011).
[Crossref]

Swanson, J. A.

A. D. Hoppe, B. L. Scott, T. P. Welliver, S. W. Straight, and J. A. Swanson, “N-way FRET microscopy of multiple protein-protein interactions in live cells,” PLoS ONE 8, e64760 (2013).
[Crossref] [PubMed]

M. H. Brenner, D. Cai, J. A. Swanson, and J. P. Ogilvie, “Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser,” Opt. Express 21, 17256–17264 (2013).
[Crossref] [PubMed]

M. H. Brenner, D. Cai, S. R. Nichols, S. W. Straight, A. D. Hoppe, J. A. Swanson, and J. P. Ogilvie, “Pulse shaping multiphoton FRET microscopy,” Proc. SPIE 8226, 82260R (2012).
[Crossref]

A. Hoppe, K. Christensen, and J. A. Swanson, “Fluorescence resonance energy transfer-based stoichiometry in living cells,” Biophys. J. 83, 3652–3664 (2002).
[Crossref] [PubMed]

Swift, S.

D. Llères, J. James, S. Swift, D. G. Norman, and A. I. Lamond, “Quantitative analysis of chromatin compaction in living cells using FLIM-FRET,” J. Cell Biol. 187, 481–496 (2009).
[Crossref] [PubMed]

Tanaka, M.

Tang, J.

J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, and G. Zheng, “Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging,” Adv. Mater. 25, 6569–6574 (2013).
[Crossref] [PubMed]

Thaler, C.

C. Thaler, S. V. Koushik, P. S. Blank, and S. S. Vogel, “Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer,” Biophys. J. 89, 2736–2749 (2005).
[Crossref] [PubMed]

Tillo, S. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref] [PubMed]

Tkaczyk, A. H.

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc. 19, 517–532 (2009).
[Crossref]

Tkaczyk, E. R.

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc. 19, 517–532 (2009).
[Crossref]

Truong, T. V.

W. Supatto, T. V. Truong, D. Débarre, and E. Beaurepaire, “Advances in multiphoton microscopy for imaging embryos,” Curr. Opin. Gen. Dev. 21, 538–548 (2011).
[Crossref]

Tseng, C.-H.

van Linden van den Heuvell, H. B.

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[Crossref] [PubMed]

Veilleux, I.

Vogel, S. S.

C. Thaler, S. V. Koushik, P. S. Blank, and S. S. Vogel, “Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer,” Biophys. J. 89, 2736–2749 (2005).
[Crossref] [PubMed]

Vogt, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

Wallrabe, H.

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16, 19–27 (2005).
[Crossref] [PubMed]

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy,” Methods 29, 58–73 (2003).
[Crossref] [PubMed]

H. Wallrabe, M. Stanley, A. Periasamy, and M. Barroso, “One- and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes,” J. Biomed. Opt. 8, 339–346 (2003).
[Crossref] [PubMed]

Walowicz, K. A.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

Walter, P.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 5th ed. (Garland Science, 2007).

Wang, Y.

J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, and G. Zheng, “Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging,” Adv. Mater. 25, 6569–6574 (2013).
[Crossref] [PubMed]

J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, and G. Zheng, “Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging,” Adv. Mater. 25, 6569–6574 (2013).
[Crossref] [PubMed]

N. K. Lee, A. N. Kapanidis, Y. Wang, X. Michalet, J. Mukhopadhyay, R. H. Ebright, and S. Weiss, “Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation,” Biophys. J. 88, 2939–2953 (2005).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref] [PubMed]

Weber, S.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
[Crossref]

Weinacht, T.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instr. 71, 1929–1960 (2000).
[Crossref]

Weiss, S.

N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
[Crossref]

N. K. Lee, A. N. Kapanidis, Y. Wang, X. Michalet, J. Mukhopadhyay, R. H. Ebright, and S. Weiss, “Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation,” Biophys. J. 88, 2939–2953 (2005).
[Crossref] [PubMed]

A. N. Kapanidis, N. K. Lee, T. A. Laurence, S. Doose, E. Margeat, and S. Weiss, “Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules,” Proc. Nat. Acad. Sci USA 101, 8936–8941 (2004).
[Crossref] [PubMed]

Welliver, T. P.

A. D. Hoppe, B. L. Scott, T. P. Welliver, S. W. Straight, and J. A. Swanson, “N-way FRET microscopy of multiple protein-protein interactions in live cells,” PLoS ONE 8, e64760 (2013).
[Crossref] [PubMed]

Wells, J. W.

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref] [PubMed]

Won, N.

K.-L. Chou, N. Won, J. Kwag, S. Kim, and J.-Y. Chen, “Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots,” J. Mater. Chem. B 1, 4584–4592 (2013).
[Crossref]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson Higher Ed, 2008).

Wu, H.

J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, and G. Zheng, “Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging,” Adv. Mater. 25, 6569–6574 (2013).
[Crossref] [PubMed]

Xia, Z.

Z. Xia and Y. Liu, “Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes,” Biophys. J. 81, 2395–2402 (2001).
[Crossref] [PubMed]

Xie, X. S.

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC, 2012).

Xu, B.

Xu, M.

J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, and G. Zheng, “Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging,” Adv. Mater. 25, 6569–6574 (2013).
[Crossref] [PubMed]

Ye, J. Y.

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc. 19, 517–532 (2009).
[Crossref]

Yue, D. T.

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[Crossref] [PubMed]

Zhao, D.

J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, and G. Zheng, “Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging,” Adv. Mater. 25, 6569–6574 (2013).
[Crossref] [PubMed]

Zheng, G.

J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, and G. Zheng, “Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging,” Adv. Mater. 25, 6569–6574 (2013).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref] [PubMed]

Adv. Mater. (1)

J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang, Y. Wang, D. Zhao, and G. Zheng, “Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging,” Adv. Mater. 25, 6569–6574 (2013).
[Crossref] [PubMed]

Ann. Phys. (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55–75 (1948).
[Crossref]

Ann. Rev. Phys. Chem. (1)

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Ann. Rev. Phys. Chem. 60, 277–292 (2009).
[Crossref]

Appl. Phys. B (1)

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[Crossref]

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[Crossref]

Biochem J. (1)

V. Raicu, D. B. Jansma, R. J. D. Miller, and J. Friesen, “Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer,” Biochem J. 385, 265–277 (2005).
[Crossref]

Biophys. J. (6)

N. K. Lee, A. N. Kapanidis, Y. Wang, X. Michalet, J. Mukhopadhyay, R. H. Ebright, and S. Weiss, “Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation,” Biophys. J. 88, 2939–2953 (2005).
[Crossref] [PubMed]

G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy,” Biophys. J. 74, 2702–2713 (1998).
[Crossref] [PubMed]

Z. Xia and Y. Liu, “Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes,” Biophys. J. 81, 2395–2402 (2001).
[Crossref] [PubMed]

A. Hoppe, K. Christensen, and J. A. Swanson, “Fluorescence resonance energy transfer-based stoichiometry in living cells,” Biophys. J. 83, 3652–3664 (2002).
[Crossref] [PubMed]

C. Thaler, S. V. Koushik, P. S. Blank, and S. S. Vogel, “Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer,” Biophys. J. 89, 2736–2749 (2005).
[Crossref] [PubMed]

N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, Y. Kim, N. Gassman, S. K. Kim, and S. Weiss, “Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances,” Biophys. J. 92, 303–312 (2007).
[Crossref]

Chem. Commun. (2)

C. Fowley, N. Nomikou, A. P. McHale, B. McCaughan, and J. F. Callan, “Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy,” Chem. Commun. 49, 8934–8936 (2013).
[Crossref]

S. Picard, E. J. Cueto-Diaz, E. Genin, G. Clermont, F. Acher, D. Ogden, and M. Blanchard-Desce, “Tandem triad systems based on FRET for two-photon induced release of glutamate,” Chem. Commun. 49, 10805–10807 (2013).
[Crossref]

ChemPhysChem (1)

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” ChemPhysChem 6, 1970–2000 (2005).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16, 19–27 (2005).
[Crossref] [PubMed]

Curr. Opin. Gen. Dev. (1)

W. Supatto, T. V. Truong, D. Débarre, and E. Beaurepaire, “Advances in multiphoton microscopy for imaging embryos,” Curr. Opin. Gen. Dev. 21, 538–548 (2011).
[Crossref]

Cytometry Part A (1)

Y. Sun, C. Rombola, V. Jyothikumar, and A. Periasamy, “Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells,” Cytometry Part A 83, 780–793 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

D. W. Brousmiche, J. M. Serin, J. M. J. Fréchet, G. S. He, T.-C. Lin, S. J. Chung, and P. N. Prasad, “Fluorescence resonance energy transfer in a novel two-photon absorbing system,” J. Am. Chem. Soc. 125, 1448–1449 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

H. Wallrabe, M. Stanley, A. Periasamy, and M. Barroso, “One- and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes,” J. Biomed. Opt. 8, 339–346 (2003).
[Crossref] [PubMed]

J. D. Mills, J. R. Stone, D. G. Rubin, D. E. Melon, D. O. Okonkwo, A. Periasamy, and G. A. Helm, “Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy,” J. Biomed. Opt. 8, 347–356 (2003).
[Crossref] [PubMed]

J. Cell Biol. (1)

D. Llères, J. James, S. Swift, D. G. Norman, and A. I. Lamond, “Quantitative analysis of chromatin compaction in living cells using FLIM-FRET,” J. Cell Biol. 187, 481–496 (2009).
[Crossref] [PubMed]

J. Chem. Phys. (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

J. Fluoresc. (1)

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc. 19, 517–532 (2009).
[Crossref]

J. Mater. Chem. B (1)

K.-L. Chou, N. Won, J. Kwag, S. Kim, and J.-Y. Chen, “Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots,” J. Mater. Chem. B 1, 4584–4592 (2013).
[Crossref]

J. Microsc. (1)

M. Elangovan, R. N. Day, and A. Periasamy, “Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell,” J. Microsc. 205, 3–14 (2002).
[Crossref] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

G. Steinmeyer, “A review of ultrafast optics and optoelectronics,” J. Opt. A: Pure Appl. Opt. 5, R1–R15 (2003).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. B: At. Mol. Opt. Phys. (1)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At. Mol. Opt. Phys. 43, 103001 (2010).
[Crossref]

J. Phys. Chem. A (2)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

J. R. Soc. Interface (1)

A. D. Elder, A. Domin, G. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, and C. F. Kaminski, “A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission,” J. R. Soc. Interface 6, S59–S81 (2009).
[Crossref]

Methods (1)

M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, “Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy,” Methods 29, 58–73 (2003).
[Crossref] [PubMed]

Methods Enzymol. (3)

R. M. Clegg, “Fluorescence resonance energy transfer and nucleic acids,” Methods Enzymol. 211, 353–388 (1992).
[Crossref] [PubMed]

P. R. Selvin, “Fluorescence resonance energy transfer,” Methods Enzymol. 246, 300–334 (1995).
[Crossref] [PubMed]

A. C. Millard, P. J. Campagnola, W. Mohler, A. Lewis, and L. M. Loew, “Second harmonic imaging microscopy,” Methods Enzymol. 361, 47–69 (2003).
[Crossref] [PubMed]

Micron (1)

R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Optimization of second-harmonic generation microscopy,” Micron 32, 691–700 (2001).
[Crossref] [PubMed]

Microsc. Res. and Tech. (1)

R. A. Neher and E. Neher, “Applying spectral fingerprinting to the analysis of FRET images,” Microsc. Res. and Tech. 64, 185–195 (2004).
[Crossref]

Microsc. Res. Tech. (1)

Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63, 72–80 (2004).
[Crossref]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Methods (1)

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8, 393–399 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics 3, 107–113 (2009).
[Crossref]

Nat. Protoc. (1)

Y. Sun, R. N. Day, and A. Periasamy, “Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy,” Nat. Protoc. 6, 1324–1340 (2011).
[Crossref] [PubMed]

Nat. Struct. Mol. Biol. (1)

P. R. Selvin, “The renaissance of fluorescence resonance energy transfer,” Nat. Struct. Mol. Biol. 7, 730–734 (2000).
[Crossref]

Nature (2)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

Neuron (1)

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31, 973–985 (2001).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

Phys. Rev. A (1)

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[Crossref] [PubMed]

PLoS ONE (1)

A. D. Hoppe, B. L. Scott, T. P. Welliver, S. W. Straight, and J. A. Swanson, “N-way FRET microscopy of multiple protein-protein interactions in live cells,” PLoS ONE 8, e64760 (2013).
[Crossref] [PubMed]

Proc. Nat. Acad. Sci USA (1)

A. N. Kapanidis, N. K. Lee, T. A. Laurence, S. Doose, E. Margeat, and S. Weiss, “Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules,” Proc. Nat. Acad. Sci USA 101, 8936–8941 (2004).
[Crossref] [PubMed]

Proc. SPIE (2)

M. H. Brenner, D. Cai, S. R. Nichols, S. W. Straight, A. D. Hoppe, J. A. Swanson, and J. P. Ogilvie, “Pulse shaping multiphoton FRET microscopy,” Proc. SPIE 8226, 82260R (2012).
[Crossref]

D. C. Flynn, A. R. Bhagwat, and J. P. Ogilvie, “Chemical-contrast imaging with pulse-shaping based pump-probe spectroscopy,” Proc. SPIE 8588, 85881Z (2013).
[Crossref]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Rev. Sci. Instr. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instr. 71, 1929–1960 (2000).
[Crossref]

Science (2)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

V. S. Kraynov, C. Chamberlain, G. M. Bokoch, M. A. Schwartz, S. Slabaugh, and K. M. Hahn, “Localized Rac activation dynamics visualized in living cells,” Science 290, 333–337 (2000).
[Crossref] [PubMed]

Other (6)

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 5th ed. (Garland Science, 2007).

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson Higher Ed, 2008).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
[Crossref]

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC, 2012).

I. T. Jolliffe, Principal Component Analysis (Springer, 2002).

A. J. Izenman, Modern Multivariate Statistical Techniques (Springer, 2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The scheme for two-photon FRET is shown, where the donor (mAmetrine) and acceptor (tdTomato) are selectively excited by process σ D ( 2 ) (orange arrows) and σ A ( 2 ) (red arrows) respectively, while the emission is split with a dichroic and detected with two PMTs. FRET efficiency is defined as k FRET / ( k FRET + k FL D ) for the donor, where kFRET is the rate of FRET, while k FL D (solid green arrow) is the total rate of all other radiative and non-radiative decay of donor excitation. (b) When the donor and acceptor are not associated, no FRET occurs, and a majority of the emission from the donor is collected in the donor channel (green arrow) and a majority of the acceptor emission is collected in the acceptor channel(yellow arrow). (c) When associated in a complex, FRET occurs between the donor and acceptor (dotted green arrow), resulting in increased emission from the acceptor (denoted by a longer yellow arrow) and decreased emission from the donor when excited by the donor pulse-shape (smaller green solid arrow).

Fig. 2
Fig. 2

Experimental setup: M1–M5: mirrors, G = grating, CM = concave mirror, SLM = spatial light modulator, DM1 = 660DCXXR dichroic mirror (Chroma), DM2 = 550DCXR dichroic mirror (Chroma), OBJ = 60X 1.2 NA water immersion objective (Olympus), SP = E650SP short pass filter (Chroma), Ti:Sapph laser = Titanium:sapphire laser (Venteon Pulse:One, 650 – 1000 nm).

Fig. 3
Fig. 3

(A) Two-photon absorption spectra with respect to transition wavelength of donor (mAmetrine, red) and acceptor (tdTomato, blue) adapted from Drobizhev et al. [41], and their overlap with the second harmonic of the transform-limited titanium:sapphire laser pulse (SHG(TL), black). (B) Simulated second harmonic signal for excitation of donor (red) and acceptor (blue) obtained upon applying the binary spectral phase function determined via genetic algorithm. Also shown is the second harmonic spectrum of the transform-limited pulse (black). (C) Emission spectra of donor (red) and acceptor (blue). Also shown is the transmission of the dichroic filter (black) splitting the emission into two PMT channels. (D) Experimental second harmonic spectra for excitation of donor (red) and acceptor (blue) obtained upon applying the binary spectral phase function determined via genetic algorithm. Also shown is the second harmonic spectrum of the transform-limited pulse (black).

Fig. 4
Fig. 4

Top: Raw microscope images from channels IA, ID, and IF for cells expressing linked construct mAmetrine-tdTomato. Bottom: Color coded cells after analysis for the cells expressing linked construct mAmetrine-tdTomato giving the ratio of acceptor in construct (fA, expected value = 1), ratio of donor in construct (fD, expected value = 1), and absolute concentration ratio (R, expected value = 1). Scale bar insert:55 μm

Fig. 5
Fig. 5

Top: Raw microscope images from channels IA, ID, and IF for cells expressing unlinked mAmetrine and tdTomato. Bottom: Color coded cells after analysis for cells expressing unlinked mAmetrine and tdTomato giving the ratio of acceptor in construct (fA, expected value = 0), and ratio of donor in construct (fD, expected value = 0). Scale bar insert: 55 μm

Fig. 6
Fig. 6

Top: Raw microscope images from channels IA, ID, and IF for cells expressing linked construct mAmetrine-tdTomato plus excess mAmetrine. Bottom: Color coded cells after analysis for cells expressing linked construct mAmetrine-tdTomato plus excess mAmetrine giving the ratio of acceptor in construct (fA, expected value = 1), ratio of donor in construct (fD, expected value < 1), and absolute concentration ratio (R, expected value < 1). Scale bar insert: 55 μm

Fig. 7
Fig. 7

Top: Raw microscope images from channels IA, ID, and IF for cells expressing linked construct mAmetrine-tdTomato plus excess tdTomato. Bottom: Color coded cells after analysis for cells expressing linked construct mAmetrine-tdTomato plus excess td-Tomato giving the ratio of acceptor in construct (fA, expected value < 1), ratio of donor in construct (fD, expected value = 1), and absolute concentration ratio (R, expected value > 1). Scale bar insert: 55 μm

Tables (2)

Tables Icon

Table 1 Glossary of symbols for FRET stoichiometry. The constants θ and η account for additional cross-talk terms that were negligible in the Hoppe FRET stoichiometry theory.

Tables Icon

Table 2 Average FRET stoichiometry values for cell expression of combinations of linked and unlinked molecules. The results determined using the generalized (G) stoichiometry theory and the original stoichiometry theory are compared to illustrate points of differentiation. The expected values for the given transfection type are given in parentheses. The number of individual cells used to calculate the average and standard deviation (SD) for each transfection type are noted in row 2.

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

f A = γ [ η η β I F β η η β I D θ α θ α I A α θ α I F 1 ] 1 E f D = [ 1 1 η β ( η I D I F ) ξ ( η θ β α ( θ α ) ( η β ) I F β η η β I D α θ θ α I A ) + 1 η β ( η I D I F ) ] 1 E R = f D f A = [ A T ] [ D T ]
S g ( ω ) | E ( 2 ) ( ω ) | 2 ,
E ( 2 ) ( ω ) d ω | E ( ω ) | | E ( ω ω ) | exp { i [ ϕ ( ω ) + ϕ ( ω ω ) ] } .
E = [ 1 τ DA τ D ] ,
α = F A ( λ D ex λ A em ) F A ( λ A ex λ A em ) = I F I A
β = F D ( λ D ex λ A em ) F D ( λ D ex λ D em ) = I F I D
η = F A ( λ D ex λ A em ) F A ( λ D ex λ D em ) = F A ( λ A ex λ A em ) F A ( λ A ex λ D em ) = I A I N
θ = F D ( λ D ex λ D em ) F D ( λ A ex λ D em ) = I D I N .
γ = E [ η η β I F β η η β I D θ α θ α I A α θ α I F 1 ] 1
ξ = E ( η I D I F η β ) ( 1 E ) ( η θ β α ( θ α ) ( η β ) I F β η η β I D α θ θ α I A ) .
I F = F ( λ D ex λ A em ) = F D ( λ D ex λ A em ) + F A ( λ D ex λ A em ) + F T ( λ D ex λ A em ) I A = F ( λ A ex λ A em ) = F D ( λ A ex λ A em ) + F A ( λ A ex λ A em ) + F T ( λ A ex λ A em ) I D = F ( λ D ex λ D em ) = F D ( λ D ex λ D em ) + F A ( λ D ex λ D em ) + F T ( λ D ex λ D em )
F A ( λ D ex λ D em ) = 0 F D ( λ A ex λ A em ) = 0
E = σ A ( λ D ex ) σ D ( λ D ex ) [ F AD ( λ D ex λ A em ) F A ( λ D ex λ A em ) 1 ] ( 1 f A )
F AD ( λ D ex λ A em ) = F A ( λ D ex λ A em ) + F T ( λ D ex λ A em ) ,
F AD ( λ D ex λ A em ) = I F F D ( λ D ex λ A em ) .
β = F D ( λ D ex λ A em ) F D ( λ D ex λ D em ) = I F I D
F D ( λ D ex λ D em ) = I D F A ( λ D ex λ D em ) F F ( λ D ex λ D em ) .
η = F A ( λ D ex λ A em ) F A ( λ D ex λ D em ) = F A ( λ A ex λ A em ) F A ( λ A ex λ D em ) = I A I N ,
F D ( λ D ex λ D em ) = I D 1 η F A ( λ D ex λ A em ) F T ( λ D ex λ D em ) .
η = F T ( λ D ex λ A em ) F T ( λ D ex λ D em ) = F T ( λ A ex λ A em ) F T ( λ A ex λ D em ) .
F D ( λ D ex λ D em ) = I D 1 η ( F A ( λ D ex λ A em ) + F T ( λ D ex λ A em ) ) .
F AD ( λ D ex λ A em ) = I F β I D + β η ( F A ( λ D ex λ A em ) + F T ( λ D ex λ A em ) ) .
F AD ( λ D ex λ A em ) = I F β I D 1 β η .
α = F A ( λ D ex λ A em ) F A ( λ A ex λ A em ) = I F I A
F A ( λ A ex λ A em ) = I A F D ( λ A ex λ A em ) F T ( λ A ex λ A em ) .
θ = F D ( λ D ex λ D em ) F D ( λ A ex λ D em ) = F D ( λ D ex λ A em ) F D ( λ A ex λ A em ) ,
F A ( λ A ex λ A em ) = I A 1 θ F D ( λ D ex λ A em ) F T ( λ A ex λ A em ) .
F T ( λ A ex λ A em ) = 1 θ F T ( λ D ex λ A em ) = 1 θ [ F AD ( λ D ex λ A em ) F A ( λ D ex λ A em ) ] .
1 α F A ( λ D ex λ A em ) = I A 1 θ [ F D ( λ D ex λ A em ) + F AD ( λ D ex λ A em ) ] + 1 θ F A ( λ D ex λ A em ) .
F A ( λ D ex λ A em ) = θ α θ α I A α θ α I F .
E = γ [ η η β I F β η η β I D θ α θ α I A α θ α I F 1 ] 1 f A .
E = [ 1 F DA ( λ D ex λ D em ) F DO ( λ D ex λ D em ) ] ( 1 f D ) .
F DA ( λ D ex λ D em ) = F ( λ D ex λ D em ) = I D F A ( λ D ex λ D em ) F T ( λ D ex λ D em )
F DA ( λ D ex λ D em ) = 1 η β ( η I D I F ) .
F DO ( λ D ex λ D em ) = F T ( λ D ex λ A em ) ξ + F DA ( λ D ex λ D em ) ,
F T ( λ D ex λ A em ) = I F F D ( λ D ex λ A em ) F A ( λ D ex λ A em ) ,
F T ( λ D ex λ A em ) = I F η θ β α ( θ α ) ( η β ) I D β η η β I A α θ θ α .
E = [ 1 1 η β ( η I D I F ) ξ ( η θ β α ( θ α ) ( η β ) I F β η η β I D α θ θ α I A ) + 1 η β ( η I D I F ) ] 1 f D .
R = f D f A = [ A T ] [ D T ] .

Metrics