Abstract

Platinum germanides (PtGe) were investigated for infrared plasmonic applications. Layers of Pt and Ge were deposited and annealed. X-ray diffraction identified PtGe2 and Pt2Ge3 phases, and x-ray photo-electron spectroscopy determined vertical atomic composition profiles for the films. Complex permittivity spectra were measured by ellipsometry over the 2 to 15 μm wavelength range. Surface plasmon polariton (SPP) characteristics such as propagation length and field penetration depth were calculated. Photon-to-SPP couplers in the form of 1D lamellar gratings were fabricated and characterized in the range 9 - 10.5 μm via wavelength-dependent specular reflection spectra for multiple angles of incidence. The observed resonances compare well with calculated spectra for SPP excitation on PtGe2. Platinum germanides are CMOS compatible and may serve as SPP hosts for on-chip mid-IR plasmonic components with tighter field confinement than noble-metal hosts.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
IR permittivities for silicides and doped silicon

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald
J. Opt. Soc. Am. B 27(4) 730-734 (2010)

Conformal spray-deposited fluorine-doped tin oxide for mid- and long-wave infrared plasmonics

Ricky Gibson, Shivashankar Vangala, Isaiah O. Oladeji, Evan Smith, Farnood Khalizadeh-Rezaie, Kevin D. Leedy, Bruce Claflin, Tim Cooper, Robert E. Peale, and Justin W. Cleary
Opt. Mater. Express 7(7) 2477-2486 (2017)

Fluorine-doped tin oxides for mid-infrared plasmonics

Farnood Khalilzadeh-Rezaie, Isaiah O. Oladeji, Justin W. Cleary, Nima Nader, Janardan Nath, Imen Rezadad, and Robert E. Peale
Opt. Mater. Express 5(10) 2184-2192 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
    [Crossref] [PubMed]
  2. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
    [Crossref] [PubMed]
  3. J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306 (2010).
    [Crossref]
  4. J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS1133–AA10–03 (2008).
  5. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
    [Crossref]
  6. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
    [Crossref]
  7. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
    [Crossref] [PubMed]
  8. J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
    [Crossref]
  9. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  10. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photonics; the opportunities and challenges of mid-infrared plasmonics,” J. Nanophotonics A 24, 103–130 (2013).
  11. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  12. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
    [Crossref]
  13. S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
    [Crossref]
  14. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1988).
  15. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  16. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
    [Crossref] [PubMed]
  17. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
    [Crossref]
  18. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
    [Crossref]
  19. H. Okamoto, “The Ge-Pt system (germanium-platinum),” J. Phase Equilibria 13(4), 413–417 (1992).
    [Crossref]
  20. J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt. 49(16), 3102–3110 (2010).
    [Crossref] [PubMed]

2013 (2)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photonics; the opportunities and challenges of mid-infrared plasmonics,” J. Nanophotonics A 24, 103–130 (2013).

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

2010 (4)

2008 (2)

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[Crossref] [PubMed]

2006 (1)

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

1999 (1)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[Crossref]

1992 (1)

H. Okamoto, “The Ge-Pt system (germanium-platinum),” J. Phase Equilibria 13(4), 413–417 (1992).
[Crossref]

Adams, D. C.

Andreani, L. C.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

Avrutsky, I.

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

Boreman, G. D.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
[Crossref]

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS1133–AA10–03 (2008).

Buchwald, W.

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306 (2010).
[Crossref]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
[Crossref] [PubMed]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[Crossref] [PubMed]

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS1133–AA10–03 (2008).

Buchwald, W. R.

Cleary, J. W.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
[Crossref] [PubMed]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306 (2010).
[Crossref]

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt. 49(16), 3102–3110 (2010).
[Crossref] [PubMed]

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS1133–AA10–03 (2008).

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[Crossref]

Davids, P. S.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Desjardins, P.

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

Detavernier, C.

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

Drehman, A.

Edwards, O.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306 (2010).
[Crossref]

Eyink, K.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Gaudet, S.

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

Gerace, D.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

Ginn, J. C.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Hendrickson, J.

Ishigami, M.

Jarecki, R. L.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Kellock, A. J.

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

Kim, J.

Lavoie, C.

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

Law, S.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photonics; the opportunities and challenges of mid-infrared plasmonics,” J. Nanophotonics A 24, 103–130 (2013).

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

Leedy, K. D.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Liscidini, M.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

Look, D. C.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Medhi, G.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306 (2010).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt. 49(16), 3102–3110 (2010).
[Crossref] [PubMed]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

Okamoto, H.

H. Okamoto, “The Ge-Pt system (germanium-platinum),” J. Phase Equilibria 13(4), 413–417 (1992).
[Crossref]

Oladeji, I.

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306 (2010).
[Crossref]

Peale, R. E.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306 (2010).
[Crossref]

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt. 49(16), 3102–3110 (2010).
[Crossref] [PubMed]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[Crossref] [PubMed]

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS1133–AA10–03 (2008).

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photonics; the opportunities and challenges of mid-infrared plasmonics,” J. Nanophotonics A 24, 103–130 (2013).

Shahzad, M.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Shaner, E. A.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Shelton, D.

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS1133–AA10–03 (2008).

Shelton, D. J.

Sipe, J. E.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

Smith, C. W.

Snure, M. R.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Soref, R.

Taylor, A. M.

Tiwari, A.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Wasserman, D.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photonics; the opportunities and challenges of mid-infrared plasmonics,” J. Nanophotonics A 24, 103–130 (2013).

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Appl. Phys. (2)

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

J. Nanophotonics A (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photonics; the opportunities and challenges of mid-infrared plasmonics,” J. Nanophotonics A 24, 103–130 (2013).

J. Opt. Soc. Am. B (1)

J. Phase Equilibria (1)

H. Okamoto, “The Ge-Pt system (germanium-platinum),” J. Phase Equilibria 13(4), 413–417 (1992).
[Crossref]

J. Vac. Sci. Technol. (1)

S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, “Thin film reaction of transition metals with germanium,” J. Vac. Sci. Technol. 24(3), 474–485 (2006).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (1)

Phys. Rev. B (2)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[Crossref]

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[Crossref]

Proc. SPIE (2)

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306 (2010).
[Crossref]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 854504 (2012).
[Crossref]

Other (3)

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS1133–AA10–03 (2008).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1988).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Measured real (top) and imaginary (middle) parts of the permittivity for Pt and PtGe, and calculated optical skin depth (bottom). Solid lines indicate average values while shaded bands represent standard deviation. Results for PtSi [12] and for Pt are presented for comparison.

Fig. 2
Fig. 2

XRD spectra of unannealed Pt (upper-left), and annealed samples C-1 (upper-right), E-1 (lower-left), and E-2 (lower-right).

Fig. 3
Fig. 3

SEM images of PtGe films annealed at 400°C (C1, top) and 500°C (E2, bottom).

Fig. 4
Fig. 4

XPS data for unannealed Pt, and annealed samples C-1and E-2 as a function of sputter time.

Fig. 5
Fig. 5

Plasmon energy propagation lengths (top) and field penetration depths (bottom) for Pt, PtSi, PtGe2, and Pt2Ge3. The solid lines are calculated from measured permittivity spectra. Shading indicates the uncertainty. The dashed lines show PtSi results from data in [12].

Fig. 6
Fig. 6

Profile (top) and SEM image (bottom) of fabricated PtGe2 1D lamellar grating. The vertical scale of the profile is exaggerated 10x compared to the horizontal scale.

Fig. 7
Fig. 7

Angular-dependent reflection experimental setup used for characterizing gratings.

Fig. 8
Fig. 8

Wavelength-dependent reflection spectra of Pt and PtGe2. (left) Experimental results using nominal angles and (right) calculations using angles fitted to experiments and based on measured permittivities for unannealed Pt-on-Ge, PtGe2, and Pt2Ge3. In these respective calculated cases, the structure was 50 nm Pt on 200 nm Ge or 250 nm platinum germanide on etched Si. Symbols indicate analytically calculated SPP resonance wavelengths for bulk Pt.

Tables (2)

Tables Icon

Table 1 PtGe films with evaporated structure of 50 nm Pt / 200 nm Ge / Si substrate. Anneal times were 45 minutes.

Tables Icon

Table 2 Predicted practical performance of plasmonic waveguides. Lx, Lair, and Lc are the corresponding values at the upper wavelength limit.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ= [ 2π λ Im ε ] 1 ,
L d,c = [ 2π λ Re ε d,c 2 ε d + ε c ] 1 .
L x = [ 2Im k SPP ] 1 ,
k SPP = 2π λ ε d ε c ε d + ε c .
Re[ k SPP ]*sign(m)= 2π λ [ sin( θ )+ mλ P ].

Metrics